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a b s t r a c t 

In laparoscopic liver resection, surgeons conventionally rely on anatomical landmarks detected through 

a laparoscope, preoperative volumetric images and laparoscopic ultrasound to compensate for the chal- 

lenges of minimally invasive access. Image guidance using optical tracking and registration procedures is 

a promising tool, although often undermined by its inaccuracy. This study evaluates a novel surgical nav- 

igation solution that can compensate for liver deformations using an accurate and effective registration 

method. The proposed solution relies on a robotic C-arm to perform registration to preoperative CT/MRI 

image data and allows for intraoperative updates during resection using fluoroscopic images. Navigation 

is offered both as a 3D liver model with real-time instrument visualization, as well as an augmented 

reality overlay on the laparoscope camera view. Testing was conducted through a pre-clinical trial which 

included four porcine models. Accuracy of the navigation system was measured through two evaluation 

methods: liver surface fiducials reprojection and a comparison between planned and navigated resection 

margins. Target Registration Error with the fiducials evaluation shows that the accuracy in the vicinity 

of the lesion was 3.78 ±1.89 mm. Resection margin evaluations resulted in an overall median accuracy of 

4.44 mm with a maximum error of 9.75 mm over the four subjects. The presented solution is accurate 

enough to be potentially clinically beneficial for surgical guidance in laparoscopic liver surgery. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The laparoscopic approach for liver surgery has become 

ore widely accepted within the growing list of proce- 

ures Hilal et al. (2018) with patients reporting higher quality of 

ife after laparoscopic compared to open liver resections Fretland 

t al. (2019) . For colorectal metastasis (CRM), parenchyma-sparing 

iver resections focus on removal of lesions while preserving as 

uch healthy liver tissue as possible, with only the sufficient 
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argins around the lesions. These procedures can be relatively 

imple for small lesions located superficially. However, complex 

rocedures, such as posterior-superior segments, require exten- 

ive planning of the resection to ensure removal of vascular 

erritory with pathology and still maintaining safe resection 

argin Aghayan et al. (2018) . 

To prepare for complicated surgical approaches, surgical plan- 

ing and diagnostics are ordinarily conducted through medical 

maging such as Computed Tomography (CT) and Magnetic Reso- 

ance Imaging (MRI). Through segmentation processes, these im- 

ges can be used to create patient-specific 3D models that can 

upport decision-making Berardi et al. (2019) and improve spa- 

ial understanding Pelanis et al. (2019) . Furthermore, with addi- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ional software tools, these models can be used for resection plan- 

ing Palomar et al. (2017) FDA (2013) Soler et al. (2015) . 

To follow the surgical plan, during laparoscopic liver surgery, 

urgeons conventionally rely on visualised anatomical land- 

arks detected through the laparoscope camera or the laparo- 

copic ultrasound. These structures are used by the surgeon 

o correlate, in their mind, the prepared surgical plan with 

he intraoperative space. This approach may lead to inaccu- 

acies, especially if the landmarks used to perform this cor- 

elation are difficult to visualise and couple with confidence. 

ence, to bridge the gap between planning and surgery, as 

ell as to aid the surgeon in conducting a safe and accurate 

rocedure, surgical navigation solutions are being tested clini- 

ally Ntourakis et al. (2016) Hallet et al. (2015) and emerging in 

he market Thompson et al. (2018) Prevost et al. (2019) . 

Surgical navigation devices aim to provide additional in- 

ormation to enhance both lesion localization and visualiza- 

ion of vascular territories. For example, using superimposed 

irtual segmented volumes onto the physical perspective, 

nown as Augmented Reality (AR), or as 3D interactive models 

odrzejewski et al. (2019) Thompson et al. (2015) Teber et al. (2009

hompson et al. (2018) Nicolau et al. (2009) Soler et al. (2014) 

uero et al. (2019) Bernhardt et al. (2017) . Surgical naviga- 

ion is achieved through a combination of instrument track- 

ng and registration processes, which often require input 

rom the surgeons. Previous studies show that user depen- 

ency Thompson et al. (2018) Teatini et al. (2019) , instru- 

ent tracking error Teatini et al. (2018) , registration inaccu- 

acy Thompson et al. (2018) Teatini et al. (2020) and liver 

eformation Zachariadis et al. (2020) are often the causes 

f inaccuracy in navigation systems. The extent of inaccu- 

acy varies due to different setups, algorithms and organ of 

nterest, although, for laparoscopic liver navigation, overall 

naccuracies, reported in the literature, ranging from 8.7 to 

2 mm Teatini et al. (2019) Thompson et al. (2018) Modrzejewski 

t al. (2019) Luo et al. (2020) . Approached utilizing intraoperative 

BCT/fluoroscopy and stereo laparoscopic images for registration 

ave been researched and tested although without a TRE mea- 

urment during in vivo investigation Mountney et al. (2014) . The 

im of this study is to assess a novel navigation solution for liver 

aparoscopy which requires a simple, yet accurate, registration 

rocedure, with a less user-dependent update possibility which 

an work even in the occurrence of large soft tissue deformations. 

. Materials and methods 

Approved by the National Animal Experimentation Board 

project ID: 12633] and in accordance with Norwegian regulations 

oncerning the use of animals in experiments [FOR-2015-06-18- 

61], a pre-clinical trial was conducted on four porcine models 

rom 2019 to 2020 to evaluate the presented navigation system. 

his to ensure a realistic conditions of laparoscopic liver resection 

ith the assistance of a surgical navigation system and have results 

ransferable to clinical use. 

The proposed surgical navigation system re- 

ies on percutaneously injected gold tracking fidu- 

ials Kothary et al. (2009) around the lesion. These tracking 

ducials have been used in clinical use during radiotherapy treat- 

ent, and are certified medical devices which can be injected 

efore the surgery. The fiducials are used to perform registration 

asks between volumetric images or registration updates using 

uoroscopic images throughout the resection procedure, which 

llows the system to compensate for organ deformations. A 

chematic of the workflow for this solution is depicted in Fig. 1 . 

urgical navigation is achieved through a series of rigid transfor- 

ations, utilizing optical instrument tracking applied to both the 
2 
aparoscope camera and the surgical instruments. The proposed 

olution for surgical navigation offers guidance both as an inter- 

ctive 3D liver model with real-time instrument visualization, as 

ell as through a 3D AR overlay on the laparoscopic camera view 

an example is shown in Fig. 4 ). 

The navigation solution was tested in a state-of-the-art hy- 

rid Operation Room (OR), which allows acquisition of contrast- 

nhanced CT (through a sliding gantry CT), Cone Beam CT (CBCT) 

nd fluoroscopic images (using a robotically controlled C-arm), 

n a single OR, directly while the subject is on the surgical ta- 

le. Evaluation of the navigation system was conducted through 

he assessment of Target Registration Error (TRE), computed us- 

ng both laparoscopically inserted fiducials on the liver sur- 

ace Teatini et al. (2019) , as well as a comparison between the 

lanned and marked resection margin on the liver surface follow- 

ng the navigation guidance. 

