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ABSTRACT 

Protein materials are rapidly gaining interest in materials sciences and nanomedicine because of 

their intrinsic biocompatibility and full biodegradability. The controlled construction of 

supramolecular entities relies on the controlled oligomerization of individual polypeptides, 

achievable through different strategies. Because of the potential toxicity of amyloids, those based 

on alternative molecular organizations are particularly appealing, but the structural bases on non-

amylogenic oligomerization remain poorly studied. We have applied spectrofluorimetry and 

spectropolarimetry to identify the conformational conversion during the oligomerization of His-

tagged cationic stretches into regular nanoparticles ranging around 11 nm, useful for tumor-

targeted drug delivery. We demonstrate that the novel conformation acquired by the proteins, as 

building blocks of these supramolecular assemblies, shows different extents of compactness and 

results in a beta structure enrichment that enhances their structural stability. The conformational 

profiling presented here offers clear clues for understanding and tailoring the process of 

nanoparticle formation through the use of cationic and histidine rich stretches, in the context of 

protein materials usable in advanced nanomedical strategies.  
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INTRODUCTION  

Protein materials are gaining interest in materials sciences and in nanomedicine because of the 

intrinsic biocompatibility and non-recalcitrant nature of polypeptides, that make their use in drug 

delivery or regenerative medicine safer than other micro- or nanoscale composites 1. Additionally, 

biological and environmental-friendly fabrication of proteins in recombinant organisms 2 and the 

possibility to modulate their structure and function through genetic engineering 3 allow the 

generation of tailored functional or multifunctional materials 4, with unique characteristics such as 

a plasticity unreachable by metals, polymers, ceramics, or other nanostructured materials. The 

construction of protein-based materials relies on the controlled oligomerization of individual 

polypeptides, which act as building blocks of complex supramolecular arrangements. This is 

achieved by the engineering of natural oligomerization domains, by domain-swapping or through 

the regulation of protein-protein contacts by a diversity of strategies 1b, 2b, among which one of the 

best exploited is controlled amyloid fibril formation 1a, 5. The structural conversion from isolated 

protein monomers to components of larger amyloidal structures has been studied and reviewed in 

detail 6, and the analysis of the conformational changes along the process allows designing new 

categories of building blocks for novel tailored materials 7 with potentially improved properties 

and functionalities 1a, 6a, 8. 

Among non-fibril protein materials, isometric nanoparticles resulting from protein self-assembling 

are of special interest in cell-targeted delivery of protein and non-protein drugs 9. In this context, 

cationic protein segments such polyarginines, as short peptides 10 or as N-terminal protein fusions 

11 promote self-assembling 12. Supported by this principle, T22-GFP-H6 and related fusion 

proteins are fluorescent building blocks that self-assemble as  cyclic homomeric nanoparticles of 

10-20 nm 11 through the combination of electrostatic, hydrogen bond and Van der Waals forces, 

as determined from protein modelling 13. These materials are formed by around 10 monomers that 

organize in a single molecular layer as a nanoscale disk 13b, 14. A major driver of the assembling 

process is the N-terminal domain, namely the peptide T22. This cationic protein segment is an 

engineered version of polyphemusin II from Atlantic horseshoe crab Limulus polyphemus, that is 

a well-known antagonist of the cell surface cytokine receptor CXC chemokine receptor type 4 

(CXCR4) 15. CXCR4 is used by the human immunodeficiency virus to initiate cell infection 16 but 

in addition, it is an important stem cell marker in several common human cancers 17, including 

metastatic colorectal cancer 18. T22 specifically and efficiently binds to and penetrates CXCR4+ 
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cells via CXCR4-specific endocytosis, both in vitro and in vivo 19. T22-mediated uptake of 

materials is dramatically favoured when the ligand is presented in an oligomeric form 20, probably 

because of the cooperative multimeric cell binding though simultaneous receptor-ligand 

interactions 9a. Therefore, while CXCR4 and its specific ligand T22 have proved clinical relevance 

regarding cell-targeted antitumoral drug delivery 9b, the structural basis of T22-mediated 

nanoparticle formation is not known. In this context, we have taken here diverse biophysical 

approaches, mainly spectrofluorimetry and spectropolarimetry, to explore how these T22-

