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To the Editor:

Hematopoiesis is a highly regulated process that, starting
from hematopoietic stem cells (HSCs) with self-renewal
capacity in the adult human bone marrow, is able to gen-
erate all different types of mature blood cells. The classical
view of hematopoiesis defines binary branching points from
these HSCs that segregate lineages and direct differentiation
to terminally differentiated functional cell types [1]. How-
ever, the described hierarchical model can be complemented
with the emerging data that suggest the existence of
hematopoietic stem and progenitor cells with a continuum
of transitory differentiation stages, including cells with early

lineage priming that generate distinct blood cell types
according to the physiological or pathological environment
[2]. In this context, there are increasing data of hemato-
poietic plasticity and cell lineage conversion, particularly in
leukemogenesis. Examples of transdifferentiation include
B-cell lymphomas that can transform to histiocytic/dendritic
cell sarcoma, erythroid/megakaryocytic lineages changing
to granulomonocytic-like lineage upon use of a histone
demethylase LSD1 inhibitor or B-ALL (acute lympho-
blastic leukemia) patients that evaded CD19-directed anti-
body therapy (blinatumomab) by undergoing myeloid-
lineage switch. Related to the latter scenario, lineage
switching has also been reported as a cause of antigen loss
in chimeric antigen receptor T-cell therapies, where B-ALL
patients transdifferentiate in their relapse as acute myelo-
blastic leukemia in response to the initial CD19-directed
immunotherapy [3]. Due to the central role of epigenetics,
particularly DNA methylation, in the successful generation
of differentiated blood cell types and its plasticity during
lineage specification [4], we wondered about its function in
hematopoietic transdifferentiation, a largely unexplored
field.

Our studied model of transdifferentiation is a well-
defined experimental system that converts B cells into
macrophages. Following initial work that demonstrated that
normal murine B-cell precursors as well as mature
antibody-producing B cells can be induced by C/EBPα to
transdifferentiate into functional macrophages [5], a murine
cellular model was established of pre-B cells containing a
fusion of C/EBPα with the estrogen receptor hormone
binding domain (C/EBPαER) that converts them to
macrophage-like cells upon 17β-estradiol exposure [6]. We
have recently translated this model to human B-lymphoma
and leukemia cell lines that can be induced by C/EBPα to
transdifferentiate into functional macrophages [7]. Impor-
tantly, primary human BCR-ABL1(+) B-ALL cells could
also be induced to reprogram into macrophage-like cells by
transient expression of C/EBPα [8]. To explore the changes
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that the DNA methylome undergoes upon transdifferentia-
tion, we have herein applied this experimental system.
Thus, we have analyzed the human precursor B-ALL cell
line RCV-ACH transfected with the transgene C/EBPαER,
thereafter termed BLaER1, upon 17β-estradiol-mediated
transdifferentiation at seven timepoints (0, 3, 12, 24, 48, 72,
and 168 h) using a comprehensive DNA methylation
microarray that interrogates more than 850,000 CpG sites
(Supplementary Fig. 1a and Supplementary Methods).
DNA methylation data are available on the GEO repository
under accession number GSE132845. We have observed a
significant change in the methylation status of 251 CpG
sites during the transdifferentiation process (p-value < 0.05
and CpG B-value change ≥0.66) (Supplementary Table 1
and Supplementary Methods). Most strikingly, all except
one (250 of 251, 99.6%) were hypomethylation changes
(Fig. 1a and Supplementary Fig. 1a). In this regard, these
hypomethylation events occurred in the context of down-
regulation of the DNA methyltransferases DNMT1 and
DNMT3B, but not DNMT3A, in our transdifferentiation
model (Supplementary Fig. 2). The DNA methylation pat-
tern of the endpoint of transdifferentiation (BlaER1 at 168
h) for these sites mimicked the CpG methylation status of
naive macrophages (Fig. 1a and Supplementary Table 1).
According to genomic distribution of the identified CpG
sites, 141 CpGs (56.2%) had an associated gene, whereas
110 CpGs (43.8%) were in regions of the genome without
any annotated gene (Fig. 1b).

