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ABSTRACT 

Species inhabiting mountain ecosystems are expected to be particularly vulnerable to 

environmental change, yet information on their basic ecology is often lacking. Knowledge from 

field-based empirical studies remains essential to refine our understanding of the impact of 

current habitat alterations and for the consequential development of meaningful conservation 

management strategies. This study focuses on a poorly investigated and vulnerable mountain 

bird species in Europe, the Ring Ouzel Turdus torquatus. Our aim was to identify the species’ 

key ecological requirements during the crucial period of nestling provisioning in the context of 

environmental change. We radiotracked and observed Alpine Ring Ouzels in a high-density 

population, investigating their pattern of foraging habitat selection in 2015 & 2017, and 

evaluated the transferability of these results over a wider geographic range across the SW Swiss 

Alps. Foraging birds selected, consistently in space and time, short grass swards (< 10 cm) with 

interspersed patches of accessible and penetrable soils, at intermediate moisture levels (around 

40–65% volumetric water content). In Alpine ecosystems, this microhabitat configuration is 

typically widespread during the spring snowmelt, but extremely seasonal, with a rapid decrease 

in its availability over the course of the breeding season. This underlines the high vulnerability 

of the Ring Ouzel to environmental change: an earlier snowmelt could generate a temporal 

mismatch between the peak of the breeding effort and optimal foraging conditions; however, 

abandoning grazing activities on semi-wooded Alpine pastures may further decrease foraging 

habitat suitability through taller and denser grass swards, and subsequent woody vegetation 

encroachment. This study provides a mechanistic appraisal of the challenges Ring Ouzels will 

face in the future, as well as initial guidelines for targeted habitat management within treeline 

ecotones. 
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INTRODUCTION 

There is growing awareness that mountain ecosystems are facing steadily increasing threats. 

Those most commonly identified across mountain ranges are climate change (La Sorte & Jetz 

2010; Scridel et al. 2018), changes in land-use, in particular farming practices (Laiolo et al. 

2004; Guo, Lenoir & Bonebrake 2018), and the increase in anthropogenic disturbance 

(Rolando et al. 2007; Arlettaz et al. 2015). Nevertheless, there is still a paucity of research on 

how species of higher elevations will be affected. Contrary to the European lowland and forest 

avifauna, knowledge on the basic ecology and demography of alpine bird species is still lacking 

(Chamberlain et al. 2012; Lehikoinen et al. 2019). This precludes both predictions about their 

response to environmental change and framing management recommendations (Chamberlain 

et al. 2012).  

Predictions of future distributions under different scenarios of climate change exist for 

most European bird species nowadays (e.g. Huntley et al. 2008), even combined with land-use 

change for specific regions (e.g. Maggini et al. 2014). These predictions mostly result from 

species distribution models that rely on coarse-grained environmental data, and therefore do 

not capture small-scale functional species-habitat associations (Braunisch et al. 2014; 

Brambilla et al. 2018). This is potentially problematic in alpine ecosystems where coarse-

grained predictions are mainly driven by the steep macroclimatic gradient, whereas a very 

complex topography leading to a high diversity of microclimates and microhabitats may buffer 

general trends (Beniston 2003; Chamberlain et al. 2016; Brambilla et al. 2018). The harsh 

environment and remoteness of high elevation ecosystems have hampered fine-grained 

empirical studies in the past (Chamberlain et al. 2012), although such studies represent an 

absolute prerequisite for meaningful predictions of future distributions (Chamberlain et al. 

2016; Jähnig et al. 2018), and ought to serve as the basis for conservation management at the 

local scale (Morris et al. 2001; Arlettaz et al. 2012). In addition to high spatial resolution, 

information should also be collected at a fine temporal resolution, such that seasonal patterns 

of habitat selection can be assessed (Brambilla et al. 2017; Resano-Mayor et al. 2019). This is 

of paramount importance in highly seasonal environments like temperate mountain ecosystems 

where birds are expected to be particularly vulnerable to changes in vegetation phenology 

(Inouye et al. 2000) but where very few asynchronies have actually been documented (Scridel 

et al. 2018). 



 

The Ring Ouzel Turdus torquatus is a good example of an alpine species for which 

information on small-scale ecological requirements is still largely lacking across its breeding 

range. UK uplands represent the exception, as the sharp decline of the subspecies T. t. torquatus 

in the last 50 years and its status of high conservation concern (Wotton, Langston & Gregory 

2002) have prompted some studies on its autecology and population dynamics (e.g. Burfield 

2002; Beale et al. 2006; Sim et al. 2013; Sim et al. 2015). In central and southern Europe, 

where the subspecies T. t. alpestris breeds in a rather different habitat, in semi-open coniferous 

forests at the treeline, studies on its ecology are scarce (von dem Bussche et al. 2008; Ciach & 

Mrowiec 2013). Over the whole distribution range, the current population trend appears stable 

(BirdLife International 2018), but the well-monitored population in Switzerland, which 

represents around 15% of the European population (Knaus et al. 2018), has decreased by 36% 

over the period 1990–2018 (Swiss Ornithological Institute 2019). It is hence red-listed in the 

country, and is one of the seven bird species with the highest priority for the development of a 

recovery programme (Keller et al. 2010). In addition, its vulnerability index calculated from 

different large-scale scenarios of land-use and climate change is one of the highest across all 

Swiss breeding birds (Maggini et al. 2014). Nonetheless, while factors determining habitat 

selection at the territory and landscape scale in the Alps have been identified to some extent 

(von dem Bussche et al. 2008), information about the key drivers of local-scale habitat 

selection during the breeding period is still lacking. Only high-resolution studies may allow the 

underlying ecological mechanism of the observed decline to be deciphered (Morris et al. 2001). 