.1. Experimental protocol 

The navigation solution was tested within a hybrid OR, 

quipped with a Siemens Healthineers GmbH ® SOMATOM CT 

canner and an ARTIS pheno C-arm, which were used to acquire 

edical images directly on the operating table. An Aesculap ®E- 

nsteinvision 30 ◦ oblique stereo laparoscope camera was used for 

aparoscopic video acquisition. Surgical navigation was visualized 

sing a research version of the CAS-One AR system by CAScination 

G ®. The system is based on CAScinations ® CAS-One AR prod- 

ct (CE Class 1 release in July 2017) and extends its functionality 

y a prototype software displaying AR overlays on laparoscopic im- 

ges based on data received from a software provided by Siemens 

ealthineers. Tracking of the laparoscope camera and surgical in- 

truments were performed through optical tracking with a Northen 

igital Incorporated ®Polaris Vicra. The OR was prepared with con- 

entional equipment for laparoscopic liver resection with the addi- 

ion of an ultrasound machine for percutaneous needle placement 

o inject the gold fiducials used for registration. 

.1.1. Dataset description 

A pre-clinical trial was conducted using a total of four porcine 

odels, with weights ranging from 45 to 61kg. The dataset in- 

ludes tracked stereo-video recordings using a calibrated laparo- 

copic camera, pre- and intraoperative contrast-enhanced CT and 

uoroscopic acquisitions, as well as instrument tracking and reg- 

stration transformation matrices. Every acquired transformation 

atrix has a global origin in P (following the diagram in Fig. 5 ),

hich is an optical markerplate which indicates the position of the 

atient, rigidly connected to the surgical table. Timestamps in the 

ecordings were used to compute the duration of the steps pre- 

ented in the workflow ( Fig. 1 ) and described in Section 2.2.3 . 

.1.2. Injection of artificial lesion 

Similarly to the biotumor mixture used at IHU Stras- 

ourg Garcia et al. (2019) , an artificial lesion solution, containing 

uscle, agar-agar and citric acid, was prepared, strained and ho- 

ogenised through needles of decreasing calibre until 18 gauge. 

ased on a contrast-enhanced CT image, the injection targeted lo- 

ation was the superior section of a medial/right liver lobe, visi- 

le through a percutaneous ultrasound (US). The solution was then 

ercutaneously injected into the liver parenchyma, under US and 

uoroscopic guidance, through a 16 gauge Secalon-T needle. Injec- 

ion of 6 mL created a lesion with a diameter of approximately 

0 mm. The injected artificial lesions were clearly visible in both 

ltrasound and CT images. 

.1.3. Placement of tracking fiducials 

Based on CT and US characteristics of the artificial lesion and 

he surrounding vessels, for each trial, five tracking fiducials (Civco 
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Fig. 1. Overview of the novel navigation solution with and without intraoperative CT imaging. 

Fig. 2. Illustration to show the different fiducials: tracking fiducials were used to 

perform fluoroscopic updates to compensate for organ deformations, whereas sur- 

face fiducials were solely used in these trials to evaluate the accuracy of the system 

(and are not necessary for surgical navigation). 
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Fig. 3. Laparoscope camera calibration procedure example using the dedicated 

markershield. 

C

v
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adiotherapy - CyberMark 1x5mm gold rods) were aimed to be 

laced in the liver parenchyma within 10 mm from the lesion bor- 

er (four surrounding and one underneath) (shown in Fig. 2 ). 

.1.4. CT And CBCT acquisition 

Scans were acquired directly on the surgical table, with subjects 

ositioned right side up in a supine position with a slight flexion. 

very imaging sequence acquisition was performed with tube dis- 

onnect to have the same lung position and to lower imaging arte- 

acts caused by breathing motion. Furthermore, Butylskopolamin- 

romid was given to reduce peristaltic motion. Contrast-enhanced 
3 
T images were acquired using Ombipaque 350 mg/ml via intra- 

enous injection with 2 ml/kg for bodyweight. Injection time set 

or 35 seconds controlled by the flow. Portoveneous phase acquisi- 
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Fig. 4. Schematics explaining laparoscopic augmented reality visualization in 

overview mode. 
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ions 90 seconds after the injection start. Intraoperative CT images 

ere acquired with pneumoperitoneum stabilized at 13 mmHg. 

BCT and fluoroscopic images were acquired without contrast. 

.1.5. Segmentation 

Contrast-enhanced CT images were segmented to cre- 

te case-specific models by two different methods: either 

sing a liver pre-processing method followed by semi- 

utomatic segmentation in ITK-SNAP with manual correc- 

ions Kumar et al. (2017) , Gansawat et al. (0 0 0 0) and 3D model

econstructions in 3D Slicer Fedorov et al. (2012) ; or using the 

egmentation algorithms and tools available in Syngo.via Liver 

nalysis. Five segmented structures were created for each case 

sing this process: liver parenchyma, hepatic and portal vessels, a 

esection model and a lesion. 

.1.6. CAS-One AR Calibration 

Hand-eye, camera calibration (shown in Fig. 3 ), and surgical in- 

trument calibration were performed in the OR through the CAS- 

ination CAS-One system. Custom-designed optical marker shields 

ere attached to the surgical table, instruments and calibration 

rocesses were performed as described in Prevost et al. (2019) . 

.1.7. CAS-One AR Navigation 

The CAS-One system provides guidance by means of an interac- 

ive 3D view of the liver model and tracked tools, as well as 3D-3D

R overlay of internal structures on the laparoscopic image. The 

ser can choose between three different AR modes: 

Overview mode: The virtual window is centred 

at the intersection of the laparo- 

scope’s line of sight with the liver 

surface. The segmented internal 

organ structures are rendered as 

seen through this virtual window 

shown in Fig. 4 . 

Region of interest mode: The virtual window is delimited 

by the implanted gold fiducials to 

limit visualization to the region of 

interest during the entire resection 

procedure. 

Resection mode: The virtual window follows the tip 

of the tracked resection tool. 

.1.8. Registration using CT - CBCT 

The solution presented in this study relies on the presence of 

 robotic C-arm to perform the navigation and volumetric im- 

ge. In this study, CT images used for creating liver segmenta- 

ions have been taken intraoperatively. However, in clinical prac- 

ice, they could be a preoperative CT scan, commonly used for sur- 

ical planning, acquired typically days or weeks before the proce- 

ure. To align the CT volume and its associated segmentations to 

he position of the patient on the surgical table, the navigation so- 

ution requires a CBCT acquisition. An initial registration process 
4 
etween these two medical images is performed automatically us- 

ng intensity-based 3D/3D registration algorithms available in the 

avigation software. This followed by manual adjustments by the 

urgeon (rotations and translations). In the case of liver deforma- 

ions between CT and CBCT images, the rigid registration should be 

imed to provide the best match in the surroundings of the lesion. 

he transformation matrix resulting is denoted as T I 
D 

according to 

he diagram in Fig. 5 . 