empowered polypeptides acquire a conformation compatible with their assembly as CXCR4+ 

tumor-targeted nanoparticles. For that, T22-GFP-H6, usable as antitumoral drug carrier 13a and its 

derivative T22-DITOX-H6, have been used as models. T22-DITOX-H6 contains, instead of GFP, 

the active domain of the potent diphtheria toxin 21, being the resulting material a self-assembled, 

self-delivered nanoparticle with intrinsic and cell-targeted antitumoral activity 22. Devoid of any 

heterologous carrier, T22-DITOX-H6 nanoparticles fulfil the emerging medical concept of 

vehicle-free nanoscale drugs 23.    
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MATERIALS AND METHODS 

Protein production and purification 

T22-GFP-H6 is a modular recombinant protein that contains the potent CXCR4 ligand T22, and 

that self-assembles spontaneously upon bacteria production and protein purification as green 

fluorescent nanoparticles 12, 13b, 19a. T22-DITOX-H6 is a fully engineered derivative of the previous 

protein, also showing self-assembling properties, that delivers the unfused functional form of a 

diphtheria toxin fragment into target cells (Figure 1a), as it has recently been described 22. Both 

proteins were produced in recombinant Escherichia coli Origami B (BL21, OmpT-, Lon-, TrxB-, 

Gor-, Novagen, Darmstadt, Germany) cultures, from the engineered plasmid pET22b. Cells were 

grown at 37 ºC in LB medium supplemented with 100 µg/mL ampicillin, 12.5 µg/mL tetracycline, 

and 15 µg/mL kanamycin. When the OD550 of the cultures reached around 0.5-0.7, 0.1 mM IPTG 

(isopropyl-β-D-thiogalactopyronaside) was added and incubated overnight at 20 ºC (for T22-GFP-

H6 and T22-DITOX-H6 production). Then, cells were collected by centrifugation during 15 min. 

(5,000 g at 4 ºC). Cell disruption was performed in a French Press (Thermo FA-078A) at 1200 psi. 

The lysates were then centrifuged for 45 min. (15,000 g at 4 ºC), and the soluble fraction was 

filtered using a pore diameter of 0.2 µm. Proteins were then purified by their H6 region by 

Immobilized Metal Affinity Chromatography (IMAC) using a HiTrap Chelating HP 1 ml column 

(GE Healthcare, Piscataway, NJ, USA) with an AKTA purifier FPLC (GE Healthcare). Elution 

was achieved by elution buffer (20 mM Tris-HCl, pH 8; 500 mM NaCl; 500 mM imidazole), and 

proteins were then dialyzed against carbonate buffer with salt (166 mM NaCO3H, pH 8; 333 mM 

NaCl). Protein concentration was obtained by the Bradford’s assay. Protein production has been 

partially performed by the ICTS “NANBIOSIS”, more specifically by the Protein Production 

Platform of CIBER-BBN/IBB (http://www.nanbiosis.es/unit/u1-protein-production-platform-

ppp/). 

 

Preparation of nanoparticles and unassembled subunits 

Upon purification, the T22-derived protein nanoparticles occur as an unbalanced mixture of 

nanoparticles and unassembled protomers 14, that were separated by size-exclusion 

chromatography through a HiLoad Superdex 16/600 200pg column at 1 mL/min flow rate, as 

described elsewhere 14. Such alternative protein versions are in general stable in these respective 
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forms 13a, allowing their further experimental analysis in such forms. This stability is probably due 

to subtle electrostatic or conformational variability, although assembling and disassembling can 

be effectively promoted by the manipulation of buffer conditions such as the ionic strength 24. The 

starting materials usable for subsequent experiments are described in Figure 1.  

  

Determination of intrinsic fluorescence  

Fluorescence spectra were recorded in a Cary Eclipse spectrofluorimeter (Agilent Technologies, 

Mulgrave, Australia). A quartz cell with 10 mm path length and a thermostated holder was used. 

The excitation and emission slits were set at 5 nm. Excitation wavelength (ex) was set at 295 nm. 