In this way, the vulnerability of the species can be better assessed in order to frame 

recommendations for future conservation. 

One of the main determinants of habitat use during the reproduction period is the 

selection of feeding grounds, i.e. the foraging habitat selection. Parents must indeed supply 

large quantities of food to chicks for optimal somatic growth, representing a true energy 

bottleneck in the species’ life cycle. Feeding grounds providing high prey availability represent 

therefore a sine qua non for successful reproduction (Naef-Daenzer, Naef-Daenzer & Nager 

2000). For ground-foraging insectivorous birds, prey accessibility is often limited by ground 

vegetation structure (Atkinson, Buckingham & Morris 2004; Schaub et al. 2010), whereas soil 

conditions have a large influence on both abundance and accessibility of soil-dwelling 

invertebrates (Peach et al. 2004; Gilroy et al. 2008). Extensive research on the Ring Ouzel in 

the UK has shown that both adults (Burfield 2002) and fledglings (Sim et al. 2013) indeed 

favour foraging grounds with high soil pH and short grass swards within a heather-grass 



 

mosaic. Moreover, it has been hypothesized that soil conditions, such as soil moisture (Beale 

et al. 2006) and soil penetrability (Burfield 2002), could also play a key role, as they are known 

to influence the abundance and activity of earthworms (Oligochaeta; Edwards & Bohlen 1996), 

the staple food of Ring Ouzel nestlings (Glutz von Blotzheim & Bauer 1988; Burfield 2002; 

Sim et al. 2015). 

Using radiotracking and direct visual observations, we investigated how fine-scale 

habitat characteristics influence the foraging habitat selection by Ring Ouzels during the 

nestling provisioning period in the European Alps. For this purpose, we focused on the 

selection of foraging grounds within the home-range (hereafter home-range scale) and on the 

resource acquisition within a foraging site (hereafter site scale), which correspond to the third 

and fourth orders of selection respectively, following the definition of Johnson (1980). Our aim 

was to identify key drivers of foraging microhabitat selection, and to characterize their 

seasonality so as to detect changes in the availability of suitable foraging habitat, all this in the 

perspective of future environmental change. 

 

MATERIALS AND METHODS 

Study area 

The study was conducted in the central Swiss Alps, in the canton of Valais. This region is 

characterized by a continental climate, with warm and dry summers, and cold and wet winters. 

The site where radiotracking took place (46.33 N, 7.43 E), hereafter referred to as Serin, 

encompassed 205 ha, ranging from 1700–2200 m above sea level (asl), at the interface between 

the subalpine and the alpine belts. The zone is used for summer pasturing, with the continuous 

presence of cattle between mid-June and mid-September, which is a widespread traditional 

farming practice at these elevations in the Swiss Alps (Schulz, Lauber & Herzog 2018). 

Extensive pasturing results in a habitat mosaic consisting of open grasslands interspersed with 

isolated or groups of coniferous trees (predominantly larches Larix decidua and spruce Picea 

abies). The configuration of these semi-wooded pastures is particularly attractive for breeding 

Ring Ouzels (von dem Bussche et al. 2008), and the average density at the study area estimated 

from standardized monitoring is 40.7 territories/km2, which is among the highest observed in 

the country (Knaus et al. 2018). 

 



 

Foraging locations sampling 

Ring Ouzels (n = 41) were captured using mistnets and equipped with radio-transmitters (PD-

2P; Holohil Systems Ltd., Carp, Canada; 3.0–3.7g — corresponding to 3.0–3.7% of the species 

mean body mass — life span 3–4 months) between mid-April and mid-May: 11 males and 10 

females in 2015, and 10 males and 10 females in 2017. The permit for bird capturing was 

delivered by the Swiss Federal Office for the Environment (F044-0799) and authorisation for 

radiotracking by the Swiss Federal Food Safety and Veterinary Office. The radiotags were 

mounted with a leg-loop harness (loop span 76 mm, diameter 0.6 mm) made out of stretch-

nylon tubes, following the method of Rappole and Tipton (1991). We tracked the birds during 

the whole breeding period (mid-April to the end of June) with the ‘homing-in’ technique, i.e. 

obtaining a series of repeated bearings using a radio-receiver (Australis 26k, Lawnton, 

Australia) coupled with a three-element hand-held Yagi antenna to approach and visually 

locate an individual. Each radiotagged individual was located at least twice a week to monitor 

its breeding status and, if possible, find its nest. From the first observations of adults 

provisioning chicks (2015: May 16th; 2017: May 24th), we started to track breeding adults more 

intensively (every 1–3 days per individual) until fledging of the brood occurred. Once a 

radiotracked bird was visually located, it was carefully approached (at 30–50 m distance), 

taking care not to influence its behaviour. From that moment, the exact spot of the first observed 

successful prey capture event was recorded with binoculars and marked with a labelled flag as 

soon as the bird had left the area. We referred to this visually evidenced prey capture as a 