.1.9. Registration using fluoroscopic updates 

Laparoscopic surgery causes large motions and de- 

ormations to the shape and size of the liver Sánchez- 

argallo et al. (2011) Teatini et al. (2019) Zachariadis et al. (2020) 

lantefève et al. (2016) . This deformation increases even further 

uring both surgical manipulations (lifting or moving of the 

iver), or resection processes (liver mobilization and resections). 

esection of liver parenchyma is one of the critical steps in 

he procedure, and most navigation solutions on the market 

annot currently update the registration for the surgical naviga- 

ion ( Prevost et al. (2019) ). The solution proposed in this study 

llows the user to update the surgical navigation though two 

uoroscopic images were taken at different orientations with the 

obotic C-arm of the patient on the surgical table. To prepare the 

uoroscopy-based tracking, the injected gold fiducials are auto- 

atically segmented from the CBCT volume via a threshold-based 

etal segmentation algorithm. The CBCT is reconstructed utiliz- 

ng a metal artifact reduction algorithm, to facilitate the precise 

ocalization of the fiducials. Fiducials coordinates are determined 

y calculating the center of mass of the respective metal seg- 

entation surface mesh and stored as the reference configuration. 

uring the subsequent surgical resection, fluoroscopy images are 

aken along two projection angles, typically separated by at least 

0 ◦. Through a sampling consensus algorithms, candidates of 

onsensus sets are identified. First, the combinatorial complex- 

ty of the sampling problem is estimated based on number of 

etected fiducials in the two 2D fluroscopic images and number 

f fiducials in the CBCT. If this is below a defined threshold, 

eterministic sampling consensus (DETSAC) is performed, eval- 

ating all combinatorial possibilities. However, if the number of 

ossible combinations exceeds the runtime threshold, random 

ampling consensus (RANSAC) is performed instead. The resulting 

ransformation is determined by choosing the consensus set with 

owest deviations from the original 3D configuration of fiducials 

n the CBCT, and by prefiltering based on predefined error thresh- 

lds and boundary conditions. Based on the newly triangulated 

ositions of the fiducials in fluoroscopy images, which reflects the 

ovement and deformation of the liver, the navigation platform 

omputes an additional transformation matrix T P F , that can update 

he navigation and therefore compensating organ deformations. 

Positions of the tracking fiducial markers in 2D fluoroscopy im- 

ges are detected using a U-Net convolutional neural network. The 

etwork was trained on various annotated images from clinical, 

re-clinical and phantom settings as well as on digitally synthe- 

ized X-ray images. The robotic C-arm readily provides extrinsic 

nd intrinsic projection matrices of image acquisition. Since all 

racking fiducial markers are of the same type, a correspondence 

roblem has to be solved in the 2D/2D/3D registration to the spa- 

ial arrangement of the fiducials in the CBCT. This is addressed by 

 sampling consensus algorithm. Finally, the resulting registration 

atrix is transferred to the navigation system which then provides 

p-to-date AR overlays. An example is shown in Fig. 6 . 

.2. Evaluation 

Evaluation of the accuracy for the navigation was conducted 

hrough two methods: TRE evaluation using additional surface 
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Fig. 5. Schematic of the transformation matrices involved in this surgical navigation platform. Where O is the coordinate system for the optical tracking system, M for 

the optical markers attached to the laparoscope camera, C is the coordinate system origin for the camera, I is the origin of the imaging modality (preoperative scan), 

P is the markerplate rigidly attached to the surgical table, D is the origin of the CBCT scan and F is the origin of the gold fiducials. The notation used in this paper 

indicates as superscript the coordinate system with respects to which the transformation is applied, and subscripted is the towards which coordinate system (with a row- 

major convention). Moreover, all transformations described in this study are 4x4 matrices in homogeneous coordinates. It is important to notice that, without using the 

fiducial updates, transform (T D P ) 
−1 = (T F P ) 

−1 · (T D F ) 
−1 is the identity matrix. 

Fig. 6. Example of visualisation through navigation system monitors during la- 

paroscopy. 
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Table 1 

TRE fiducial evaluations averaged across the four cases (means and 

pooled variances in [mm], according to Altman et al. (2013) ) using ei- 

ther the intraoperative CT scan or the fluoroscopic updates to perform 

the registration. 

Intraoperative CT 

TOP RES DIS ALL 

Mean ±SD 3.56 ±1.98 3.78 ±1.89 4.29 ±3.07 3.99 ±2.19 

Number 234 797 184 1511 

Fluoroscopic Updates 

TOP RES DIS ALL 

Mean ±SD 3.61 ±1.96 4.19 ±2.56 7.36 ±5.30 5.00 ±3.43 

Number 2868 6179 1269 10849 

b

T

t

a

fl

t

a

i

i

e

T

i

sion. 
ducials attached to the liver surface and computation of TRE for 

he resection margin marking on the liver surface. As aforemen- 

ioned, both evaluation processes made use of intraoperative CT 

cans. These scans were used to perform segmentation of the sur- 

ace fiducials and the surgical foam (which were both placed on 

he liver surface laparoscopically and therefore not were present 

n the preoperative CT scan). 

.2.1. Surface fiducials for TRE evaluation 

Surface fiducials were designed and 3D printed in PA12 Smooth 

sing a LISA Sinterit printer. These fiducials have a spherical hol- 

ow sphere with a diameter of 3.8 mm, which made them easily 

etectable and segmentable in the intraoperative CT. These fidu- 

ials were laparoscopically inserted on the liver surface (as shown 

n Fig. 2 and visible in Fig. 7 ), and then reprojected as AR ob-

ects on laparoscopic frames through the registration processes de- 

cribed in Section 2.1.8 and Section 2.1.9 , an example their posi- 

ions reprojected on the laparoscope camera is shown in Fig. 11 . 

he distance between the reprojected fiducials and their physical 

ocation represents the TRE for the surgical navigation (red versus 
5 
lue dots respectively in Fig. 7, similarly to Teatini et al. (2019) and 

hompson et al. (2018) ). Accuracy was evaluated for both AR regis- 

ration approaches: using the intraoperative CT scan ( Section 2.1.8 ), 

nd using pairs of fluoroscopic images ( Section 2.1.9 ). Before each 

uoroscopic update, liver surgical manipulations were applied by 

he surgeon (to simulate the clinical scenario of wanting to update 

fter manipulating the liver). 

To describe the accuracy of the AR navigation solution, which 

s meant for accurate registration around the lesion (as described 

n Section 2 ), a grouping of the surface fiducials was conducted to 

valuate the accuracy of AR in the regions of interest. This lead to 

RE for surface fiducials to be divided into three groups (as shown 

n Fig. 7 and Table 2 ): 

TOP: Liver surface fiducial inserted on top of the lesion. 

RES: Liver surface fiducials within the planned resection margin 

(under 35 mm from the center of the lesion). 

DIS: Liver surface fiducial most distal from the center of the le- 
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Fig. 7. Example of AR frame showing the reprojection of the liver surface fiducials. These fiducials were only used for evaluation of TRE (not necessary in clinical workflow). 

TRE was computed as the distance between the manually annotated positions (in blue) and the reprojected correspondent positions (in red). Furthermore, this image shows 

how the fiducials were classified into three groups (TOP, RES and DIS) based on their euclidean distances to the lesion. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Table 2 

Evaluation results of TRE, in [mm] for the liver surface fiducials. The fiducials were grouped into TOP : the fiducial placed on top of the tumor, RES : fiducials within the 

resection margin, DIS : the fiducial placed furthest away from the tumor, ALL : all the fiducials inserted. 

