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Associations between blood cancer and genetic predisposition, including both inherited
variants and acquired mutations and epimutations, have been well characterized.
However, the majority of these variants affect noncoding regions, making their
mechanisms difficult to hypothesize and hindering the translation of these insights into
patient benefits. Fueled by unprecedented progress in next-generation sequencing and
computational integrative analysis, studies have started applying combinations of
epigenetic, genome architecture, and functional assays to bridge the gap between
noncoding variants and blood cancer. These complementary tools have not only
allowed us to understand the potential malignant role of these variants but also to
differentiate key variants, cell-types, and conditions from misleading ones. Here, we
briefly review recent studies that have provided fundamental insights into our
understanding of how noncoding mutations at enhancers predispose and promote
blood malignancies in the context of spatial genome architecture.

Keywords: spatial genome architecture, 3D chromatin organization, DNA loops, noncoding mutations and
epimutations, enhancers, blood cancer, hematopoietic malignancies
INTRODUCTION: WHY WE NEED TO STUDY ENHANCERS
AND SPATIAL GENOME ORGANIZATION TO UNDERSTAND
BLOOD CANCER

Noncoding regions of the genome, which comprise more than 98% of the genome, have historically
been overlooked. However, more than 95% of the risk variants associated with genetically complex
diseases, such as blood cancer, map at noncoding regions and remain unexplored due to the lack of
an obvious disease mechanism (1). In addition, the oncogenic potential of somatically acquired
noncoding mutations has become increasingly evident (2). The mutational rate of the noncoding
genome is significantly higher than its coding counterpart, although the selective pressure is weaker
unless the mutations have a functional effect that confers an advantage to cell survival (3). For this
reason, in the search for noncoding mutations it is important to find and focus on functional regions
that impact gene regulation such as enhancers.

Enhancers are frequent targets of genetic and epigenetic alterations in many diseases including
blood cancer (1, 4–6). The human genome contains around one million enhancers, many of which
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are cell-type or stimulus-specific (7). They modulate the
activation of promoters and fine-tune transcription over large
genomic distances, independent of sequence orientation and
position (8). It is now generally accepted that long-range
enhancers are brought into close spatial proximity with the
promoters they regulate. This proximity is determined by the
DNA folding into loops, which are cell-type and stimulus-
specific (6, 9–11).

Though enhancers have been relatively easy to identify—since
they harbor a high density of DNA motifs recognized by
transcription factors (12–14), have specific histone modification
and co-factor binding profiles (13, 15–17), and produce enhancer
RNAs (18, 19) —their target genes are harder to pinpoint (7, 20).
Enhancers can be up to a few megabases away from their targets,
often jumping over several intervening genes or even being located
in the intron of a non-target gene (21). In addition, a given gene is
frequently controlled by more than one enhancer, and an enhancer
can control more than one gene (22, 23) (Figure 1). Enhancers
cannot simply be assigned to the nearest gene, and most of their
target genes in each cell-type and stimulus condition remain
unknown. For this reason, during the last years chromatin
conformation capture (3C) techniques, such as Hi-C (24), a
technique designed to identify the entire ensemble of
chromosomal interactions within a cell population, have emerged
to support that spatio-temporal chromatin organization not only
plays a key role in the function of enhancers, but will also help
Frontiers in Immunology | www.frontiersin.org 2
scientists identify target genes, thus helping us determine the disease
mechanism of enhancer mutations.

In the following sections, we will review the current
knowledge on the effect of noncoding mutations on enhancers
and genomic 3D structure in blood malignancies. We will
highlight the cognate clinical implications, not only in better
understanding oncogenesis, but also in the identification of
potential new biomarkers and therapeutic strategies to improve
disease diagnosis, monitoring and treatment.
THE THREE-DIMENSIONAL CONTEXT
OF THE GENOME PLAYS A MAJOR
ROLE IN THE DEVELOPMENT AND
PROGRESSION OF BLOOD CANCER