‘foraging location’. To avoid, as far as possible, spatio-temporal correlation between the 

foraging locations, i.e. to achieve data independency, we left a time span of at least 30 min 

between two recordings from the same individual. This was enough to ensure that the bird had 

been provisioning nestlings in the meantime and had therefore started a new foraging bout. In 

2017, several radiotagged individuals were particularly shy and showed increased flight-

initiation distances, so that it was particularly difficult to obtain foraging locations for those 

birds. To increase our sample size, we therefore also recorded foraging locations of 

provisioning parents randomly encountered during radiotracking sessions. We are confident 

that this did not introduce any detection bias in our analysis, as all habitat types and sectors of 

the study area were visited regularly during the radiotracking sessions.  

In 2016, 16 areas situated outside the main study area of Serin were visited once or 

twice along a predefined transect (1.5–3 km) during the reproductive season (May 15th –June 

27th) to collect additional foraging locations from untagged provisioning individuals. These 



 

data, spanning from 1650 to 2200 m asl, served for external model evaluation on a wider area 

across the Swiss Alps with different climatic conditions (Fig. 1). 

Figure 1 Map of the study region (Valais, Switzerland; shaded in the inset). The area where the 

radiotracking took place is symbolized with the letter R, and those for the collection of data for model 

evaluation are numbered from 1 to 16. 

Habitat measurements 

The habitat selection pattern was assessed by comparing the characteristics of the habitat at 

actual foraging locations with neighbouring locations, which were assumed to represent less 

suitable habitat because they were apparently not used for foraging. For that purpose, we 

randomly selected two pseudo-absences (PA) in the surroundings of a foraging location 

following a standard procedure. A random bearing (α: 0–359°) was generated, which defined 

the direction from the actual foraging location in which two PA locations were placed, the first 

one at a random distance between 5 and 14 m, and the second between 15 and 50 m. The former 

range (5–14 m) was chosen so as to investigate habitat selection at the foraging site scale. In 



 

effect, these distances from an actual location are within the range of a hopping bird, as 

typically observed during a single foraging bout (Burfield 2002; own pers. obs.). In contrast, 

the latter range (15–50 m) is more likely to express foraging habitat selection at the wider scale 

of the home-range, as the chosen distance is within the typical range of a Ring Ouzel flying 

from one part of its home-range to another (Burfield 2002). The PA locations were generated 

instantly after each recorded foraging location, so that the habitat measurements could occur 

during the same or the next day, and hence accurately reflect the environmental conditions 

encountered by a foraging bird. This represents a fundamental aspect of the sampling design, 

as several habitat variables showed strong temporal variations due to the high seasonality of 

the ecosystem at these elevations, in particular as regards snow cover. 

Measurements of predefined habitat variables were taken in the same way at foraging 

and PA locations and restricted to a plot of 1-m radius around each location, so as to describe 

the microhabitat. Habitat variables were classified into four main categories: ground cover, 

topography, vegetation height and soil conditions (Table 1). Ground cover consisted of eight 

classes: brown grass (dry, i.e. dead annual herbaceous plants from the previous year), green 

grass (new annual living plants), accessible ground (cover of bare ground and leaf/needle litter 

combined; hereafter AG cover), mineral (gravel and rocks), dead wood (lying trunks and 

branches), snow, woody plants (shrubs and bushes below head height) and mosses. 

Topographic variables included slope inclination and aspect (as northness and eastness — see 

Table 1), both measured with a compass, and distance to the nearest snow patch if present 

within a radius of 50 m. Herbaceous vegetation height was measured for the brown and green 

grass swards separately. Two soil condition variables were also considered. Soil penetrability 

was measured with a penetrometer (EL 29-3729, ELE International, Loveland, USA), a device 

that indicates the force (kg/cm2) needed to insert a metal tip into the soil to a depth of 6.35 mm, 

with high values thus indicating low soil penetrability. For soil moisture, we measured the 

volumetric water content (VWC) of the soil, calculated from its conductivity using a specific 

dual probe with two 51-mm rods (SM150, Delta-T, Cambridge, UK). For each soil variable, 

three measurements were taken within 10 cm of the centre of the plot, i.e. where prey capture 

occurred, with their means retained for subsequent analyses. 

Statistical analyses 

We assessed foraging habitat selection as a function of habitat variables measured at foraging 

vs. PA locations, using hierarchical logistic regression, which corresponds to a generalized 



 

linear mixed-effects model (GLMM) with a binomial error distribution and a logit link 

function. The habitat variables were included as fixed effects. Non-independence of the data 

coming from the same stratum (a triplet consisting of a given actual foraging location and its 

two associated PA locations), or the same individual, was accounted for with nested random 

effects (Gillies et al. 2006), i.e. stratum nested within individual, as several foraging locations 

per individual had been recorded. Data from untagged and therefore unidentified individuals 

were given unique factor values. All analyses were performed using the software R 3.5.1 (R 

Development Core Team 2018) and logistic models were fitted using the glmer function in the 

R-package ‘lme4’ (Bates et al. 2015). 