Due to our interest in epigenetic modifications that can
actively contribute to the transdifferentiation phenomenon
and the classical view of the impact of DNA methylation on
transcription, we first studied the 141 CpG sites that are
annotated as having an associated gene in relation with the
available expression levels of the corresponding gene [9].
We identified 41 CpG sites (29.1%), corresponding to 39
genes (Supplementary Table 2), for which the methylation
status significantly correlated with the expression of the
associated gene: in most cases the CpG hypomethylation
event was linked to gene expression (32 of 39, 82%),
whereas only in a minority of cases was demethylation
associated with gene repression (7 of 39, 18%) (Supple-
mentary Table 2). Using data mining (Supplementary
Methods), we observed that these 41 CpG sites were in
binding sites for 80 transcription factors (Supplementary
Fig. 3a). Gene ontology analysis using a hypergeometric
test to find biological processes overrepresented in our set
of transcription factors (Supplementary Methods) demon-
strated, in addition to global regulatory networks, an
enrichment in the “immune system development,” “cell fate
commitment,” and “leukocyte differentiation” categories
(Supplementary Fig. 3b), including homeobox proteins
related to leukemia biology (such as MEIS1, HOXA2, and
HOXC11) and lymphoid and myeloid-differentiation-

associated programs (such as FOXC1, GATA2, and
SPI1). We proceeded further to validate two candidate
genes detected as undergoing CpG demethylation-
associated reactivation for our multiomic approaches in
the transdifferentiation model: the interleukin-1 receptor
antagonist (IL1RN) and integrin alpha X (ITGAX), both
genes that are almost exclusively expressed in macrophages
[10, 11]. The methylation changes of the identified CpG
sites associated with IL1RN and ITGAX were further
confirmed by bisulfite genomic sequencing of multiple
clones and bisulfite pyrosequencing (Supplementary Fig. 4
and Supplementary Methods). Quantitative real-time PCR
(Supplementary Methods) demonstrated lack of expression
for both transcripts in the initial B-ALL cells in the absence
of 17b-estradiol treatment and a strong gain of expression at
the end of the transdifferentiation process in the
macrophage-like cells (Fig. 1c). The assessment of protein
levels for IL1RN (western blot) and ITGAX (cell cyto-
metry) (Supplementary Methods) obtained the same
expression patterns (Fig. 1c). The use of the demethylating
agent 5-aza-2′-deoxycytidine in BLaER1 cells induced
IL1RN and ITGAX expression (Supplementary Fig. 5),
supporting the role of CpG methylation in gene silencing.
Most importantly, 17β-estradiol treatment of the original
naive pre-B-ALL leukemia cells RCH-ACV, which were
not transfected with the transgene C/EBPαER and thus do
no transdifferentiate, maintained the gene silencing of
IL1RN and ITGAX (Fig. 1c). These data support the role of
a wave of DNA demethylation that, acting locally in the
CpG-associated genes, confers macrophage identity to the
original pre-B-ALL cells.

Strikingly, our analysis workflow showed, as described
above (Fig. 1b), that among the differentially methylated
CpGs in our transdifferentiation model, 110 CpGs (43.8%)
were located in genome contexts without any genes in their
vicinity. Thus, in these cases, it is possible that a candidate
regulatory event of those CpGs occurs in the 3D organi-
zation of the human genome. In this regard, regulation at
long-range distance can occur due to the formation of
“loops” in the DNA that, for example, collocate enhancer or
silencer sequences and minimal promoters. DNA methyla-
tion patterns at enhancers are relevant to the determination
of cell identity [12] and their aberrant CpG methylation
profile has been observed in human cancer [13], including
hematological malignancies. Thus, we investigated how
many of these nongene associated CpGs were located in
distant regulatory regions, taking advantage of our available
Promoter Capture Hi-C (PCHi-C) data in macrophages [14].
We also included in our analyses the 141 CpG sites with
associated genes due to the possibility that, in addition to
regulating genes in lineal proximity, these CpG sites could
also act as long-range interactor sequences. We found that
72 of the overall 251 CpGs (28.7%) were located in
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candidate distant regulatory regions defined by PCHi-C in
macrophages (Supplementary Fig. 1b and Supplementary
Table 3) [14]. To address the functionality of the observed
DNA methylation changes, we then interrogated whether
the methylation status of these 72 CpG sites had any impact
on the expression of the genes whose promoters are targeted
by these long-range regulatory sequences [14]. We found
that the methylation status of 34 of the 72 CpG sites
(47.2%) correlated with the expression of 52 genes that
interacted with these regions (Supplementary Fig. 1b and
Supplementary Table 4). Importantly, all except one (33 of
34, 97%) were CpG hypomethylation changes (Supple-
mentary Table 4). Most of the 34 PCHi-C-derived CpG
dinucleotides represented unique interactions between one
methylation site and one gene (21 of 34, 62%) (Fig. 2a),
followed by dual interactions (one CpG interacting with two
genes, 7 of 34, 21%), but more complex interactions were
also observed (Fig. 2a). Interestingly, although many of
these CpG sites were in nonassociated gene regions (18 of
34, 53%), we also frequently observed CpGs within asso-
ciated genes (16 of 34, 47%) (Fig. 2b). It is important to
highlight that the CpGs in the latter subset were mainly