Chromatin interactions are crucial for cellular health, and errors in
these interactions give rise to a broad range of diseases, including
blood cancers (25–27). Cancer-associated alterations in chromatin
architecture increase proliferation and decrease differentiation
capacity by blocking cell differentiation, altering the expression
of oncogenic or tumor suppressor genes, and/or creating unnatural
cell states with deregulated expression of key developmental genes.
Genomic regions brought into close proximity by the chromatin
architecture have a higher frequency of producing translocations,
FIGURE 1 | Enhancer–promoter interactions are complex and cell- and stimulus-specific.
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thus explaining the frequency of recurrent pathological
translocations such as BCR-ABL and MYC-IGH (26, 27). In
addition to chromosome-scale alterations, three-dimensional
chromatin organization works on a smaller scale to impact
gene regulation by rewiring physical interactions between gene
promoters and regulatory elements. This important spatial
organization is often altered in blood cancer through the
genetic alteration or altered binding of the proteins involved in
establishing and maintaining chromatin loops.

Architectural proteins, including CTCF and cohesins, play an
important role in establishing and maintaining chromatin loops
(28, 29), facilitating communication of gene promoters with
some regulatory elements while reducing contacts with others
(30–32). Cohesin complex mutations, which impair
hematopoietic progenitor differentiation (33–35), occur in
~13% of acute myeloid leukemia (AML) patients (36–38).
CTCF generally only binds non-methylated DNA sequences
(39–42), so cancer-related methylation changes can impact
genomic architecture broadly or at specific loci, although in
some sites CTCF binding remains independent of DNA
methylation suggesting that methylation may be one of many
synergistic factors impacting transcription factor binding (43). A
recent study by Kloetgen and colleagues characterized global
alterations in genome architecture in T-cell precursor acute
lymphoblastic leukemia (T-ALL) (44). The authors found that
the lack of CTCF-mediated insulation at a specific locus allowed
the cancer-driver gene MYC to come into direct contact with a
distal super-enhancer, thus increasing this transcription factor’s
expression, allowing MYC to turn on signal transduction
pathways leading to cell growth and proliferation.

Interestingly, altered DNA methylation at enhancers in
cancer is more closely related to changes in gene expression
than at promoters (45). Hypomethylated enhancers bind
transcription factors better than methylated ones (46–49), thus
promoting gene expression and potentially affecting genome
architecture. Transcription factors can also influence spatial
chromatin organization, from ubiquitously expressed factors
such as YY1 (50) to cell-type specific factors including
GATA1, LBD1, HSPs, KLF4, LacI, MYOD, and OCT4 (51–56).
In addition to mutating these proteins, genetic or epigenetic
alterations can have profound effects on chromatin architecture
by affecting the binding of these structural proteins (48, 57, 58).

Acquired mutations, regardless of whether they directly affect
transcription, can alter spatial chromatin organization and
chromatin states to ultimately promote cancer-specific
transcriptional programs. This complex interplay is nicely
deciphered by Yun and colleagues who used an allelic series of
mutant mice to model normal, pre-malignant and AML states
using the commonly co-occurring FLT3 and NPM1 mutations.
Each mutation in isolation altered chromatin state, but together,
they synergized to cause global alterations in spatial chromatin
organization that produced a leukemia-associated transcriptional
program (59), despite these mutations lacking direct influence on
transcription or epigenetics. For this reason, the development of
therapeutic approaches against mutations also needs to take into
account cancer-associated genome-wide epigenetic and
Frontiers in Immunology | www.frontiersin.org 3
conformational landscapes. Interestingly, some anti-leukemic
drugs partially reverse the altered topology of some genomic
regions. For example THZ1, a covalent CDK7 inhibitor, has been
shown to abrogate MYC-enhancer aberrant contacts (44) and
deter growth in T-ALL cell lines (60), potentially accounting for
the anti-tumoral effect of these small-molecule inhibitors.

Although we have just started understanding the role of
spatial-temporal genome architecture in blood cancer, there is
no doubt about the potential therapeutic opportunities it
encompasses. In order to understand changes in genomic
spatial architecture, we must first understand the causal
changes in the underlying DNA, resulting from both inherited
variants and somatic mutations.
INHERITED GENETIC SUSCEPTIBILITY TO
BLOOD MALIGNANCY FROM THE THREE-
DIMENSIONAL PERSPECTIVE

Blood cancer is not entirely explained by acquired genomic
rearrangements, amplifications, deletions or mutations. In fact,
inherited genetic predisposition plays a key role (61–63). In fact,
survival rates and phenotype differ between racial and ethnic
groups (64–66). The effect of genetic background in blood
malignancies has been elegantly demonstrated by a recent
work from Young and colleagues in which they cross the Mll-
AF9 knockin mouse with differing inbred strains (67). The
authors show that genetic background not only impacts blood
composition and survival rates, but also the type of malignancy,
from ALL to AML or mixed phenotype acute leukemia.

