
I N V I T E D R E V I EW

Genetics and epigenetics of leukemia and lymphoma:
from knowledge to applications, meeting report of the
Josep Carreras Leukaemia Research Institute

Maribel Parra1 | Maria Joao Baptista2 | Eulàlia Genescà3 | Pere Llinàs-Arias4 |

Manel Esteller4,5,6,7

1Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain

2Lymphoid neoplasms Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain

3Acute lymphoblastic leukemia (ALL) Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain

4Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain

5Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain

6Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

7Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain

Correspondence

Manel Esteller, Cancer Epigenetics Group,

Josep Carreras Leukaemia Research Institute

(IJC), IJC Building, Campus ICO-Germans Trias

i Pujol, Badalona, Spain.

Email: mesteller@carrerasresearch.org;

mparra@carrerasresearch.org

Funding information

The Company of Biologists, Grant/Award

Number: EA145

Peer Review

The peer review history for this article is

available at https://publons.com/publon/10.

1002/hon.2725.

Abstract

The meeting, which brought together leading scientists and clinicians in the field of

leukemia and lymphoma, was held at the new headquarters of the Josep Carreras

Leukaemia Research Institute (IJC) in Badalona, Catalonia, Spain, September 19-20,

2019. Its purpose was to highlight the latest advances in our understanding of the

molecular mechanisms driving blood cancers, and to discuss how this knowledge can

be translated into an improved management of the disease. Special emphasis was

placed on the role of genetic and epigenetic heterogeneity, and the exploitation of

epigenetic regulation for developing biomarkers and novel treatment approaches.
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1 | INTRODUCTION

One in eight cases of cancer in the world arises from blood cells, the

lymphatic system, or bone marrow. Malignant hemopathies, such as

leukemia and lymphomas, fall into more than a 100 subtypes with

very different survival rates. What differentiates one type from

another? These questions were debated during the Inaugural Sympo-

sium at the IJC headquarters at Badalona: “Genetics and Epigenetics

of Leukemia and Lymphoma: From Knowledge to Applications.” The

program featured 20 keynote presentations, 9 short talks, and

30 posters, which represented the status quo of current research in

genetics and epigenetics of malignant hemopathies. Manel Esteller,

Director of the Institute, welcomed the participants. The meeting

was co-organized by Anna Bigas (Institut Hospital del Mar [IMIM],

Barcelona, Spain), and Marcus Buschbeck, Pablo Menéndez, and

Francesc Solé (Josep Carreras Leukaemia Research Institute [IJC],

Maria Joao Baptista and Eulàlia Genescà contributed equally to the report.
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Badalona, Spain). The highlights of the meeting are illustrated in

Figure 1.

2 | RECENT ADVANCES IN LEUKEMIA

Pablo Menéndez (Leader of the Stem Cell, IJC-Campus Clinic, Spain)

set the session on acute leukemias in motion. His research has con-

centrated on the specific subset of MLL-AFA4 infant leukemia. Infant

BCP-ALL (B Cell Precursor Acute Lymphoblastic Leukemia) patients

harboring the fusion transcript MLL-AF4 (t[4;11]) have a particularly

poor prognosis and he summarized his laboratory's efforts to identify

the cell of origin (COO).1-3 Taking a broad, multilayer omics approach,

his findings have revealed the genetic and epigenetic evolution of a

TCF3-67 ZNF384/PTPN11-driven clone in twins with BCP-ALL, which

supports the hypothesis that a pre-VDJ primitive fetal hematopoietic

progenitor or stem cell is the COO of TCF3-ZNF384 and PTPN11

mutations. 4 Menéndez also drew attention to the great effort expe-

nded on mimicking this leukemia in vitro.5-8

Christoph Plass (Head of the Division of Cancer Epigenomics,

German Cancer Research Center, Heidelberg, Germany) spoke about

the epigenetics of leukemia, giving an overview on chronic lympho-

cytic leukemia (CLL).9 He also reviewed his previous work, which

demonstrates how methylation at a specific single CpG dinucleotide

in the ZAP-70 50 regulatory sequence is a highly predictive and repro-

ducible biomarker of poor prognosis in CLL.10 At the moment, the

researchers in Plass's laboratory are trying to distinguish CLL-specific

epigenetic alterations from developmental-epi alterations, a task that

requires different normal B cells at the various stages of maturation.