Emission spectra were acquired within a range from 310 to 550 nm. The protein concentration was 

0.25 mg/mL in carbonate buffer with salt. In order to evaluate conformational difference between 

protomer and NP we decided to apply the Centre of Spectral Mass (CSM) for comparisons. CSM 

is a weighted average of the fluorescence spectrum peak. Also it is related with the relative 

exposure of the Trp to the protein environment. The maximum red-shift in the CSM of the Trp, is 

compatible with a large solvent accessibility 25.  

The Centre of Spectral Mass (CSM) was calculated for each of the fluorescence emission spectrum 

26 according to Eq.1, where Ii is the fluorescence intensity measure at the wavelength i. 

 

         (1) 

 

 

Determination of GFP chromophore fluorescence 

The chromophore fluorescence dependence on the temperature was also evaluated. Fluorescence 

spectra were recorded in a Cary Eclipse spectrofluorimeter (Agilent Technologies). A quartz cell 

with 10 mm path length and a thermostated holder was used. The excitation slits set at 2.5 nm and 

emission slits were set at 5 nm. ex was set at 488 nm. Emission spectra were acquired within a 

range from 500 to 650 nm. T22-GFP-H6 concentration was 0.25 mg/mL in carbonate buffer with 

salt. 


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Fluorescence Resonance Energy Transfer (FRET) within T22-GFP-H6 

The unique GFP tryptophan (Trp) is located 1.3 to 1.5 nm away from the chromophore. So, an 

efficient energy transfer from Trp to the chromophore should be possible. FRET analysis was 

developed by exciting the GFP sample at ex=295 nm and reading the fluorescence emission at 

513 nm. Emission spectra were acquired within a range of 500 to 650 nm. The protein 

concentration used was 0.25 mg/mL in carbonate buffer with salt. 

 

Dynamic Light Scattering (DLS)  

The volume size distribution of nanoparticles was determined at 0.25 mg/mL in carbonate buffer 

with salt by DLS at 633 nm (Zetasizer Nano ZS, Malvern Instruments Limited, Malvern, UK). 

Samples were maintained at the indicated temperature for 5 min before the measurement. The 

heating rate for thermal profiles was set at 1ºC/min. 

 

Electron Microscopy (EM)  

The ultrastructural morphometry (size and shape) of unassembled protomers and nanoparticles 

was determined at nearly native state both by deposition on silicon wafers with field emission 

scanning electron microscopy (FESEM) and by negative staining with transmission electron 

microscopy (TEM). Drops of 3 µl of nanoparticles and unassembled versions of T22-GFP-H6 and 

T22-DITOX-H6 at 0.25 mg/mL in carbonate buffer with salt were directly deposited on silicon 

wafers (Ted Pella Inc., Reading, CA, USA) for 1 min, excess of liquid was blotted with Whatman 

filter paper number 1 (GE Healthcare), air dried for few min, and immediately observed without 

coating with a FESEM Zeiss Merlin (Zeiss, Oberkochen, Germany) operating at 1 kV equipped 

with a high resolution in-lens secondary electron detector. Drops of 3 µl of the same four samples 

were directly deposited on 200 mesh carbon-coated copper grids (Electron Microscopy Sciences, 

Hatfield, PA, USA) for 30 sec, excess blotted with Whatman filter paper, contrasted with 3 µl of 

1 % uranyl acetate (Polysciences Inc., Warrington, PA, USA) for 1 min, blotted again and observed 

in a TEM Jeol 1400 (Jeol Ltd., Tokyo, Japan) operating at 80 kV equipped with a Gatan Orius 
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SC200 CCD camera (Gatan Inc. Abingdon, UK). For each sample and technique, representative 

images of different fields were captured at high magnifications (from 100,000x to 500,000x). 

 

Circular Dichroism (CD) 

Measurements were made with a Jasco J-715 spectropolarimeter (JASCO, Oklahoma City, OK, 

USA) with a thermostated device by a Peltier system. spectropolarimeter using a 1mm path length 

quartz cell. Each spectrum was an average of six scans. The protein concentration was adjusted to 

0.25 mg/mL in carbonate buffer with salt. Scan speed was set at 50 nm/min, with a 1-s response 

time, Molar ellipticity was calculated according to eq. 2. 

     eq. 2 

where MRW is the mean residue molecular weight calculated from the protein sequence,   is the 

measured ellipticity (in degrees) at a given wavelength, l is the path length in mm, and c is the 

protein concentration in g/mL. Measurements were carried out in the 200-260 nm region. Molar 

ellipticity units were deg.cm2.dmol-1.residue-1. For the thermal studies, the heating rate was set at 

1ºC/min. 