Prior to model selection, several variables were transformed: marginal ground cover 

variables (> 90% of zero values) were not considered in the analysis, and those with more than 

70% of zero values were transformed to binary presence/absence (1/0) variables. The other 

ground cover variables were arcsine-square-root transformed, and vegetation height variables 

log-transformed. Moreover, all variables were standardized to visualize and compare the effect 

size directly from the coefficient estimates. We also tested the addition of squared terms to 

variables for which we hypothesized a hump-shaped relationship in relation to occurrence 

probability: soil moisture, soil penetrability, AG and green grass cover. Finally, to avoid 

collinearity, we checked for Pearson’s correlation coefficients between the variables, retaining 

only those with |r| < 0.7, and we carefully checked that all variables had variance inflation 

factors (VIF) < 3 in all fitted models. 

To characterize each order of selection separately, we fitted two different sets of 

models. First, foraging locations were compared to PA in the closer range (5–14 m) and, 

second, to PA in the wider range (15–50 m). For each analysis, we adopted a model selection 

approach in two steps. First, for each of the four categories of variables, we generated a list of 

candidate models from all possible variable combinations and ranked them based on the Akaike 

Information Criterion with correction for small samples (AICc) using the function dredge of 

the package ‘MuMIn’ (Bartoń 2018). We defined the set of best-supported models as those 

within ΔAICc < 2 from the first-ranked one, after the exclusion of models with uninformative 

parameters, i.e. models that contained additional parameters compared to better-ranked models, 

but that have a higher AICc value (Arnold 2010). We then retained all variables appearing in 

at least one model of this set. In a second step, retained variables from every category were 

combined into a single model. The interaction term between AG cover and height of green 

grass was added to this model, to check for the potentially higher importance of AG cover 



 

within high ground vegetation. We then carried out the same model selection procedure as 

above to identify the set of best-supported models within ΔAICc < 2. The AICc weight (wi) of 

each possible candidate model was calculated, and variable importance was assessed by 

summing the wi of all the models where it appeared following Burnham and Anderson (2002). 

To evaluate the performance of the best-ranked model, we calculated R-squared with the 

function r.squaredGLMM from the package ‘MuMIn’, as well as the area under the receiver 

operating curve (AUC) using a five-fold cross-validation. Finally, we assessed model spatial 

transferability by calculating the AUC on the evaluation data collected in 2016. Plots of 

occurrence probability against a given habitat variable were based on the best-ranked model, 

while setting all other retained variables to their empirical mean. 95% credible intervals around 

the regression line were drawn from the 2.5% and 97.5% quantiles of the posterior distribution, 

obtained with 10,000 simulations with the package ‘arm’ (Gelman & Su 2018). 

Table 1 Habitat variables measured at each foraging and pseudo-absence (PA) plot. Mean ± sd values 

are displayed for each group, except for woody plants and moss cover, which were transformed into 

binary factors as they contained > 70% of zero values, with resulting 0/1 counts shown here. Variables 

in brackets were removed from the analysis as they contained too many NAs or zero values (> 90%).  

 Habitat variables Unit Foraging PA (5–14m) PA (15–50m) 
Ground cover     
1 Brown grass % 12.7 ± 14.0 12.2 ± 16.4 10.6 ± 12.4 
2 Green grass % 44.6 ± 28.3 50.3 ± 30.5 57.3 ± 30.7 
3 Accessible ground % 32.4 ± 25.6 25.2 ± 25.7 20.7 ± 23.9 
4 Mineral % 2.4 ± 4.2 3.6 ± 8.0 3.3 ± 8.2 
5 Dead wood % 3.2 ± 5.3 3.4 ± 6.8 3.0 ± 7.3 
6 (Snow) % 0.9 ± 5.1 1.1 ± 7.2 0.8 ± 8.1 
7 Woody plants  0/1 155/53 165/42 164/44 
8 Moss 0/1 159/49 167/41 172/36 
Topography     
9 Slope ° 18.2 ± 8.9 18.4 ± 9.6 18.2 ± 9.9 
10 Northness cos(aspecta) 0.5 ± 0.6 0.4 ± 0.6 0.2 ± 0.7 
11 Eastness sin(aspecta) 0.4 ± 0.5 0.5 ± 0.5 0.4 ± 0.5 
12 (Distance to snow 

if < 50 m) 
m 10.6 ± 17.2 10.4 ± 13.4 14.3 ± 17.1 

Vegetation height     
13 Brown grass height cm 2.5 ± 1.6 2.7 ± 2.0 3.1 ± 3.2 
14 Green grass height cm 5.9 ± 3.3 7.9 ± 4.8 8.9 ± 5.7 
Soil conditions     
15 Soil moisture VWCb 49.9 ± 12.3 41.9 ± 14.3 41.1 ± 14.4 
16 Soil penetrability kg/cm2 0.9 ± 0.5 1.2 ± 0.7 1.3 ± 0.6 

aExpressed in radians 
bVolumetric water content 



 