Anna Bigas's research (Coordinator of the Stem Cell and Cancer

Group, IMIM, Barcelona, Spain) aims to decipher the molecular mech-

anisms regulating stem cells in the hematopoietic system, addressing

in particular the role of Notch1 in these processes. She explained her

group's most recent findings regarding the mechanism by which

β-catenin contributes to leukemic initiating cell regulation in Notch-

induced T acute lymphoblastic leukemia (T-ALL) murine models.11

They found that Notch 1 depends on β-catenin for the leukemogenic

activity associated with Myc upregulation.

Meinrad Busslinger (Research Institute of Molecular Pathology,

Vienna, Austria) spoke about the role of the transcription factor PAX5

in BCP-ALL. He explained that, by generating transgenic mice mimick-

ing the PAX5-ETV6 translocation that occurs in BCP-ALL, the PAX5

fusion protein arrests lymphopoiesis at the pro-B-to-pre-B cell transi-

tion and did not interfere with the expression of most of the regulated

PAX5 target genes. Regulated PAX5-ETV6 target genes identified in

these BCP-ALLs encode proteins involved in pre-B cell receptor

F IGURE 1 Illustration of the scientific highlights in the genetics and epigenetics of leukemia and lymphoma presented at the Josep Carreras
reseach meeting. Meeting sessions were divided in groups according to the hemopathy and basic research advances. ABC, activated B cell; AID,
activation-induced deaminase; BCP, B Cell Precursor; GCB, Germinal center B cell; MDS, Myelodysplastic syndrome; MGUS, monoclonal
gammopathy of uncertain significance; MMS, smoldering multiple myeloma; PTCL, Peripheral T cell lymphoma; UNG, Uracil-N-glycosylase
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signaling and migration/adhesion, which could contribute to the pro-

liferation, survival, and tissue infiltration of leukemic B cells.12

Guillermo García-Manero (MD Anderson Cancer Center, Hous-

ton, TX, USA) reviewed the treatment of myelodysplastic syndromes

(MDS) and acute myeloblastic leukemia (AML), two very closely

related hematological malignances. He explained that since many

driver alterations in MDS, such as epigenetic modifications,13 are

common to primary AML, the use of hypomethylating agents has been

helpful in prolonging the survival of these patients.14 He detailed clini-

cal schedules for the different risk-classified MDS subtypes and AML

and drew attention to the importance of using immunotherapy in

combination with hypomethylating agents.15 He concluded by

broaching the question of whether patients with low-risk MDS need

to be treated.16

Adolfo Ferrnando (Institute for Cancer Genetics, Columbia Uni-

versity, New York, NY, USA) has pioneered the application of omics

techniques in pediatric T-ALL. He highlighted the importance of acti-

vating mutations in N/KRAS genes that drive sensitivity to vincristine

and resistance to methotrexate, which are two chemotherapeutic

agents currently in use.17 He also explained how gain-of-function

mutations in the cytosolic 50 nucleotidase II gene (NT5C2) are associ-

ated with 6-MP resistance.18 Since NT5C2 mutations are found in

20% of relapsed T-ALLs,18,19 he concluded that chemotherapy

imposes a major evolutionary bottleneck and selects for resistance-

associated mutations at relapse.

Michel Sadelain (Center for Cell Engineering, Memorial Sloan Ket-

tering Cancer Center, New York, NY, USA) researches engineered

human cell therapy, particularly that involving chimeric antigen recep-

tor (CAR) technology, a cell-based therapy that is changing the way

we treat cancer patients, especially those with leukemia. He explained

the most recent advances made in his laboratory to improve CAR-T

cell therapy by: (a) increasing CAR-T cell efficacy and overcoming pos-

sible mechanisms of CAR-T resistance20-22; (b) preventing CAR-T cell

cytotoxic release23; and (c) promoting access to patients, decreasing

production costs, and exploring alternative manufacturing and cell

sources.24,25

2.1 | Research advances in lymphoma

Dr. Louis Staudt (Center for Cancer Research, National Cancer Institute,

NIH, Bethesda, MD, USA) reviewed the contribution of genomic stud-

ies to the improved diagnosis and treatment of lymphomas. Microarray

studies showed that diffuse large B cell lymphomas (DLBCL) have two

distinct gene expression profiles that mimic the COO of germinal cen-

ter B cell (GCB) or of activated B cell (ABC). These subtypes have very

different outcomes with conventional rituximab plus chemotherapy

schemes.26 Recently, DLBCL genetic subtypes have been described

that provide a better understanding of DLBCL pathogenesis.27 Some

genetic DLBCL subtypes share features of other lymphomas, for

instance the MCD subtype with primary extranodal lymphomas, and

the EZB subtype with germinal center (GC)-derived lymphomas such as

follicular lymphoma (FL) and Burkitt lymphoma (BL).28

Dr Miguel Angel Piris (Fundación Jimenez Díaz, Madrid, Spain)