Risk loci frequently span noncoding regions (6, 68) and,
in fact, cluster at enhancers (1). The single-nucleotide
polymorphisms (SNPs) or structural variants (SVs) can alter
the binding of transcription factors or structural proteins to
regulatory elements by modifying recognition motifs or
modulating accessibility, thus altering the expression of their
target genes (Figure 2). These inherited variants may either
disrupt enhancer function, leading to reduced or lost target gene
expression, or increase enhancer function, leading to increased
target gene expression or even ectopic expression (5). In both
cases, if the binding of structural proteins is affected, the
enhancer–promoter interaction frequency shifts. However, if
transcription factor binding is altered, chromatin looping can
either be compromised or not.

Demonstrating this, Speedy and colleagues found that noncoding
genetic variants associated with chronic lymphocytic leukemia
(CLL) predisposition map to CLL active chromatin, with evidence
of that chromatin state being CLL-specific or differentially
regulated in normal B-cell differentiation (69). The risk alleles
disrupt SPI1, NFKB, and PAX5 binding motifs, or affect
accessibility, suggesting a potential impact on enhancer activity.
Using chromatin conformation data in parallel with expression
data, they connected variants at enhancers with target gene
promoters and observed that candidate genes are involved in
B-cell biology including immune response, Wnt signaling and
October 2020 | Volume 11 | Article 592087
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apoptosis. Although experimental validation is needed to
completely understand the molecular mechanism by which CLL
germline variants contribute to malignant transformation, this
study underlines the value of epigenetics and genome architecture
in interpreting genetic susceptibility.

The mechanistic insights acquired from inherited variants can
be extrapolated to acquired mutations and epimutations. Indeed,
germline risk variants co-segregate with acquired genomic
abnormalities, although the interplay between these remains
poorly understood (70, 71). A possible mechanism is that
inherited variants alter the expression of pioneer transcription
factors, which could synergize with the action of driver mutations
to promote genome-wide gene deregulation and oncogenesis.
Supporting this hypothesis, Yang and colleagues identified a
germline variant at the GATA3 intron that is strongly associated
with Philadelphia-like ALL (72). This enhancer gain-of-function
mutation upregulates GATA3 expression, which in turn,
reprograms spatial genome architecture and chromatin
accessibility genome-wide. This reprogramming puts the
Frontiers in Immunology | www.frontiersin.org 4
oncogene CRLF2 in proximity to a distal enhancer, promoting
CRLF2-mediated constitutive activation of the JAK-STAT
pathway, which has been implicated in leukemogenesis (73).
This variant is not enough to cause cancer on its own, but it sets
the stage for a driver mutation to tip the scales. Not only does
GATA3 overexpression facilitate enhancer hijacking by oncogenes,
but the authors propose that it also causes chromosomal instability
and translocations, due to GATA3 binding sites clustering near
Philadelphia-like ALL translocation breakpoints.
ACQUIRED MUTATIONS DURING BLOOD
MALIGNANCY TRANSFORMATION
FREQUENTLY TARGET NONCODING
REGULATORY ELEMENTS

Similar to inherited genetic variants, acquired mutations commonly
target enhancers, altering gene expression, in blood cancer (74).
FIGURE 2 | Noncoding mutations and epimutations lead to enhancer loss- or gain-of-function.
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Mutations preferentially cluster at regulatory elements characteristic
to the cell-type from which the tumor originates (75). These
mutations may be enhancer gain-of-function, enhancer loss-of-
function or enhancer hijacking. Of note, the last category can also
be considered a gain-of-function and is frequently linked withmajor
chromosomal rearrangements or insulator alteration (76, 77).
Similar to mutations, epimutations such as DNA methylation
alteration, also target enhancers (45), and in principle, can affect
enhancers in similar ways (Figure 2). Silencers and other distal cis-
regulatory elements can also be targeted by mutations. However, the
narrow characterization of these elements and the incomplete
knowledge of their mechanism of action limit their study.
Nevertheless, breakthroughs in genomics and molecular biology
will put into play these elements in cancer genomics very soon.