Finally, we investigated the seasonal pattern of the best predictors of foraging habitat 

selection, i.e. those for which a significant relationship was detected in at least one of the two 

orders of selection. We built linear mixed-effects models with each key predictor as a response 

variable, using lmer from package ‘lme4’ (Bates et al. 2015). When necessary, we transformed 

the response variable to meet a normal distribution and checked model assumptions looking at 

standard residual plots (residuals vs. fitted values, QQ-plot of the residuals). As explanatory 

variables, we included date and year of sampling, as well as plot type, which was either 

foraging or PA (PAs of both distance ranges were grouped together). In addition, interaction 

terms between date and year, and date and plot type, were included in all models as fixed 

effects, and individual identity and stratum as nested random effects; 95% credible intervals 

were again drawn from simulations. 

 

RESULTS 

In total, we collected 137 foraging locations from 19 radiotagged individuals in 2015, and 71 

locations from nine tagged and several untagged individuals in 2017 (ratio 26/45). For 13 

radiotagged individuals, we could not record any foraging locations, as we either lost the signal, 

they did not breed, or the brood failed early on. For model evaluation over a wider range, we 

collected 53 foraging locations from untagged individuals across 16 different areas (1–11 

locations per area). Out of the measured habitat variables, only AG cover and green grass cover 

were strongly correlated (r = -0.75). We excluded the latter, as the mean cover percentage was 

the highest across all plots, and removing it relaxed the unit-sum constraint of ground cover 

variables. All variables in our models had a VIF < 3. 

Foraging habitat selection at the site scale 

A final set of 4 models (ΔAICc < 2) was obtained for the analysis of habitat selection at the 

scale of the foraging site. The best-ranked model explained a relatively low proportion of 

variance R2 = 0.19, with an AUC ± sd from the cross-validation equal to 0.70 ± 0.07. 

Performance based on the evaluation dataset was also fairly low (AUC = 0.64). All variables 

showed consistent coefficient estimates in the four different models, and hence their respective 

effects were considered to be well represented by the first-ranked model (Table 2). AG cover 

had a positive effect on occurrence probability (β ± se = 0.24 ± 0.11, P = 0.03), but the quadratic 

term was retained as well, suggesting a hump-shaped relationship (Fig. 2), despite not being 

significant (β ± se = -0.17 ± 0.11, P = 0.12). For soil moisture, the presence of an optimum was 



 

clear (linear: β ± se = 0.65 ± 0.12, P < 0.001; quadratic: -0.33 ± 0.12, P < 0.01) with a peak in 

occurrence probability at 64% VWC (Fig. 2), whereas soil penetrability had a negative effect 

(β ± se = -0.34 ± 0.13, P < 0.01), i.e. birds avoided impenetrable soils. These two soil condition 

variables were ranked as the most important (Table 2). A negative relationship with green grass 

height was highlighted only in the third-ranked model (Supplementary Materials, Table S1) 

and had the lowest variable importance overall (Table 2). 

 

Table 2 Variables retained in the set of best models within ΔAICc < 2, in the analysis of foraging habitat 

selection at the site and the home-range scale, respectively. Coefficient estimates, Z- and P-values are 

from the best-ranked model in each analysis, whereas importance of the variable (from 0 to 1) is the 

sum of Akaike weights from the models where it appears out of all model combinations. 

 Variable Estimate ± se Z-value P-value Importance 

Site scale 

 AG cover 0.24 ± 0.11 2.14 0.033 0.85 
 AG cover2 -0.17 ± 0.11 -1.55 0.121 0.51 
 Soil penetrability -0.34 ± 0.13 -2.67 0.008 0.96 
 Soil moisture 0.65 ± 0.12 5.24 < 0.001 1.00 
 Soil moisture2 -0.33 ± 0.12 -2.77 0.006 0.95 
 GG height – – – 0.51 

Home-range scale 

 AG cover 0.22 ± 0.13 1.70 0.089 0.94 
 AG cover2 -0.27 ± 0.12 -2.19 0.028 0.69 
 Soil penetrability -0.64 ± 0.15 -4.41 < 0.001 1.00 
 Soil moisture 0.49 ± 0.14 3.62 < 0.001 1.00 
 Soil moisture2 -0.42 ± 0.12 -3.44 < 0.001 1.00 
 GG Height -0.37 ± 0.15 -2.49 0.013 0.91 
 Mineral cover -0.21 ± 0.13 -1.55 0.122 0.49 
 Northness 0.21 ± 0.12 1.76 0.078 0.63 
 GG height x AG cover – – – 0.36 

AG cover: accessible ground cover; GG height: green grass height; 2: quadratic term of a variable;  
x: interaction between two variables 
  



 

 

 

Foraging habitat selection at the home-range scale 

The analysis of foraging habitat selection at the home-range scale yielded a final set of four 

models. The best-supported model showed a higher performance than the site scale model for 

all three evaluation metrics considered: R2 = 0.33, cross-validation AUC ± sd = 0.77 ± 0.10 

and evaluation dataset AUC = 0.69. All variables showed consistent coefficient estimates in 

the four models, so that we again considered the first-ranked model to be representative of the 

set (Table 2). Again, soil moisture (linear: β ± se = 0.49 ± 0.14, P < 0.001; quadratic: -0.42 ± 