began his talk with an overview of peripheral T-cell lymphomas

(PTCLs). He spoke about the constraints on the diagnosis of this sub-

group of lymphomas and the fruits of a Spanish study including

200 cases (PTCL-SPANISH-T-REAL STUDY). The distribution by his-

tological subtype was identical to that in other series: 34%

angioimmunoblastic T-cell lymphoma (AITL), 14% PTCL with T follicu-

lar helper (TFH) phenotype, 12% PTCL NOS, 7% intestinal T-cell lym-

phoma, 13% extranodal NK/T, 8% ALK+ anaplastic large cell

lymphoma (ALCL), and 11% ALK− ALCL. A signature of 13 genes was

defined, expressed not only by neoplastic T cells but also by stromal

cells. The signature indicates that deregulated expression of TFH, T-

cytotoxic, and Treg markers may play a role in AITL/PTCL, and that

non-neoplastic B cells, fibroblastic reticular cells, and follicular den-

dritic cells are probably involved in AITL/PTCL survival.29,30

Dr Almudena Ramiro (Spanish National Center for Cardiovascular

Research, Madrid, Spain) talked about activation-induced deaminase

(AID)-induced mutagenesis in normal and lymphoma B cells. She

reviewed the central role of AID in the GC, and the somatic hyper-

mutation (SHM) and class switch recombination (CSR) processes. In B

cells, AID deaminates cytosines in immunoglobulin genes, generating

deoxyuracil. The resulting U:G mismatch is processed by base excision

repair or mismatch repair and can lead to point mutations (SHM) or

double-strand breaks followed by a recombination reaction (CSR). AID

alone is not sufficient to promote lymphomagenesis.31 Indeed, UNG

regulates the specificity of AID-induced mutations by originating

error-free and error-prone repair, depending on the sequence con-

text.32 UNG inhibition gives rise to an increased mutational load and

accounts for AID-induced lymphomagenesis through SHM (Figure 1).

AID can also induce off-target mutations or chromosome transloca-

tions. Almudena's group has identified nine novel genes, including

MEF2B, LYN, TNFAIP3, GNA13, and IRF8, that accumulate AID-

induced mutations and that are mutated in DLBCL.33

Dr Manel Esteller (Director of the IJC, Badalona, Catalonia, Spain)

reviewed the current state of cancer epigenetics, particularly DNA

methylation in hematological malignancies, some of which have been

discovered by his group. Mutations in DNMT3A, that catalyzes

5-methylcytosine methylation occur in a range of hematological malig-

nancies, such as AML and MDS.34 DNA methyltransferase inhibitors,

such as azacytidine and decitabine, were the first FDA-approved epi-

drugs and are used in first-line treatment of MDS. Some post-

translational modifications of histones are responsible for nucleosome

compactation and chromatin conformation. In this context, Dr Esteller

presented a new inhibitor of Histone deacetylase 6 that is effective in

lymphomas like DLBCL and mantle cell lymphoma35 (Figure 1). Dr

Esteller further commented on the relevance of epigenetic biomarkers

as predictors of response to immunotherapy. For example, the EPI-

MMUNE signature, a DNA methylation signature that includes the T-

cell transcription factor FOXP1, identified the patients with non-

small-cell lung cancer who were most likely to respond to anti-PD-1

inhibitors.36 RNA modifications are also a hot scientific topic.

NUDT16 removes methylated caps from RNAs, thereby preparing

them for degradation. Dr Esteller showed that NUDT16 promoter
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CpG island methylation in T-ALL altered gene transcripts that stabilize