located in nonpromoter regions of the gene (11 of 16, 69%)
(Supplementary Table 4). Using data mining (Supplemen-
tary Methods), we observed that four of the PCHi-C-derived
CpG dinucleotides contained a binding motif for the
CCCTC-binding factor (CTCF), the most widely recog-
nized protein controlling three-dimensional structures of
DNA. Related to the 52 identified target genes, for 31 genes
(60%) the CpG hypomethylation event acted as an enhancer
event associated with the expression of the corresponding
gene, whereas for 21 genes (40%) the demethylation event
was associated with gene inactivation and can be classified
as a candidate silencer sequence in our pre-B-ALL to
macrophage transdifferentiation model (Supplementary
Fig. 1b and Supplementary Table 4).

We experimentally validated the available expression
microarray data [7] using quantitative real-time PCR for
five candidate targets: three genes with CpG hypo-
methylation associated expression upon transdifferentia-
tion (ras homolog family member G, RHOG; C-X-C motif
chemokine ligand 8, CXCL8; and C-C motif chemokine
receptor 1, CCR1) and two genes with CpG
demethylation-associated expression reduction upon cell
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Fig. 1 DNA methylation analysis at different timepoints of B-ALL-to-
Macrophage transdifferentiation. a Heatmap showing the methylation
state of the 251 significant hyper/hypomethylated CpGs during 7 days
of transdifferentiation. RCH-ACV (treated 7 days with 17β-estradiol,
IL-3, and M-CSF) and macrophage are taken as negative and positive

controls, respectively. b Pie chart showing the genomic distribution of
the 251 significant CpGs. c qRT-PCR (***p < 0.001, T-Test) western
blot and flow cytometry analysis at different timepoints of transdif-
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are significantly demethylated during transdifferentiation
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conversion (CHM like Rab escort protein, CHML; and
DBF4 zinc finger, DBF4) (Fig. 2c). The methylation
changes of the distant CpG sites associated with the target
genes was further confirmed by bisulfite genomic
sequencing of multiple clones and bisulfite pyrosequen-
cing (Supplementary Fig. 6 and Supplementary Methods).
The use of the demethylating agent 5-aza-2′-deox-
ycytidine in BLaER1 cells induced RHOG, CXCL8, and
CCR1 expression (Supplementary Fig. 5), further sup-
porting a role of the identified CpGs in the candidate
enhancer sequences. Finally, using targeted chromosome
capture with unique molecular identifiers (UMI-4C), a
recently developed method to quantitatively measure 3D
interaction intensities between distant regulatory regions
and their corresponding promoters [15], we decided to
confirm the loop dynamics of the singled-out targets. One
technical limitation of UMI-4C is that it provides reliable

contact quantifications only between DNA sequences
located within a ~0.5 Kb and ~1 Mb interval [15]: among
the five studied genes, only the CCR1 promoter and its
putative PCHi-C obtained CpG-containing regulatory
region fulfilled these parameters. UMI-4C data are avail-
able at the SRA repository under accession number
PRJNA548887. Most importantly, we found that the CpG
demethylation event occurring during transdifferentiation
for the PCHi-C derived candidate long-distance regulatory
sequence of CCR1 was not only associated with the
expression of the gene (Fig. 2c), but also with the for-
mation of a new loop between the CpG-containing distant
regulatory region and the CCR1 proximal promoter (Chi-
square test p < 0.0001) (Fig. 2d), supporting a role as an
enhancer. These data highlight the relevance of DNA
methylation events at distant regulatory regions to confer
cell identity for both B-ALL and macrophage cells.
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In conclusion, we report that transdifferentiation events
in the context of hematopoietic lineage plasticity, such as
the pre-B-ALL lineage conversion to macrophage studied
herein, involve DNA methylation shifts that not only affect
CpG sites in lineal proximity to genes, but also incur epi-
genetic changes in long-range interactor sequences derived
from the 3D genome architecture of the living cell. These
results may help to improve our knowledge of the critical
determinant for cell type specification and to understand
what goes awry in hematological malignancies that, in
response to pharmacological or cellular therapies, undergo
lineage switching to develop resistance to the applied
treatment.
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