  

 
cl

MRWMRW




=


 
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Figure 1. a) Modular organization of T22-GFP-H6 and T22-DITOX-H6. L corresponds to a peptidic linker 

that confers molecular flexibility, and F to a furin cleavage site. Boxes sizes are only indicative. Additional 

details of the constructions are given elsewhere 19a, 22. b) DLS measurements of disassembled (top) and 

assembled (bottom) proteins. Numbers indicate mean peak size and polydispersion index (PDI), in nm. In 

the inset, Western blot analyses of purified proteins. Numbers indicate the molecular mass or markers (in 

KDa). c) FESEM and TEM of protomers and NPs. Bar size is 25 nm. 
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RESULTS  

T22-GFP-H6 and its derivative T22-DITOX-H6 (Figure 1a) have been produced in recombinant 

bacteria as single molecular species (Figure 1b) and obtained as either unassembled protomers or 

assembled nanoparticles (NPs, Figure 1b,c), with sizes and molecular architecture described 

elsewhere 13b, 22. This fact allows the comparative analysis of the conformation acquired by these 

proteins in each supramolecular form. For that, intrinsic fluorescence spectrum and circular 

dichroism spectrum of each protein versions were determined to identify possible structural 

changes as the monomer undergo conversion into NPs. In tryptophan (Trp)-containing proteins, 

the amino acid fluorescence dominates the emission spectrum upon excitation at 295 nm, and it 

results to be sensitive to the molecular environment 26. This property is related to the protein 

globular conformation. Initially, T22-GFP-H6 Trp fluorescence spectrum was performed (Figure 

2a). GFP contains only one Trp located 1.3 to 1.5 nm away from the chromophore and efficient 

energy transfer from Trp to the green chromophore should be possible. This fact explains the low 

intensity values for Trp fluorescence emission in GFP-H6 27. Besides, T22 contains only one Trp 

residue located after two arginines from the amino terminal sequence. Therefore, the higher 

accessibility to the molecular environment reflected a more hydrated or polar environment for Trp 

from T22. The inset from Figure 2a proved that in this protein, the Trp fluorescence signal comes 

mainly from the cationic peptide instead of GFP domain. As T22 seems to be more exposed to the 

medium 13b, no visible differences could be detected between both protein formats. However, 

subtle changes in the fluorescence signal were observed, and T22-GFP-H6 NPs exhibited a 

discrete displacement of the CSM towards minor values respect to the protomer. In such NP 

version, new intra or inter molecular interaction of T22 within the protein assembly appeared 

(Figure 2a). On the other hand, CD studies demonstrated the highly beta sheet secondary structure 

of T22-GFP-H6, with a spectrum minimum at 217 nm (Figure 2b, whole line). The oligomeric 

form of T22-GFP-H6 exhibited an inconspicuous increase in beta structure extent respect to the 

protomer (Figure 2b, dashed line). The minimum increase in only 2000 molar ellipticity units 

(from -2000 to -4000).  

On the other hand, T22-DITOX-H6 contains five Trp residues, what makes this construct suitable 

for intrinsic fluorescence analysis. The fluorescence spectrum analysis of this protein obtained at 

25 °C turned out a CSM value of 345.2 nm and a maximal wavelength, λmax of 330 nm (Figure 2c, 

whole line). These data were compatible with Trp residues localized in a non-polar environment. 
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It is interesting to compare this CSM value of 345.2 nm with CMS of 352 nm obtained with the 

T22-GFP-H6 protomer. As mentioned above, the fluorescence signal of the GFP moiety comes 

from the Trp highly accessible to a polar environment. Within the NPs, the Trp residues of T22-