the C-MYC oncogene, a key gene in T-ALL leukemogenesis.37 To con-

clude, Dr Esteller talked about the transition from one mature cell

type to another. He showed that pre-B cell-to-macrophage trans-

differentiation is associated with DNA hypomethylation events in pro-

moters and distal regulatory regions.38

Dr Ari Melnick (Weill Cornell Medicine, New York, NY, USA) talked

about the importance of BCL6 in the GC phenotype and the concur-

rent epigenomic events. Lymphoma cells derive from different stages

of the GC reaction and often show mutations and/or aberrant expres-

sion of transcription factors and epigenetic modifiers. The following

chromatin modifier genes are recurrently mutated in GCB-DLBCL and

FL: KMT2D (30-80% of cases), CREBBP (30-40%), EZH2 (30%), TET2

(10% and founder mutation in DLBCL), EP300 (10%).39-41 CREBBP and

HDAC3 oppose each other via BCL6 during the GC reaction and con-

trol the transition from the dark to light zone of GC to its exit.42

CREBBP and EP300 mutations disrupt enhancer switches, causing the

sustained repression of enhancers targets by BCL6/HDAC3 com-

plexes.43,44 (Figure 1). TET2 mutations lead to protein loss, 5mC is not

converted in 5hmC, and promoters are kept repressed.45,46 Loss of

TET2 results in GC arrest and renders cells dependent on HDAC3, like

CREBBP mutations. Notably, TET2 and CREBBP mutations are mutu-

ally exclusive in DLBCL.45 EZH2 mediates the transient repression of

gene promoters in a BCL6-dependent manner.47 EZH2 mutation

results in enzymatic gain of function, and in vivo EZH2 mutant models

show GC hyperplasia and lymphomagenesis.48

3 | RESEARCH ADVANCES IN MULTIPLE
MYELOMA

Maria-Victoria Mateos (University Hospital of Salamanca, Salamanca,

Spain) presented a roadmap for patients with multiple myeloma (MM). She

explained the differential diagnostic criteria of MM, monoclonal

gammopathy of uncertain significance (MGUS), and smoldering MM

(SMM), pointing out that the overall risk of progression from SMM to MM

was 10% per year in the first 5 years.49 Treatment failure/relapses in MM

can be explained by the escape of particular tumor cells and the accumula-

tion of oncogenic events. In fact, minimal residual disease status proves to

be more important than achieving complete response (CR) for an MM

prognosis.50 The most active treatments must be administered to standard

risk patients as soon as possible.51 High-risk patients, such as those pre-

senting del(17p), barely achieve CR with standard treatment approaches

(Figure 1) and are good candidates for experimental therapies.52

Jose �Angel Martínez-Climent (Center for Applied Medical

Research [CIMA], University of Navarra, Pamplona, Spain) describe

the progress that has been made in MM immunotherapy. With cur-

rent therapies, the median overall survival of MM patients is of up to

10 years, but the disease remains incurable. Martínez-Climent's group

have generated a large collection of genetically heterogeneous mice

(GEM) carrying different combinations of eight of the frequent genetic

changes observed in MM patients (Figure 1). At young age, GEM mice

with different mutations develop premalignant (MGUS-like) stage

disease, in which GC B lymphocytes are the cells of origin of the dis-

ease, driving full transformation of malignant plasma cells at advanced

ages in mice. They found that NF-kB signaling is essential for MM

development while Myc deregulation as well as other genetic abnor-

malities markedly accelerate the onset of the disease. The immune

profiling approach revealed that the immune cell composition in the

bone marrow microenvironment of mice developing MM is similar to

that of MM patients. These newly generated GEM might be promising

tools to guide next immunotherapy trials.

4 | ADVANCES IN BASIC RESEARCH

The basic research talks started with a presentation by Matthias

Merkenschlager (MRC London Institute of Medical Sciences, Imperial

College, London, UK) that focused on the role of three-dimensional

(3D) chromatin structure in gene regulation. Cohesin and the architec-

tural protein CTCF cooperate in genome folding. Merkenschlager

explained how the loss of cohesin downregulates inducible genes,

since it primarily affects the frequency of bursts, which are intense

periods of activity between others of inactivity. This frequency is

determined by chromatin looping, enhancer activity, and transcription

factor concentrations. Merkenschlager also described how macro-

phage activation leads to the repression and activation of genes and

enhancers. Mouse macrophages deficient in cohesin have a lower

level of expression of inflammatory genes and primary human AML

with cohesin mutations have a similar pattern of gene expression.53

Jane Skok (NYU School of Medicine, New York, NY, USA) spoke

about how genes and chromosomes are organized in discreet terri-

tories in the interphase nucleus, with little intermingling between them.

The genome is folded into regulatory units, known as topologically

associated domains (TADs). There are two main TAD compartments, A

and B, that are associated with active and inactive chromatin, respec-

tively. CTCF plays a crucial role organizing chromatin into TADs by

promoting the formation of the loops and boundaries important for

gene regulation. Skok talked about CTCFL (CTCF-like protein) that

appears to be altered in cancer. Using an inducible complementation

system, they analyzed the impact of expressing CTCFL in the presence

or absence of endogenous CTCF. Skok showed that unique and over-

lapping CTCF and CTCFL binding sites differ in their DNA motifs, dis-

tribution in promoters, intronic/intergenic regions, and local chromatin

folding, reflecting disparities in each factor's function. CTCFL does not

share CTCF's insulating properties, nevertheless CTCFL can disrupt

CTCF-mediated looping, linked to gene expression changes.