Intraoperative CT 

Case 1 Case 2 Case 3 Case 4 

TOP RES DIS ALL TOP RES DIS ALL TOP RES DIS ALL TOP RES DIS ALL 

Mean 2.14 2.20 2.34 2.26 4.37 3.61 10.94 4.25 4.99 4.74 3.81 4.78 3.31 3.30 7.75 4.63 

STD 1.94 1.85 1.21 1.38 1.60 1.63 1.55 2.49 1.45 1.59 1.75 1.73 0.77 1.28 0.86 2.28 

Max 7.11 7.11 5.92 6.79 7.68 8.35 12.97 12.97 8.14 9.47 7.38 10.30 5.69 8.28 9.79 11.50 

Num. 84 164 87 406 32 129 17 228 73 367 56 548 45 137 24 329 

Fluoroscopic Update 

Case 1 Case 2 Case 3 Case 4 

TOP RES DIS ALL TOP RES DIS ALL TOP RES DIS ALL TOP RES DIS ALL 

Mean 2.37 3.34 11.32 6.50 5.80 5.67 13.67 6.79 3.14 4.04 4.65 4.49 4.18 4.16 11.13 5.75 

STD 1.09 1.59 2.26 3.46 1.83 2.53 2.29 3.45 1.46 2.57 4.33 3.28 2.90 2.41 4.49 3.36 

Max 5.51 8.37 14.44 14.44 15.15 29.98 21.46 29.98 7.61 17.60 18.94 27.09 12.69 12.69 17.83 16.64 

Num. 204 423 228 1068 472 720 168 1052 1960 4710 810 7964 232 326 63 765 

Comparisons intraoperative CT vs Fluoroscopic Updates 

P-value 0.21 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.15 0.04 0.05 < 0.01 < 0.01 
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.2.2. Resection margin for TRE evaluation 

Resection of the artificial lesion was planned on a segmented 

ontrast-enhanced CT scan, and a separate resection volume seg- 

entation model was created and used for the navigated resec- 

ion guidance. As performed clinically, the resection margin was 

arked using a cauterization instrument (monopolar laparoscopic 

nstrument) on the liver surface. Marking of the resection mar- 

in was performed following only the surgical navigation guidance, 

isplayed as AR. To extract the spatial position of the cauteriza- 

ion, a surgical foam (SURGIFLO ®Hemostatic Matrix Kit) was ap- 

lied on the cauterized marking on the liver. Similarly to what was 

erformed for the liver surface fiducials, the foam was segmented 

rom additionally acquired intraoperative CT images. The distance 

etween the planned resection margin and the segmented foam 

shown in Fig. 11 ) reflects the TRE of the surgical navigation, as 

c  

6 
ell as the visualization inaccuracies of the AR. To quantify the er- 

or, the outline of planned resection and the segmented foam were 

nnotated on the liver surface and then transformed into 1 mm 

iameter tubes using “Markups ” and “Markups to Models ” modules 

n 3D Slicer Fedorov et al. (2012) (shown in Fig. 8 ). A centerline 

as successively extracted for each tube and 50 points were sam- 

led along the circle. Points from planned and marked resections 

ere grouped through fuzzy-means clustering Bezdek (1981) and 

sed to compute Hausdorff distance calculations. Distribution of 

hese measurements is reported separately for each of the four 

re-clinical cases. 

.2.3. Surgical navigation workflow evaluation 

The workflow was evaluated as a measure of the time delays 

aused by each step in the workflow shown in Fig. 1 . Time spent
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Fig. 8. Example of evaluation of Target Registration Error for resection margin (Case 

3). Planned resection (yellow line) and Marked resection (red line) shown on vol- 

ume rendering of intraoperative CT image. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 

Hausdorff distance in [mm] between resection plan 

and marked resection across 50 centerline samples 

per case. 

Case 1 Case 2 Case 3 Case 4 

Mean 3.48 3.34 6.03 17.70 

STD 1.54 0.74 2.55 8.46 

Max 6.85 4.33 9.75 33.05 

Q1 2.52 2.77 3.66 11.77 

Q3 3.99 4.06 8.34 23.39 

Q3-Q1 1.48 1.29 4.68 11.62 

Fig. 9. Boxplot showing distribution of measured distance between planned and 

marked resection for each case. 
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n intraoperative image acquisition, laparoscope and tool calibra- 

ion, and navigation system setup were recorded and reported in 

he Section 3 , as median times with min-max ranges. 

.3. Statistics description 

Statistical method and statistics were chosen and com- 

leted in collaboration with statisticians at Oslo Centre for 

iostatistics and Epidemiology. SPSS software (IBM Corp. Released 

017. IBM SPSS Statistics for Windows, version 25.0, Armonk, NY, 

SA: IBM corp) was used for the statistical analyses. Measurements 

n Section 3 are shown as mean with standard deviation as well as 

ther statistical metrics in the detailed tables. Significance between 

RE intraoperative CT and fluoroscopic updates were calculated us- 

ng univariate ANOVAs and linear regression analysis with multiple 

ases and categorical variables. 

. Results 

.1. Target registration error surface fiducials 

A total of 823 augmented reality frames were manually anno- 

ated across the four pre-clinical cases, for a total of 4502 man- 

ally annotated liver surface fiducials. Four intraoperative CT aug- 

ented reality evaluations were performed (one per case) whereas 

 total of 20 fluoroscopic updates AR evaluations were conducted 

this resulted in a total of 1511 fiducials reprojected through the 

ntraoperative CT scan-based navigation and 10849 using the fluo- 

oscopic updates). Results averaged across the four cases, for each 

ducial group, are reported in Table 1 . The results for the liver sur-

ace fiducials per each case are reported in Table 2 . Since unequal 

ample sizes were used across cases, the authors decided to make 

se of standard deviation pooling according to Altman et al. (2013) . 

Since classification into the three groups (TOP, RES, DIS) was 

erformed based on the euclidean distances from the centre of the 

esions, average distances across the four cases were 20.98 mm for 

OP fiducials, 26.93 mm for RES fiducials and 69.52 mm for DIS 

ducials. 

To obtain exploratory results for the cases to test the hypoth- 

sis that intraoperative AR and update based AR have the same 
7 
RE, a total of 16 univariate ANOVAs (4 cases and 4 groups) were 

onducted comparing the TRE for each group and pre-clinical case. 

esults show significant differences for almost all cases, except for 

he TOP and RES groups (as reported in Table 2 ). 

.2. Target registration error for resection margin 

Measured distances between the planned and marked resection 

argins are listed in Table 3 . Projections of both the resection plan 

nd the marked resection on the liver surface are shown in Fig. 11 .

cross the four cases, based on the resection margin evaluation 

ethod, the mean median error of the surgical navigation on the 

iver surface was 7.47 mm, with a maximum of 33.05 mm. 

Based on the results ( Fig. 9 ), case 4 may be defined as an out-

ier, since the median error is more than 1.5 times the interquartile 

ange added to the third quartile. 

Fig. 10 shows an example of a resection plan and its marked 

esection, which follows the contour of the resection volume from 

he laparoscopic perspective (disregarding depth). Excluding case 

, the mean median error of the surgical navigation on the liver 

urface was 4.44 mm, with a maximum of 9.75 mm. 

.3. Surgical navigation workflow evaluation 

Contrast-enhanced CT image acquisition median time was 13 

inutes (5 - 25)(n = 18). CBCT image acquisition median time was 

5 minutes (4 - 30) (n = 10). Calibration of the camera could be 

chieved in a median of 1:33 minutes (0:46 - 2:51) (n = 5) and 

:42 minutes (00:08 - 01:07) (n = 7) for each laparoscopic tool. 

edian navigation system setup time was 9:15 minutes (5:35 - 

0:53) (n = 5). Median time for registration update including ac- 

uisition of two fluoroscopic images - 35 seconds (12 - 87) (n = 

4). 
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Fig. 10. Case 4. Planned resection (yellow line) and Marked resection (red line) are shown on the volume rendering of intraoperative CT image and on the planned resection. 