DITOX-H6 sensed a less hydrophobic environment (CMS=345.9) while λmax moved from 332 nm 

to 334 nm (Figure 2c, dashed line or Figure 3 c,d black points from 25ºC to 40ºC). Although this 

last results are not drastically different, a remarkable contrast in the far UV CD signal emerged 

between T22-DITOX-H6 as a protomer and as a NP (Figure 2d).The protomer exhibited highly 

alpha structure (two spectrum minima at 211 and 222 nm) as  previously reported for the catalytic 

domain of diphtheria toxin28. In the assembled form, the alpha structure content seemed to fade 

away concomitant with the appearance of beta conformation as the two minima become less 

noticeable (Figure 2d, dashed line). Besides, the secondary structure content analysed by JASCO 

spectra-manager analysis software showed an increased in beta structure of 23 % (RMS:25%) as 

the protomer takes part of NPs. In these cases, the spectra wavelength range was 190 to 260 nm.  

 

Figure 2. Protein spectroscopy obtained at 25°C for the protomer (whole line) and the NPs (dashed line) 

versions. a) T22-GFP-H6 Trp fluorescence spectra. b) T22-GFP-H6 CD spectra. c) T22-DITOX-H6 

fluorescence spectra d) T22-DITOX-H6 CD spectra. 
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Figure 3. Protein thermal unfolding measured by the center of spectral mass of the Trp fluorescence 

spectrum CSM (black symbols) and by far UV CD Molar ellipticity values (x symbols) at (a,b) 218 nm and 

(c,d) 222 nm. a and b T22-GFP-H6 protomer and NPs respectively and c and d, T22-DITOX-H6 protomer 

and NPs respectively. 
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appeared in the CD spectra of T22-GFP-H6 after heating the protein to 90 ºC (Figure 4 a and b). 

This indicated that at 90ºC the secondary structure of both formats of T22-GFP-H6 vanished but 

it cannot be demonstrated by the thermal profile of the CD value at 222 nm analyses.  

In the thermal unfolding of the T22-DITOX-H6 building block, a typical two state thermal 

transition was observed. The unfolding temperature (Tm) is 57 ºC (Figure 3c). As fluorescence 

studies are related to the tertiary structure and far UV CD deals with secondary structure of 

proteins, the overlaid of experimental curves confirmed that T22-DITOX-H6 protomer unfolds as 

a cooperative unit. In contrast, T22-DITOX-H6, assembled as NPs, revealed a more complex 

thermal unfolding profile. In contrast to what happens with the subunit, the oligomeric protein 

firstly loses its tertiary conformation (Figure 3 d), and this event occurs at a lower temperature 

than in the case of protomers (Tm=52 ºC). However, the secondary structure was preserved at 

higher temperatures respect to the protomer (Tm=64 ºC) (Figure 3d). This complex thermal 

unfolding was previously described for other oligomeric proteins 29. Besides, the data in Figure 4d 

demonstrate that after heating up to 70 ºC, T22-DITOX-H6 preserved its secondary structure in 

NPs (see inset). The molar ellipticity value exhibited by the protomer jumps around 14000 units 

from low to high temperatures (from -18000 to -4000 ellipticity) while the change in molar 

ellipticity of NPs during the whole heating range is just 2000 units (from -4800 to -3200). 

Therefore, we confirm that oligomerization confers secondary structure thermal stability to T22-

DITOX-H6, although it is still unclear with the situation of T22-GFP-H6 upon heating. In order to 

go further in the analyses of NPs integrity we evaluated the hydrodynamic size of the NPs and the 

possible disassembly associated to temperature increase. 
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 Figure 4. Far UV CD spectra of T22-GFP-H6 building blocks (a) and NPs (b) and T22-DITOX-H6 building 

blocks (c) and NPs (d) before (whole line) and after (dashed line) the thermal treatment up to 90 ºC for T22-

GFP-H6 versions and up to 70 ºC for T22-DITOX-H6. Inset details spectrum of heated T22-DITOX-H6 

NPs. 
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Figure 5. Relative frequency distribution of diameters (volume weighted distribution) determined by DLS. 

a) T22-GFP-H6 protomers, b) T22-DITOX-H6 protomers and c) T22-GFP-H6 NPs, d) T22-DITOX-H6 

NPs. Whole line represents the measurement at 25 ºC and dashed line the measurement at 70 ºC (for T22-

DITOX-H6) or 85 ºC (for T22-GFP-H6). 
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(Figure 5d, whole line). When both samples were heated until 70 ºC, the proteins were completely 

aggregated (Figure 5d, dashed line). These last DLS size measurements of protomers and NPs 

were around 1,990 nm (pdi=0.25), far from the detection limit of the equipment. In spite of the 

NPs coagulation state they seemed to retain secondary structure as demonstrated by data in Figure 

3d (dashed line or inset). In addition, data in the inset of Figure 4d also supported the preservation 

of secondary structure while heating. 