Many noncoding gain-of-function mutations, including
copy number variation (duplications and deletions) and point
mutations, have been associated with activating proto-oncogene
transcription in blood cancer. For instance, Herranz and
colleagues identified a long-range enhancer controlled by
NOTCH1 that has recurrent chromosomal duplications in
human T-ALL (78). This region is activated through a
mechanism of nucleosome eviction mediated by GATA3 (79),
it physically interacts with the MYC promoter 1.4 megabases
away to induceMYC transcription, and it has a fundamental role
in the homeostasis of immature T cells. This gain-of-function
amplification drives MYC expression downstream of NOTCH1
in T-ALL and helps to connect MYC and Notch signaling in
driving oncogenesis; a different mechanism but with the same
effect as the previous mentioned study in which an impaired
CTCF binding (due to reduced chromatin accessibility) leads to
MYC enhancer hijacking (44). Regarding deletions, Liu and
colleagues identified a recurrent deletion of a noncoding region
in T-ALL using cis-X, a computational method for identifying
regulatory noncoding alterations (80). This deletion destroys
the nodal CTCF binding site that forms the boundary of
two independent, insulated genomic neighborhoods. As a
consequence, this structural variation allows the hijacking of
an active enhancer from one neighborhood by the PRLR
promoter located in the other neighborhood, leading to PRLR
upregulation and JAK2 signaling activation. In the same paper,
the authors also report a recurrent intronic point mutation that
activates TAL1 oncogene transcription, a frequently mutated
oncogene in T-ALL (81, 82). This point mutation creates a
new active enhancer characterized by a de novo recognition
motif for YY1. Interestingly, this transcription factor has
structural properties similar to CTCF in bridging promoter–
enhancer chromatin interactions (50), in addition to previous
studies that show that ectopic expression of TAL1 can be also due
to CTCF binding alterations that cause loss of TAD boundary
insulation and subsequently enhancer hijacking (83, 84).
Functional validation will be needed to better understand
the complex interplay between noncoding genetic mutations,
transactivation and three-dimensional chromatin organization
to promote malignant transformation.

Noncoding copy number variation and point mutations are
not exclusive to T-ALL. For instance, Cornish and colleagues
identified recurrent mutations in B-cell lymphoma at cis-
Frontiers in Immunology | www.frontiersin.org 5
regulatory elements of naive B lymphocytes (85). Using
structural data to connect cis-regulatory elements harboring
structural and point mutations to promoters, they identified
putative noncoding driver mutations. These mutations alter
distal regulatory elements, leading to deregulation of target
gene transcription. Intriguingly, they also observed that coding
and noncoding mutations often converged on the same genes.
For instance, MMP14 is a negative regulator of Notch signaling. It
plays a key role in normal B cell differentiation, the development
of diffuse large B-cell lymphoma and patient survival (86, 87).
Distal cis-regulatory elements of MMP14 are frequently deleted
in B-cell lymphoma, leading to MMP14 downregulation. On top
of that, coding mutations frequently affect the MMP14 gene in
several malignancies, often resulting in loss-of-function.

This convergence needs to be investigated in other contexts, for
example, whether recurrent coding mutations in blood
malignancies, such as in histone modifiers and chromatin
remodeling factors, operate in parallel with noncoding mutations.
Is there co-occurrence between the coding mutations of oncogenes
and noncoding mutations at their regulatory elements in the same
malignant cell or tumor type? If so, is this a synergy, an exclusion,
or a redundant event? Could a cancer-related reduction of a given
transcription factor level be accompanied by a reduction of its
binding at regulatory elements due to mutations or epimutations
at its recognition motifs? Or do tumoral cells use one or the
other mechanism exclusively to silence a given transcription factor?
Many questions remain open that the scientific community
will have to address using the fast-growing number of
methodological breakthroughs.