Point A was misunderstood as the projected surface resection plane, whereas it represented the depth of the resection margin underneath the lesion within the liver 

parenchyma. Due to this perception error, the result from Case 4 is an outlier to the rest of the cases for the margin evaluation. This error demonstrates the need to improve 

the AR visualization for resection margin delineation in this surgical navigation solution. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 11. Example of Augmented Reality visualization of the resection model (case 2 

in this study) from the surgical navigation solution, presented in this study, together 

with the marked resection margin and the surgical foam used for TRE evaluation in 

resection margin analysis. 
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. Discussion 

The findings in this study show that laparoscopic naviga- 

ion with satisfactory accuracy is achievable using the pre- 

ented method. This novel approach, which aims to provide 

n accurate registration around the lesion, resulted in a very 

ow TRE, as compared to other results available in the litera- 

ure Luo et al. (2020) Thompson et al. (2018) Teatini et al. (2019) 

spinel et al. (2020) . Furthermore, the solution presented in 

his article is capable of being introduced into the clinical 

orkflow. Moreover, since the approach presented in this arti- 

le does not rely on 3D to 2D registration methods to update 

he registration (unlike other solutions available in the litera- 

ure Espinel et al. (2020) Plantefève et al. (2016) ), its accuracy is 

ot compromised by poor laparoscopic camera visibility or bleed- 

ng, making this method one of the few methods with the capabil- 

ty of accurate registration during liver resection processes. 

To evaluate the surgical navigation solution, surface fiducials 

ere used to evaluate changes in TRE for the two different regis- 

ration procedures available: model-to-patient registration using an 

ntraoperative CT and fluoroscopic updates to perform registration 

o the CBCT. The resulting average accuracy, in terms of TRE, was 

.78 ±1.89 mm using intraoperative CT imaging and 4.19 ±2.56 mm 

sing fluoroscopic updates after surgical manipulations were com- 

uted, which the authors believe could be accurate enough for sur- 

ical guidance. 

Overall, the results in Section 3.1 and Table 2 , show that AR 

as more accurate using the intraoperative CT scan to generate 

he AR ( Section 2.1.8 ), as compared to updates ( Section 2.1.9 ). The
8 
RE differences, however, amounted to 0.05 mm for surgical guid- 

nce on top of the lesion and by 1.01 mm for the rest of the liver.

he authors believe that this slight change in accuracy for fiducials 

n DIS regions may be due to lower accuracy in the triangulation 

f golden fiducials by using only two fluoroscopic updates (as op- 

osed to a CT scan, which uses several projections). 

The statistical analyses ( Table 1 ) show that, for individual cases, 

he differences found were statistically significant. Higher accuracy 

loser to the lesion is expected as the method described in this 

tudy is a locally accurate registration method, which largely de- 

ends on the positions of the fiducials with respects to the le- 

ion. For both RES and TOP fiducials, this distance was smaller than 

 cm, whereas, on average, DIS fiducials were ≈7 cm away. This in- 

rease in distance explains the decrease of accuracy further away 

rom the position of the lesion and the tracking fiducials. However, 

verall, the absolute average differences between the registration 

ethods for TOP and RES are up to ≈2 mm. For a planned liver 

esection with 15 mm margins, measured inaccuracies added by 

he updates are small enough to be used as guidance and lead to a 

0 resections, which would also include tracking fiducials. Hence, 

his study also shows that updates may nonetheless be a valid and 

ccurate method to continue surgical navigation in the presence of 

iver deformations. 

To replicate one of the intended uses of the surgical naviga- 

ion, marking the resection line on top of the liver, the authors 

onducted a further evaluation procedure for the navigation ac- 

uracy, further details in Section 3.2 ). This method of evaluation 

hrough resection marking incorporates additional types of inaccu- 

acies, such as AR visualisation errors. Navigation is presented to 

he user in the form of an overlay of selected digital structures 

nto the 3D laparoscope view. The overlay, in this navigation so- 

ution, includes depth rendering for the models overlaid, although, 

he rendering is not fully realistic. For this reason, the surgeons 

laimed to need additionally/mentally fuse these overlaid resection 

odel and the laparoscopic view of the liver. This process can cre- 

te inaccuracy or misinterpretation of the presented information. 

An example of this perception error caused by non-optimal 

isualization occurred in case 4 ( Fig. 10 ). Evaluations using the 

esection marking reflect the TRE of the surface fiducials, when 

xamining cases 1–3. Instead, case 4 resulted in an error of 

7.70 ±8.46 mm ( Table 3 ), as opposed to the TRE of 3.99 ±2.19 mm

n the surface fiducial evaluation. Hence, this not an error inherent 

o the registration procedure. The reason for this large decrease in 

ccuracy of the resection marking (which is an outlier to the previ- 

usly examined data according to the interquartile ranges), is due 

o the perception error in the AR surgical navigation, as shown in 

ig. 10 ). This error occurred during the marking of the resection 

ecause the AR reprojection of the resection was misread: the sur- 
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eon interpreted the bottom of the resection volume (Point A in 

ig. 10 ) to be the proximal part of the resection. For this reason,

emarcation of the resection was misaligned with respects to the 

lanned resection margin, causing a large error estimation. 

In conclusion, other than due to the statistical motivations, case 

 for the resection margin evaluation should be considered as an 

utlier, which can be dealt with by improving the AR visualiza- 

ion technique. A possible solution, for example, could be addi- 

ion of a view perpendicular to the laparoscope showing tools and 

D model would present depth as horizontal different and depth 

erception could possibly be improved. Nevertheless, with the cur- 

ent visualisation solution, the navigation solution used throughout 

hese trials could introduce errors such as that reported in case 4. 

Section 2.2.3 reports timings for all the other tasks necessary 

or this navigation solution. Overall, on average, 26 minutes were 

ecessary to initialize the navigation, excluding 13 minutes for the 

ntraoperative contrast-enhanced CT imaging and 42 seconds for 

ach laparoscopic tool to be calibrated. After the initial registra- 

ion, 35 seconds on average were needed, per update, using two 

uoroscopic images. 

Technological achievements has led to modernization 

f the ORs with new intraoperative imaging technolo- 

ies Mascagni et al. (2018) . The use of intraoperative CBCT, 

ssociated to fluoroscopy has been proposed in the litera- 

ure Oktay et al. (2013) Mountney et al. (2014) . Mountney et al. 

ombined non-rigid biomechanically driven registration between 

re-operative CT and intra-operative CBCT together with stereo 

aparoscopic reconstruction Barillot et al. (2014) , and triangulated 

uoroscopic images to detect the tip of the laparoscope camera 

similarly to Bernhardt et al. (2016) ) to create an augmented 

eality system. The disadvantages of this method are that the 

uthors attempt to register the full liver volume solely using the 

urface reconstruction, therefore, the method will not be able to 

ompensate deformations during bleeding or resection steps, and, 

econdly, the evaluation of TRE conducted in vivo is compromised 

y the use of surface fiducials: since the reconstruction is used 

o perform the registration, any object used on the liver surface 

ill be perfectly registered, however, this might not be true for 

tructures within the liver tissue, such as vessels or lesions. 