Later, we take advantage of the internal FRET phenomenon that occurs within the protein. 

Interestingly, the fluorescence of the green chromophore excited at 488 nm (ex) was practically 

the same within both versions (Figure 6a). On the other hand, we evaluated the internal FRET as 

it is described in the methods section. Surprisingly, the fluorescence decay occurs with different 

slopes, depending on the supramolecular state of T22-GFP-H6 up to 80ºC (Figure 6b) 

(slopeProtomer=-23 ± 0.5 and slopeNPs = -20 ± 0.7). Beyond this temperature, both protein versions 

exhibited the same fluorescence intensity, suggesting that up to 80ºC there are subtle remoteness 

between the fluorophores concomitant with distinct structural features within NPs. Above 80 ºC, 

similar protein structure exhibited similar fluorescence values (Figure 6a) and similar sizes (Figure 

5 a,c)   

In an attempt to assess that the subtle structural qualities of NPs respect to T22-GFP-H6 protomer 

modulate the thermal stability up to 80ºC, we studied the thermal reversibility of the internal FRET 

upon heating. The obtained data demonstrated that upon cooling from 80 ºC, the protein within the 

NPs recovered 62 % of the initial fluorescence at 40ºC (Figure 7 a,b).  
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Figure 6. T22-GFP-H6 chromophore fluorescence intensity (at 513 nm) decrease vs temperature measured 

at two different ex/wavelengths a)  ex = 488 nm. b)  ex = 295 nm. 
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Figure 7. T22-GFP-H6 chromophore fluorescence intensity (at 513 nm, ex =295 nm) as heating-cooling 

cycle. a,b heating up to 80ºC and cooling up to 40 ºC, c,d heating up to 90 ºC and cooling up to 40 ºC. 
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of fluorescence values after cooling to 40 ºC was negligible for both protein versions (Figure 7 
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that are maintained until heating the protein sample up to 80ºC.  
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protein segments 1b, 2c have been genetically instructed to self-assembled as mimetics of viral 

capsids for cell-targeted drug or gene delivery. Such materials are structurally distinguishable from 

those based on amyloid fibrils 1a, 1d, 5, that are being developed as well using different nanoscale 

architectonic principles.  

A category of GFP-based oligomeric nanoparticle (T22-GFP-H6) and a potent self-targeted, self-

delivered, nanostructured protein drug (T22-DITOX-H6, Figure 1), fully representative of the 

vehicle-free emerging concept in nanomedicine 23, have been here explored regarding the 

conformational changes undergone during oligomerization. These NPs organize as symmetric 

toroid architectures 13b whose assembly appears to be initiated by electrostatic cross-molecular 

contacts 12 and supported by a diversity of non-covalent interactions between building blocks 

(including hydrogen bond and van del Waals interactions) 13a. The C-terminal histidine-rich 

domain has a prevalent role in the oligomerization process, since imidazole is a potent disruptor 

of the material once formed 24. The resulting nanoscale materials are highly soluble, do not form 

fibrils and show a moderate content of cross-molecular β-sheet conformation compared with 

amyloidal aggregates of the same protein species 13b, 36, supportive of a non-amylogenic character. 

These type of protein-only constructs are supported by a modular multidomain architecture and 

they are especially appealing regarding the design of innovative tumor-targeted cancer medicines, 

being T22-DITOX-H6 a paradigmatic representative. Produced by biological fabrication in a 

single step, they self-deliver therapeutic proteins with cytotoxic activities, such as human pro-

apoptotic factors, toxins or venom components, in a nanostructured way and with high level of 

selectivity for specific tumor markers 9b, 37. The use of human proteins or de-immunized toxins 

versions as the main component of these novel drugs, in constructs that do not contain heterologous 

protein segments (or as minor components), is expected to minimize or eliminate the risk of 

immune reactions that might be associated to the repeated administration of non-human 

polypeptides as therapeutics 38.  