Thomas Graf (Center for Genomic Regulation, Barcelona, Spain)

introduced a highly efficient cellular transdifferentiation system devel-

oped in his laboratory. This approach consists of B cell precursors

(pre-B cells) that express an inducible form of the myeloid transcrip-

tion factor C/EBPα causing the direct transdifferentiation into

macrophage-like cells.54,55 Transient expression of C/EBPa in pre-B

cells followed by the induction of the Yamanaka factors Oct4, Sox2,

Klf4, and Myc, enhances 100-fold the efficiency of the reprogramming

into induced pluripotent stem cells (iPSCs).56,57 More recently, using
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single-cell RNA sequencing to study the transdifferentiation of murine

pre-B cells into macrophages and their reprogramming into iPSCs, his

laboratory has noted a variation in cell fate conversion, which they

could trace to two subtypes of pre-B cells in the starting population.

Large pre-BII cells are highly reprogrammable and express high levels

of Myc, while small pre-BII cells are more susceptible to trans-

differentiation and express low Myc levels. High levels of Myc are a

strong predictor of the reprogrammability of a variety of somatic cell

types into iPSCs58 (Figure 1).

Veronika Sexl (Institute of Pharmacology and Toxicology, Vienna,

Austria) talked about CDK6, explaining that it is highly expressed in B-

ALL and ALCL. Her laboratory has demonstrated that CDK6 is a tran-

scriptional regulator with kinase-dependent and kinase-independent

roles.59-65 Genome-wide approaches have enabled them to show that

CDK6 regulates transcription by binding to chromatin co-localizing

with SP1 and NFYA, among others.64 She went on to explain how

CDK6 regulates transcriptional responses that interfere with

JAK2V617F-driven disease.65 Sexl also presented her group's findings

from a drug screen using wild-type and CDK6-deficient cells that

uncovered that CDK6-deficient cells lack an intact p53 response.

Reiner Siebert (Institute of Human Genetics, Ulm University, and

Ulm University Medical Center, Ulm, Germany) spoke about the multi-

layer sequence-based omics analysis in GC-derived B cell lymphomas.

In particular, using data obtained by several omics approaches in

255 GC B cell lymphomas, he not only showed how DLBCL but also

all analyses non-Burkitt lymphomas could be divided into different

genomic subtypes. The second part of his talk dealt on MYC-positive

lymphomas. He talked about IGH breakpoints in IG-MYC transloca-

tions in the regions of the IGA (22%), IGG (19%), IGM (40%), and VDJ

segments (19%). Few pathways or complexes other than MYC are

deregulated in BLs, but this deregulation seems to be essential and

can occur in the DNA, epigenome, and transcriptome level.66 Finally,

Siebert presented results about 8207 differentially methylated regions

associated with differential expression between BL and FL.67

Xabier Agirre (CIMA, University of Navarre, Pamplona, Spain)

began his talk with a overview of DNA methylation and histone modi-

fications. To identify new small molecules that target epigenetic regu-

lators, they performed a screen in AML and ALL after knocking down

134 genes. Agirre reported that G9a and DNMT1 had been identified

as potential therapeutic targets.68 They have designed dual small mol-

ecules that act against G9a and DNMT activity. The lead compound,

CM-272, inhibits cell proliferation and promotes apoptosis in AML,

ALL, and DLBCL, inducing interferon-stimulated genes and immuno-

genic cell death. CM-272 also prolongs survival in xenogeneic models

(Figure 1).69 Furthermore, G9a and DNMT1 inhibition enhances the

response to PD-L1 blockade, leading to tumor regression and the

metastasis in a new cancer mouse model.70

5 | CONCLUDING REMARKS

The Inaugural Symposium of the IJC has gathered pioneering scientific

experts of the fields of immunology and hematological diseases. The

Symposium has represented a remarkable opportunity to discuss with

worldwide basic, clinical and translational researchers, their recent

advances, and novel discoveries in lymphocyte biology, leukemia, and

lymphoma. Overall, the findings presented could pave the way to

improve the stratification of the diseases, to identify novel biomarkers

and to develop new therapeutic targets.
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