0.12, P < 0.001) and penetrability (β ± se = -0.64 ± 0.15, P < 0.001) were the most important 

predictors (Table 2), with, in addition, a potential optimal range of moisture around a peak at 

41% VWC (Fig. 3), i.e. somewhat lower than at the foraging site scale. At this order of 

selection, green grass height (β ± se = -0.37 ± 0.15, P = 0.01) was much more important than 

at the site scale (0.91; Table 2), with a clear selection for short grass swards (Fig. 3). The hump-

shaped relationship with AG cover (linear: β ± se = 0.22 ± 0.13, P = 0.09; quadratic: β ± se = -

0.27 ± 0.12, P = 0.03) was more supported than at site scale (Fig. 3; Supplementary Materials, 

Table S1). Finally, we detected a positive effect of northness (β ± se = 0.21 ± 0.12, P = 0.08), 

Figure 2 Values at presence and pseudo-

absence plots for all three significant 

habitat variables at the foraging site scale, 

with the regression line showing the 

probability of occurrence from the best-

ranked GLMM, along with 95% credible 

intervals.  



 

indicating a selection for north-facing slopes, and a negative effect of mineral cover (β ± se = 

-0.21 ± 0.13, P = 0.12), although those variables were not significant and ranked among the 

last in importance (Table 2). 

Seasonality of key habitat variables 

Models of seasonality were fitted only for the key habitat predictors retained in the dual 

foraging habitat selection analysis, namely, AG cover, green grass height, soil moisture and 

soil penetrability. The type of plot had a significant effect in all four models (Table 3), which 

means that the difference between foraging and PA plots was consistent throughout the 

breeding season for all four habitat variables (Fig. 4). The significant effect of date indicated a 

clear seasonal change in AG cover (β ± se = -0.15 ± 0.08, P = 0.05) and soil moisture (β ± se 

= -0.35 ± 0.07, P < 0.001), both decreasing, whereas grass height (β ± se = 0.44 ± 0.07, P < 

0.001) progressively increased (Table 3; Fig. 4). For soil penetrability, the effect of date was 

positive but marginally significant (β ± se = 0.12 ± 0.07, P = 0.07). Furthermore, an effect of 

year on AG cover, soil moisture and soil penetrability was evident, with different intercepts in 

different years (Table 3), indicating a varying spring phenology. Only for soil moisture did the 

slope of the regression line differ significantly between 2015 and 2017, as indicated by the 

interaction between year and date (β ± se = 0.35 ± 0.12, P < 0.01; Table 3). Finally, the 

interaction between the type of plot and date was never significant (P > 0.25 for all variables), 

which indicates a similar seasonal pattern in both actual foraging and PA plots. 

Table 3 Summary table of the coefficient estimates ± se from the linear mixed-effect models fitted for 

each of the four key habitat predictors. Explanatory variables are type of plot (presence/pseudo-

absence), year (2015/2017) and date, as well as their interaction terms. 

 Response variable  
Soil moisture Soil penetrability Green grass height AG cover 

Presence 0.59 ± 0.06 *** -0.49 ± 0.07 *** -0.46 ± 0.06*** 0.42 ± 0.06*** 
Date -0.35 ± 0.07 *** 0.12 ± 0.07 ° 0.44 ± 0.07*** -0.15 ± 0.08* 
Year 2017 0.30 ± 0.14 * 0.42 ± 0.13 ** -0.31 ± 0.19 0.46 ± 0.17** 
Date x Year 2017 0.35 ± 0.12 ** -0.15 ± 0.12  0.16 ± 0.13 -0.17 ± 0.13 
Date x Presence -0.07 ± 0.06  -0.03 ± 0.07  -0.03 ± 0.06 0.01 ± 0.06 
Level of significance is indicated with symbols: ° P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001. 



 

Figure 3 Values at presence and pseudo-absence plots for all four significant habitat variables at the 

home-range scale, with the regression line showing the probability of occurrence from the best-ranked 

GLMM, along with 95% credible intervals. 

 

DISCUSSION 

The present study delivers new insights into the fine-grained species-habitat associations of 

Alpine Ring Ouzel parents during the energetically critical period of nestling provisioning. It 

sheds light, in particular, on the challenges this emblematic passerine of treeline ecosystems is 

likely going to face in an era of rapid environmental change. Birds preferentially foraged in 

sites with intermediate soil moisture, high soil penetrability and short ground vegetation 

interspersed with accessible ground. Our models further emphasize the sheer spatio-temporal 

variability in these key variables, highlighting in particular the need to finely match 

reproductive effort with the narrow time window of optimal foraging conditions. 

 



 

Figure 4 Relationship between each of the four key predictors and date during two different breeding 

seasons (2015 and 2017) at foraging (in blue) and pseudo-absence plots (in red) from the respective 

fitted linear-mixed models, along with 95% credible intervals. 