Nowadays, the use of hybrid registration procedures has been 

ested to compensate for the deformations caused by pneu- 

operitoneum, with surgically satisfactory accuracy although 

his approach requires manual interaction intraoperatively and 

t might prove difficult to account for deformations occurring 

n the back of the liver based on visual cues at the front of the

iver Espinel et al. (2020) , Plantefève et al. (2016) , Özgür et al. (2018

oreover, the methods described in the previously mentioned ar- 

icles and other articles in the literature Soler et al. (2014) ; 

hompson et al. (2015, 2018) ; Bernhardt et al. (2016) , would 

ot be able to update the registration during the steps of liver 

esection, which is the most critical and hazardous step in liver 

esection surgery. 

With respects to the surgical workflow of this navigation solu- 

ion, as aforementioned, this method relies on the insertion of gold 

ducials around the lesion and segmentation of volumetric images 

uch as contrast-enhanced CT. Fiducials can be inserted either per- 

utaneously preoperatively or laparoscopically intraoperatively. The 

ime necessary to insert the fiducials percutaneously was not ex- 

mined throughout these cases, due to testing of multiple insertion 

echniques throughout the trials. Segmentation time was also not 

xamined because different segmentation methods were used and 

ested. Moreover, segmentation time depends on quality and level 

f detail needed depending on image quality, anatomical complex- 

ty and extent of the region of interest. 

The presented navigation method could be used with preoper- 

tive volumetric imaging, such as contrast-enhanced CT or MRI, 
9 
ith its respective segmentation, created beforehand and there- 

ore not restricted by the time allocated during surgery. Regis- 

ration of preoperative images from different modalities could be 

one automatically Wei et al. (2020) . In this study, the accuracy of 

uch approach was not evaluated, although, as mentioned before 

n Section 2.1.9 , liver shape and intraparenchymal changes due to 

aparoscopy could have a significant effect on the accuracy of the 

avigation. This inaccuracy may be lower by using a small volume 

or registration such as resection with lesion and tracking fiducials 

ompared to navigation of a larger liver region. 

In clinical practise, this solution would present case-specific 

natomy as a 3D model, including important structures for laparo- 

copic liver resection, with tracked instruments shown as well as 

R overlay on laparoscopy video, similarly to the IRCAD AR nav- 

gation approach with examples shown in several clinical publi- 

ations Ntourakis et al. (2016) Hallet et al. (2015) . This approach 

an be used as an adaptable intraoperative map, which shows la- 

aroscopic tool location in relationship to underlying anatomical 

tructures on the 3D model or shown in the camera view. During 

he training of theses procedures or complex cases, this could sim- 

lify the search for specific vascular structures or the extent of the 

esion in the laparoscopic US. The possibility to perform updates 

uring an on-going resection with large deformations allows for 

n-demand position correction and visualisation of structures of 

nterest with certain accuracy. This would be of great relevance for 

ontrol of central point of resection bed to maintain adequate re- 

ection margins without overextending resection, outside the plan 

nd into the healthy liver tissue. On the other hand, this additional 

ontrol could also possibly reduce the rate of inadequate resection 

argins. 

During the last decade, the definition of a successful R0 re- 

ection for CRM in the liver has been changing from 10 mm to 

 mm Postriganova et al. (2014) Hamady et al. (2014) . Neverthe- 

ess, research shows that the rate of resection with resection mar- 

ins below 1 mm range from 2 to 33 % Alvarez et al. (2016) .

urgery guidance using the presented approach would require 

lanning a liver resection with 15 mm margins, containing tracking 

ducials within 10 mm of the lesion border. This would result in a 

omplete resection containing both the specimen and fiducials. For 

ases with narrower margins, this solution provides the location of 

he lesion, surrounding vessels and the resection plan with reason- 

ble accuracy, which could be controlled for with the laparoscopic 

S. 

Enhancement to the surgical view potentially simplifies the 

ental burden of placing and transforming volumetric images, 

sed for planning, to the reality in the operating room. Previous 

tudies show a reduction of time use Pelanis et al. (2019) ), reduc- 

ng surgical stress Berardi et al. (2019) and cognitive load using 3D 

odels Yeo et al. (2018) ), which would allow for more focus on 

urgical performance. Hence, this solution could possibly allow for 

ore advanced laparoscopic liver resections with a narrow mar- 

in close to critical structures without requiring extensive surgery 

imes by redistributing surgical focus time. In some cases, this so- 

ution could be a resource used during the learning-curve of la- 

aroscopic procedures to simplify some aspects of the procedure 

or trainees. 

The navigation solution presented in this study could be used 

s a stepping stone towards automation of surgery by integration 

ith robotic surgical instruments. As well as continuation of previ- 

us exploration of AR in robotic liver surgery Pessaux et al. (2015) . 

olution presented in this manuscript provides spatial informa- 

ion of intraparenchymal structures with the possibility to update 

uring surgery without additional laparoscopic tools and could be 

sed as a feedback system for safety mechanisms or potential au- 

omation. 
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The limitations of this study for TRE evaluation include: both 

valuation methods were superficial and not intraparenchymal 

herefor navigation accuracy inside the liver was not evaluated; the 

round truth positions for the surface fiducials were manual anno- 

ations conducted frame by frame and selecting the top position 

f the sphere of the fiducials; the foam thickness was not uniform 

uring the application on the marked resection margin, hence, to 

ave an equal (one point to one) comparison between the foam 

nd the planned resection model, a 1 mm tubular structure was 

nterpolated into the segmentation of the foam, to match the re- 

ection model margin (as shown in Fig. 11 ). Moreover, evaluation 

f the navigation accuracy using resection margin, as described 

n Section 3.2 , was based on initial intraoperative CT registration 

ethod, without fluoroscopic updates. 

The presented solution offers potential clinical benefits, how- 

ver, it also introduces an additional risk of needle inser- 

ion necessary to insert the fiducial (percutaneous or laparo- 

copic). Overall, placement of a single gold fiducial has a docu- 

ented risk of major complications in 1.1-5% and minor in 2.9–

0.8% Tresch et al. (2014) Kothary et al. (2009) Kim et al. (2012) 

rook et al. (2012) Hong et al. (2015) Ohta et al. (2016) . For liver

rocedures specifically, the evidence is more limited with major 

% and minor 2-2.9% Kothary et al. (2009) Brook et al. (2012) . Mi-

ration of the fiducials, which occurs for 4% of the placed fidu- 

ials, is one of the adverse events, although this does not have 

 documented direct association with major or minor complica- 

ions Brook et al. (2012) . These adverse effects reported for ra- 

iotherapy might be less pronounced in such surgical application. 

iducials are removed together with the tumour within the resec- 

ate, whereas they permanently remain in the organ in the radio- 

herapy use case. 

Intraoperative updates of the presented navigation solution rely 

n fluoroscopic imaging, therefore personnel in the operating the- 

tre require radiation protection equipment. This is not commonly 

eeded during a typical laparoscopic liver resection at the time of 

riting. During this trial, operating room personnel did not detect 

ny hinders to perform laparoscopic surgery while wearing radia- 

ion protection equipment. 

Furthermore, during this trial, intraoperative CT scans were 

sed for the navigation, which reduced the possible introduction 

f more inaccuracy due to registration of preoperative CT to intra- 

perative CBCT (CT - CBCT registration, Section 2.1.8 ). This inaccu- 

acy could occur due to a more complicated registration because of 

he different shapes Teatini et al. (2019) Dawda et al. (2019) for the 

iver preoperatively and intraoperatively, after deformation caused 

y pneumoperitoneum. 