In general, how proteins adopt their conformation during controlled self-assembling to form non-

amyloid materials is a neglected issue, but of pivotal relevance in the context of the growing 

interest on protein-based functional materials 2a, 2b, 4, 6a, 8. In the oligomeric state, the GFP-based 

T22-GFP-H6 construct presents a shift on max values and an increase in the CD signal (Figure 2, 

a and b respectively). T22-GFP-H6 contains two Trp residues (one within GFP and the other within 
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T22). Their emission (expressed as CSM value) senses a higher hydrophobic environment 

compared to this phenomenon in the subunit (Figure 2a). Besides, an important proportion of the 

fluorescence comes from T22 (Figure 2a, inset). These results, concomitant with an increase in the 

beta structure content in the NP forms (Figure 2b), are in agreement with the concept that the 

structural conformation is explained by the appearance of the intermolecular interactions in the 

NPs. Nevertheless, the expansion of the structural information obtained by internal FRET 

experiments proves that subtle structural rearrangements emerge in GFP moieties of the protein, 

once assembled in NPs. Overall, the described structural features are related with a resilient 

conformation until 80 ºC (Figure 6 a,b) of the NPs respect to their unassembled, individual building 

blocks. After a thermal heating up to 85 ºC/90 ºC, an unfolded structure is achieved (Figure 4 a,b) 

Surprisingly, both protomers and NPs reached the same oligomer size (Figure 4b,d), suggesting 

that particular oligomeric forms could represent also an intermediate transition state in the thermal 

unfolding of the unassembled  version.  

Finally, DITOX-based NPs present a notably distinct conformation respect to the subunit version. 

As NPs, the fusion protein exhibits lesser alpha content and higher beta structure than the protomer 

version (Figure 2d and 3 d). This result is concomitant with those obtained with fluorescence 

analyses, like the modest increase in the CSM values in NPs respect to the subunits (Figure 2c,d) 

that could be related to the increase in the functionality of DITOX-based NPs. Interestingly, the 

secondary structure of NPs version remains practically changeless up to 70 ºC and the protein gets 

aggregating in stable and well-formed NPs (Figure 4d and 5d).  

All these data, apart from explain the conformational transition of protein building blocks into 

non-amyloid protein nanoparticles, suggest a higher structural stability of the proteins once 

assembled, compared to the unassembled versions.  In fact this NPs thermodynamic stability could 

represented a kinetically trapped state of the proteins as it was demonstrated in our previous 

analyses 12, 24 and still under study. Such notably high stability of the oligomers had been already 

observed in vivo, where a proper tissue targeting and excellent tumor biodistribution is achieved 

by T22-empowered nanoparticles but not by the equivalent unassembled protein versions 13a. The 

data presented here strongly push towards the use of oligomeric versions of cell-targeted drugs or 

vehicles, versus the monomeric or dimeric versions employed in immunotoxins, antibody-drug 

nanoconjugates and other innovative drugs 9b. Structurally, protein-based oligomers might offer 

all the conditions for the optimal mimicking of protein-based natural nanoscale agents that such 
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viruses, are ideal regarding tissue penetrability, multivalent ligand presentation and intracellular 

cell delivery 9a, 39.  

 

CONCLUSIONS 

The results presented in this study demonstrate the novel conformation and structure acquired by 

T22-empowered polypeptides as building blocks of regular homo-oligomers, that is compatible 

with their functionality as CXCR4+ tumor-targeted nanoparticles. While the internal compactness 

of the polypeptide is depending on the specific amino acid sequence located between the cationic 

and histidine-rich terminal peptides (see the differences between GFP and DITOX), 

oligomerization occurs concomitantly to an increase in beta structure, what seems to be associated 

to a thermal stabilization of the protein in the complex. Whether this enhanced structural stability 

is connected to an improved functional stability, thus supporting the high in vivo performance of 

these nanoparticles, needs to be further investigated. This structural profiling adds clues for the 

further design of self-assembling protein nanoparticles that like T22-DITOX-H6, base both 

architecture and therapeutic activity on the conformation of the assembled protein. 
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