 

When comparing the two different orders of habitat selection considered here (Johnson 

1980), the model of habitat selection at the foraging site scale was unsurprisingly less accurate 

than at the home-range scale. An increasing predictive difficulty towards higher orders of 

selection, i.e. finer scales, is common in studies of habitat use (Fattebert et al. 2018) and can 

be explained by the fact that PA plots that are randomly selected in the close surroundings of 

the foraging plot are more likely to present habitat characteristics similar to those of the 

foraging plot itself. Indeed, we cannot rule out that our PA plots, although reflecting true 

absences at the very time of a given foraging observation, might have been visited by the same 

bird earlier or later on for foraging. Therefore, the metrics considered for evaluating model 

predictive performance, which assume no false negatives (i.e. false absences), are usually 

underrated (e.g. maximum AUC < 1). In addition, as regional evaluation data were collected 

in a different year (2016) to radiotracking data (2015 and 2017) due to logistic constraints, 

inter-annual variability in snowmelt phenology may also have influenced the predictive 

performance of our models. When taking these limitations into account, as well as the fine 

scale of our analysis (1-m radius), the overall performance of our models from the cross-

validation and on the regional evaluation dataset can be deemed to be fairly good. Therefore, 

we consider that the significant selection patterns evidenced here are temporally consistent and 

can be generalized to the western central Alps, which harbour a significant fraction (ca. 20%) 

of the Swiss Alps, if not beyond to the entire Alpine massif.  

Soil conditions and ground vegetation cover and structure were the most important 

predictors of foraging habitat selection in our study. Those parameters have been repeatedly 

highlighted as crucial for several ground-foraging bird species (Atkinson, Buckingham & 

Morris 2004; Gilroy et al. 2008; Schaub et al. 2010). Most of those studies have shown that 

these relationships are driven by prey availability, i.e. prey abundance modified by its 

accessibility. In the case of the Ring Ouzel, prey accessibility is probably driven by both soil 

penetrability, as prey is extirpated from the upper soil layers via beak probing, and 

opportunities for terrestrial foraging, which chiefly depends on ground vegetation structure. 

Even if we did not collect data on invertebrate prey abundance and distribution across our study 

area, food availability most likely explains the pattern we observed, especially because we 

restrained our foraging locations to ascertained prey captures.  

The two soil condition variables measured here, moisture and penetrability, were the 

most important predictors of foraging occurrence at both scales considered (site and home-

range), with birds selecting soft soils with intermediate moisture levels. Soil moisture is indeed 



 

known to strongly influence the biomass and activity of some soil invertebrates, notably 

earthworms (Edwards & Bohlen 1996; Peach et al. 2004). Most species of terrestrial 

earthworms favour a clear optimum of soil moisture and go either deeper into the soil in 

response to drought or emerge on the soil surface following heavy rainfall (Edwards & Bohlen 

1996). Earthworms have been identified as a main component of the diet of Ring Ouzel chicks 

across the species’ breeding range (Glutz von Blotzheim & Bauer 1988; Burfield 2002), which 

seems to be corroborated in our study area (ca. 90% of the biomass provisioned by parents). 

The avoidance of dry and very moist soils by Ring Ouzels may hence result from reduced 

earthworm availability under these conditions. This is further supported by a clear avoidance 

of impenetrable soils that are probably suited neither for earthworms nor for beak probing 

(Peach et al. 2004; Gilroy et al. 2008). 

The selection for intermediate levels of accessible ground, as provided here by patches 

of bare soil surfaces and vegetation litter, underlines the importance of small-scale substrate 

heterogeneity in the foraging microhabitat. Similar requirements were evidenced for a variety 

of ground-foraging, insectivorous farmland birds (Atkinson, Buckingham & Morris 2004; 

Schaub et al. 2010; Arlettaz et al. 2012), but also for some alpine specialists such as the White-

winged Snowfinch Montifringilla nivalis (Brambilla et al. 2017; Resano-Mayor et al. 2019). 

The preference for a heterogeneous microhabitat mosaic has already been demonstrated for 

foraging Ring Ouzels in the UK (Burfield 2002; Sim et al. 2013). The likely mechanism at play 

is that dense grass swards host a greater abundance of above- and belowground invertebrates 

(Atkinson, Buckingham & Morris 2004), including earthworms (Edwards & Bohlen 1996), 

and that walking birds profit from the interspersed open-ground patches enhancing prey 

detectability and accessibility (Schaub et al. 2010). Yet, the strong selection for short grass 

swards evidenced in this and other studies on the Ring Ouzel (Burfield 2002; Sim et al. 2013) 

indicates that prey accessibility may be traded-off against prey abundance during foraging. 

Interestingly, the importance of vegetation height was only clearly detected at the larger home-

range scale, suggesting that, in the hierarchical process of selection, birds first elect to forage 

at sites with predominantly short grass, while suitable prey extraction sites are secondarily 

chosen within the grassy matrix. 