The data reported in this study is partially based on proto- 

ype software, its future availability as a product is not guaranteed. 

astly, the studies described in this article are pre-clinical trials, 

nd the shape and thickness of the porcine liver are different as 

ompared to humans. The shape of the human liver is more rigid 

han the porcine liver, which could reduce the pneumoperitoneum 

eformation. In order to evaluate the effects of anatomical differ- 

nces, as well as to incorporate the surgical navigation into con- 

entional clinical workflow, clinical studies are required. 

. Conclusions 

In conclusion, a novel navigation solution for liver laparoscopic 

urgery is presented in this study. The evaluation methods pro- 

osed show that the accuracy of the presented method could be 

ufficient for laparoscopic liver resection, with the possibility to 

erform accurate surgical navigation even in the presence of de- 

ormations or manipulations of the liver. Inclusion of the proposed 

avigation solution into the surgical workflow should not greatly 

rolong the surgery and could be useful to aid the surgeon with a 
10 
D map of patient-specific anatomy. Additional improvements in 

he solution are necessary to enhance visualization methods for 

he navigation, especially for the AR visualization, with the possi- 

ility of displaying the resection models using different renderings 

pproaches to avoid misinterpretation of the resection margin. 

Further investigations regarding the accuracy of surgical navi- 

ation and the usability of the navigation solution should be con- 

ucted through clinical trials. Nevertheless, this solution has the 

otential to mitigate some of the difficulties of laparoscopic liver 

esection. 

. Funding 

This work was supported by H2020-MSCA-ITN Marie 

kodowska-Curie Actions, Innovative Training Networks (ITN) 

U project number 722068 High Performance Soft Tissue Naviga- 

ion (HiPerNav). 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

E.P., A.T., R.P.K., O.J.E. and B.E. are co-inventors of technology li- 

ensed by the company HoloCare AS and also hold shares in the 

ompany indirectly through Inven2 AS. B.E. and T.R. are employed 

y Cascination AG. A .A . and A .R. are employees of Siemens Health- 

are GmbH. C.R. has received research grants from Siemens Health- 

are GmbH as part of a collaboration of the Technische Universitat 

resden with Siemens Healthcare GmbH. 

cknowledgements 

The research leading to these results is part of the High Perfor- 

ance Soft-tissue Navigation (HiPerNav) project. 

The authors of this study would like to express their grati- 

ude to all the people contributed in this research. In particular, 

he anesthesiology, radiology and surgical staff at The Intervention 

entre, Oslo University hospital - Rikshospitalet, Norway. 

The authors also thank statisticians at Oslo Centre for Biostatis- 

ics and Epidemiology, at Oslo University, for statistical advisement 

nd consultation. 

eferences 

ghayan, D.L. , Pelanis, E. , smund Avdem Fretland , Kazaryan, A.M. , Sahakyan, M.A. ,
Rsok, B.I. , Barkhatov, L. , Bjrnbeth, B.A. , Elle, O.J. , Edwin, B. , 2018. Laparoscopic

parenchyma-sparing liver resection for colorectal metastases. Radiol. Oncol. 52 
(1), 36–41 . 

ltman, D. , Machin, D. , Bryant, T. , Gardner, M. , 2013. Statistics with confidence: Con-

fidence intervals and statistical guidelines. John Wiley & Sons . 
lvarez, F.A. , Claria, R.S. , Oggero, S. , de Santibañes, E. , 2016. Parenchymal-sparing

liver surgery in patients with colorectal carcinoma liver metastases. World J. 
Gastrointest. Surg. 8 (6), 407 . 

arillot, C. , Hornegger, J. , Howe, R. , 2014. MICCAI 2014 Proceedings . 
erardi, G., Igarashi, K., Li, C.J., Ozaki, T., Mishima, K., Nakajima, K., Honda, M., Wak-

abayashi, G., 2019. Parenchymal sparing anatomical liver resections with full 

laparoscopic approach: description of technique and short-term results. Ann. 
Surg. XX (Xx), 1–7. doi: 10.1097/SLA.0 0 0 0 0 0 0 0 0 0 0 03575 . 

ernhardt, S., Nicolau, S.A., Agnus, V., Soler, L., Doignon, C., Marescaux, J., 2016. Au- 
tomatic localization of endoscope in intraoperative CT image: a simple approach 

to augmented reality guidance in laparoscopic surgery. Med. Image Anal. 30, 
130–143. doi: 10.1016/j.media.2016.01.008 . 

ernhardt, S., Nicolau, S.A., Soler, L., Doignon, C., 2017. The status of augmented re- 
ality in laparoscopic surgery as of 2016. Med. Image Anal. 37, 66–90. doi: 10.

1016/j.media.2017.01.007 . 

ezdek, J.C. , 1981. Objective Function Clustering. In: Pattern recognition with fuzzy 
objective function algorithms. Springer, pp. 43–93 . 

rook, O.R., Gourtsoyianni, S., Mendiratta-lala, M., Siewert, B., Sheiman, R.R., Or, B., 
Gourtsoyianni, S., Mahadevan, A., Siewert, B., Rr, S., 2012. Biopsy in the ab- 

domen and pelvis. February 466–470. doi: 10.2214/AJR.11.6431 . 

http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0001
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0002
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0002
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0002
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0002
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0002
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0003
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0003
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0003
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0003
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0003
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0004
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0004
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0004
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0004
https://doi.org/10.1097/SLA.0000000000003575
https://doi.org/10.1016/j.media.2016.01.008
https://doi.org/10.1016/j.media.2017.01.007
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0008
http://refhub.elsevier.com/S1361-8415(20)30310-8/sbref0008
https://doi.org/10.2214/AJR.11.6431


E. Pelanis, A. Teatini, B. Eigl et al. Medical Image Analysis 69 (2021) 101946 

D  

E  

F
F

F

G

G

H

H  

H  

 

 

H  

K  

K  

K  

L  

 

M

M  

M  

N  

N

O

O  

Ö  

P  

P  

P

P  

P

P  

Q

S

S

S  

T  

T  

T  

 

T  

 

T  

T

T

W  

Y

Z  
awda, S. , Camara, M. , Pratt, P. , Vale, J. , Darzi, A. , Mayer, E. , 2019. Patient-specific
simulation of pneumoperitoneum for laparoscopic surgical planning. J. Med. 

Syst. 43 (10), 317 . 
spinel, Y., Özgür, E., Calvet, L., Le Roy, B., Buc, E., Bartoli, A., 2020. Combining visual

cues with interactions for 3D 2D registration in liver laparoscopy. Ann. Biomed. 
Eng. 48 (6), 1712–1727. doi: 10.1007/s10439- 020- 02479- z . 