Noncoding loss-of-function mutations at enhancers also
contribute to cancer pathology by silencing tumor-suppressor
genes, although these are less well characterized. These
noncoding mutations, similar to gain-of-function ones, involve
different types of structural, copy number, and point mutations
(Figure 2). A recent paper by Li and colleagues identified and
validated more than two hundred tumor suppressive or oncogenic
enhancers recurrently mutated in hematopoietic malignancies
using enhancer CRISPR/dCas9 perturbation (activation or
repression) (88). Interestingly, some of these reside in proximity
to nuclear receptor–binding genomic regions, contributing to
aberrant nuclear receptor signaling in blood malignancies. One
example is two noncoding variants within the PER2 enhancer that
have tumor suppressive properties in AML and are potentially
controlled by the nuclear receptor program. PER2 controls
circadian rhythm and it has been suggested as a tumor
suppressor gene (89–91). This work elegantly addresses the
major challenge of prioritizing noncoding mutations and
assigning functional relevance to them. Approaches like this will
be needed to translate the knowledge about the noncoding
genome in blood cancer into patient benefits.
FUTURE PERSPECTIVES

Even though compelling evidence for the contribution of
noncoding mutations and epimutations to oncogenesis exists,
October 2020 | Volume 11 | Article 592087
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there is still a long way to go before we can translate them into
new strategies to characterize, treat and monitor blood cancer.
To achieve this translational challenge, many considerations
should be taken into account.

First, reliably identifying noncoding driver mutations from
passenger ones remains a great endeavor due to sequencing and
mapping artifacts, poorly understood mutational processes, and
inaccurate estimation of the mutational background. To face
these impediments, adequate statistical methods, larger datasets,
higher sequence coverage, and longer and more accurate
sequencing reads will be fundamental. In addition, the
sequencing of normal tissues alongside malignant ones can
help separate acquired from germline mutations and shed light
on differentiating driver from passenger mutations.

Second, given the vastness of the noncoding genome, we need
to restrict the search to relevant noncoding driver mutations. To
this end, comparative genomic analysis, high-throughput in vitro
reporter assays, and genome-wide histone modification profiling,
coupled with chromatin accessibility and expression analysis, are
indispensable. However, due to the highly dynamic, cell- and
stimulus-specific nature of regulatory regions, it is critical to
identify the right cell-type and to extend this descriptive
interrogation not only to the cells of origin but also to the
transformed cells.

Third, the unknown functional role of noncoding mutations
imposes important limitations. To ascertain biological and
mechanistic relevance, it is essential to integrate genetic and
epigenetic profi ling with genome conformation data
and CRISPR-based functional validation. As previously
described, many noncoding mutations map to enhancers, and
these can exert their pathological function by altering the
expression level of their target genes. However, connecting
enhancers and target genes is not trivial, and due to cell-
specificity and complexity, most of the associations remain
unknown. Quantitative associations between noncoding variants
and gene expression, and regulatory biochemical properties
combined with sequencing-based chromatin conformation
capture methods, such as Hi-C (24), have started providing
some insights. However, reliable and reproducible identification
of significant interactions between individual restriction fragments
is not feasible unless Hi-C libraries are subjected to ultra-deep
sequencing, which is not an economically viable solution for
analyzing a comprehensive collection of cell-types or tumoral
samples. To overcome it, the development of sequence-specific
capturing approaches to enrich for promoter interactions and
mutations in Hi-C libraries (6, 11, 69, 85), or other methods such
Frontiers in Immunology | www.frontiersin.org 6
as ChIA-PET (92) or HiChIP (93), is crucial. Nonetheless, all these
methods need millions of cells, which hinders the analysis of rare
cell populations such as hematopoietic stem cells or hematopoietic
precursors, which are the origin cells of the majority of leukemias.
Methodological breakthroughs allowing lower inputs will be
fundamental in the incipient era of noncoding driver mutations.

In conclusion, the current methodological breakthroughs have
positioned the scientific community in a perfect situation to
explore the noncoding genome in the context of cancer. Cancer
genomics is rapidly moving from a static, one-dimensional
picture, to a time-dependent three-dimensional scenario to
provide biological relevance of noncoding mutations at
regulatory elements. We anticipate a very exciting time ahead, in
which we will be fascinated by the power of noncoding mutations
and epimutations in malignant transformation and the new
clinical opportunities these genetic alterations will involve.
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