DA, 2013. Indications for Use - syngo.CT Liver Analysis. 
edorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., 

Bauer, C., Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., 

Pieper, S., Kikinis, R., 2012. 3D slicer as an image computing platform for 
the quantitative imaging network. Magn. Reson. Imaging 30 (9), 1323–1341. 

doi: 10.1016/j.mri.2012.05.001 . 
retland, A., Dagenborg, V.J., Waaler Bjørnelv, G.M., Aghayan, D.L., Kazaryan, A.M., 

Barkhatov, L., Kristiansen, R., Fagerland, M.W., Edwin, B., Andersen, M.H., 2019. 
Quality of life from a randomized trial of laparoscopic or open liver resection 

for colorectal liver metastases. British Journal of Surgery 106 (10), 1372–1380. 

doi: 10.1002/bjs.11227 . 
ansawat, D., Jirattiticharoen, W., Sotthivirat, S., Koonsanit, K., Narkbuakaew, W., 

Yampri, P., Sinthupinyo, W.,. Integration of Image Processing from the Insight 
Toolkit (ITK) and the Visualization Toolkit (VTK) in Java Language for Medi- 

cal Imaging Applications. In: IFMBE Proceedings. Springer Berlin Heidelberg, pp. 
586–589. doi: 10.1007/978- 3- 540- 92841- 6 _ 144 . 

arcia, A., Lastname, N., et al, 2019. Simulation and Navigation surgery for LLR 

(NEEDS FIX). 
allet, J., Soler, L., Diana, M., Mutter, D., Baumert, T.F., Habersetzer, F., Marescaux, J., 

Pessaux, P., 2015. Trans-thoracic minimally invasive liver resection guided by 
augmented reality. J. Am. Coll. Surg. 220 (5), e55–e60. doi: 10.1016/j.jamcollsurg. 

2014.12.053 . 
amady, Z.Z.R. , Lodge, J.P.A. , Welsh, F.K. , Toogood, G.J. , White, A. , John, T. , Rees, M. ,

2014. One-Millimeter cancer-Free margin is curative for colorectal liver metas- 

tases: A Propensity score case-Match approach. Ann. Surg. 259 (3) . 
ilal, M.A., Aldrighetti, L., Dagher, I., Edwin, B., Troisi, R.I., Alikhanov, R., Aroori, S.,

Belli, G., Besselink, M., Briceno, J., Gayet, B., D’Hondt, M., Lesurtel, M., Menon, K., 
Lodge, P., Rotellar, F., Santoyo, J., Scatton, O., Soubrane, O., Sutcliffe, R., Van 

Dam, R., White, S., Halls, M.C., Cipriani, F., Van Der Poel, M., Ciria, R., Barkha-
tov, L., Gomez-Luque, Y., Ocana-Garcia, S., Cook, A., Buell, J., Clavien, P.A., Derve- 

nis, C., Fusai, G., Geller, D., Lang, H., Primrose, J., Taylor, M., Van Gulik, T., Wak-

abayashi, G., Asbun, H., Cherqui, D., 2018. The southampton consensus guide- 
lines for laparoscopic liver surgery: from indication to implementation. Ann. 

Surg. 268 (1), 11–18. doi: 10.1097/SLA.0 0 0 0 0 0 0 0 0 0 0 02524 . 
ong, T.S., Nm, K., Ts, H., Kambadakone, A., 2015. Proton Beam Therapy of Liver Rate

and Complications (February),207–213. 10.2214/AJR.14.12901 
im, J.H. , Hong, S.S. , Kim, J.H. , Park, H.J. , Chang, Y.-w. , Chang, A.R. , Kwon, S.-b. , 2012.

Safety and efficacy of ultrasound-Guided fiducial marker implantation for cy- 

berknife radiation therapy 13 (3), 307–313 . 
othary, N., Heit, J.J., Louie, J.D., Kuo, W.T., Loo, B.W., Koong, A., Chang, D.T., Hov-

sepian, D., Sze, D.Y., Hofmann, L.V., 2009. Safety and efficacy of percutaneous 
fiducial marker implantation for image-guided radiation therapy. Journal of Vas- 

cular and Interventional Radiology 20 (2), 235–239. doi: 10.1016/j.jvir.2008.09. 
026 . 

umar, R.P., Barkhatov, L., Edwin, B., Albregtsen, F., Elle, O.J., 2017. Portal and Hepatic
Vein Segmentation with Leak Restriction: A Pilot Study. In: EMBEC & NBC 2017. 

Springer Singapore, pp. 823–826. doi: 10.1007/978- 981- 10- 5122- 7 _ 206 . 

uo, H., Yin, D., Zhang, S., Xiao, D., He, B., Meng, F., Zhang, Y., Cai, W., He, S.,
Zhang, W., Hu, Q., Guo, H., Liang, S., Zhou, S., Liu, S., Sun, L., Guo, X., Fang, C.,

Liu, L., Jia, F., 2020. Augmented reality navigation for liver resection with a 
stereoscopic laparoscope. Computer Methods and Programs in Biomedicine 187, 

105099. doi: 10.1016/j.cmpb.2019.105099 . 
ascagni, P., Longo, F., Barberio, M., Seeliger, B., Agnus, V., Saccomandi, P., Hostet- 

tler, A., Marescaux, J., Diana, M., 2018. New intraoperative imaging technologies: 

innovating the surgeon’s eye toward surgical precision. J. Surg. Oncol. 118 (2), 
265–282. doi: 10.1002/jso.25148 . 

odrzejewski, R. , Collins, T. , Seeliger, B. , Bartoli, A. , Hostettler, A. , Marescaux, J. ,
2019. An in vivo porcine dataset and evaluation methodology to measure soft- 

-body laparoscopic liver registration accuracy with an extended algorithm that 
handles collisions. Int. J. Comput. Assist. Radiol. Surg. 14 (7), 1237–1245 . 

ountney, P. , Fallert, J. , Nicolau, S. , Soler, L. , Mewes, P.W. , 2014. An augmented re-

ality framework for soft tissue surgery. In: International Conference on Medical 
Image Computing and Computer-Assisted Intervention. Springer, pp. 423–431 . 

icolau, S.A., Pennec, X., Soler, L., Buy, X., Gangi, A., Ayache, N., Marescaux, J., 2009.
An augmented reality system for liver thermal ablation: design and evaluation 

on clinical cases. Med. Image Anal. 13 (3), 494–506. doi: 10.1016/j.media.2009. 
02.003 . 

tourakis, D., Memeo, R., Soler, L., Marescaux, J., Mutter, D., Pessaux, P., 2016. Aug- 

mented reality guidance for the resection of missing colorectal liver metas- 
tases: an initial experience. World J. Surg. 40 (2), 419–426. doi: 10.1007/ 

s00268- 015- 3229- 8 . 
hta, K., Shimohira, M., Murai, T., Nishimura, J., Iwata, H., Ogino, H., Hashizume, T., 

Shibamoto, Y., 2016. Percutaneous fi ducial marker placement prior to stereo- 
tactic body radiotherapy for malignant liver tumors : an initial experience 57 

(2), 174–177. doi: 10.1093/jrr/rrv099 . 

ktay, O. , Zhang, L. , Mansi, T. , Mountney, P. , Mewes, P. , Nicolau, S. , Soler, L. , Chefd
hotel, C. , 2013. Biomechanically driven registration of pre-to intra-operative 3d 

images for laparoscopic surgery. In: International Conference on Medical Image 
Computing and Computer-Assisted Intervention. Springer, pp. 1–9 . 
11 
zgür, E., Koo, B., Le Roy, B., Buc, E., Bartoli, A., 2018. Preoperative liver registration
for augmented monocular laparoscopy using backward forward biomechanical 

simulation. Int. J. Comput. Assist. Radiol. Surg. 13 (10), 1629–1640. doi: 10.1007/ 
s11548- 018- 1842- 3 . 

alomar, R., Cheikh, F.A., Edwin, B., Fretland, Å., Beghdadi, A., Elle, O.J., 2017. A novel
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