Three out of the four key habitat variables driving Ring Ouzel foraging dramatically 

changed with season: soil moisture and AG cover gradually decreased, whereas ground 

vegetation height increased. At treeline elevation in the Alps (ca. 1800–2300 m asl), the depth 

and temporal duration of the snow cover constitute the main environmental drivers (Beniston 



 

2003). In addition to its insulation property in winter, which is appreciated by overwintering 

Alpine wildlife (Arlettaz et al. 2015), the snowpack plays another crucial ecological role in 

spring, when its melt provides much of the water supply in subalpine and alpine ecosystems 

(Beniston 2003; Klein et al. 2016). First, the water supply resulting from snow, mirrored in our 

measurements of 2015, showed a progressive seasonal decrease in both average soil moisture 

and penetrability, while snow was almost fully melted at the study site when the first broods 

hatched. In 2017, despite a similar snowmelt phenology, both soil condition variables were 

much more constant across the season, probably as a result of regular precipitation and/or 

reduced soil desiccation during the entire breeding season. Second, the snowmelt also triggers 

the onset of the annual vegetation cycle (Inouye et al. 2000), thus defining the timing of 

vegetation growth. Ring Ouzels essentially foraged in very short grass swards, with 90% of the 

selected foraging sites offering ground vegetation shorter than 10 cm. According to our 

seasonality model, the mean green grass height in PA plots had already exceeded this value on 

June 5th and 8th, in 2015 and 2017, respectively. This points to a fairly brief period with suitable 

foraging conditions and is supported by our own field observations: parents left the breeding 

grounds towards higher elevations as soon as the brood had fledged, most probably to track 

suitable feeding grounds. However, we could not collect foraging information after this abrupt 

change in their whereabouts, as tagged birds became highly mobile and some rapidly left the 

study area. 

Altogether, it appears that highly seasonal variables drive the foraging microhabitat 

selection of Ring Ouzels in the Alps. As a consequence, the availability of optimal foraging 

habitat progressively decreases across the period of nestling provisioning, resulting in a 

restricted time window with suitable conditions for breeding. High elevation specialists are 

adapted to such extreme environments (Martin & Wiebe 2004), but global environmental 

change, in particular climate change, represents a new challenge for matching the reproductive 

period with optimal environmental conditions. Climatic changes are particularly marked in the 

spring in the Alps, with higher solar radiation and ambient temperatures causing an earlier 

snowmelt (Klein et al. 2016), thereby potentially affecting the breeding success of alpine birds 

(Martin & Wiebe 2004). In the case of the Ring Ouzel, there is a risk of phenological mismatch 

due to a possible discordance between the spring peak in prey availability and the timing of 

breeding, as already predicted for other temperate mountain birds such as the American Robin 

Turdus migratorius (Inouye et al. 2000), another species of thrush. However, it is as yet 

unknown to which extent the Ring Ouzel may adapt to such changes by either advancing its 



 

breeding phenology or moving to higher elevations. We can expect that the migration schedule 

of the species, as a short-distance migrant, could be shifted so as to arrive earlier in the Alps. 

Moreover, an elevational shift of the breeding population has been observed in Switzerland in 

the last decades (Knaus et al. 2018). This process may nonetheless be limited by the growth of 

trees, in which most Alpine Ring Ouzels build their nests (Glutz von Blotzheim & Bauer 1988), 

and, higher up, by the formation of suitable soils, which is a very slow process at high 

elevations (Chamberlain et al. 2012). 

Nevertheless, if, as suggested by our results, prey accessibility is vital, adaptive habitat 

management may to some extent buffer these detrimental effects if not compensate for them 

(see Braunisch et al. 2014; Brambilla et al. 2018). Initial measures should consist of 

maintaining a variegated habitat mosaic, which would be beneficial not only for the Ring Ouzel 

(von dem Bussche et al. 2008), but also for other emblematic species of the Alpine treeline 

(Jähnig et al. 2018), notably the Black Grouse Lyrurus tetrix (Patthey et al. 2012; Braunisch, 

Patthey & Arlettaz 2016). In effect, habitat heterogeneity guarantees the retention of suitable 

foraging sites, which probably explains the close association observed between the Ring Ouzel 

and the highly diverse and finely structured habitat matrix of the treeline ecotone in the Alps. 

In this respect, traditional extensive grazing practices, still widespread today in the Alps (Laiolo 

et al. 2004; Schulz, Lauber & Herzog 2018), are expected to benefit this species as well as 

other ground-foraging birds, notably by reducing the grass sward height and by increasing the 

availability of patches of bare ground through livestock trampling (Pittarello et al. 2016). 

Traditional pasturing would also limit the risk of encroachment by the woody vegetation of 

these valuable semi-open wooded grasslands (Laiolo et al. 2004; Schulz, Lauber & Herzog 

2018). Another risk of habitat degradation stems from the progressive intensification of 

grasslands through slurry application, which results in a more homogeneous grass sward 

growing high and dense earlier in the season (Andrey et al. 2014). Finally, the development of 

ski infrastructure could also represent an additional threat, as the use of artificial snow and 

snow-grooming machines have wide-ranging negative effects on soil characteristics (Rixen, 

Haeberli & Stoeckli 2004) and their biodiversity (Rolando et al. 2007). All this points to a high 

vulnerability of the Ring Ouzel to the prevailing scenarios of climate and land-use change, 

which may act either singly or synergistically. In this context, the extent to which suitable 

alpine breeding habitat can be maintained via management, e.g. targeted grazing, needs further 

investigations which should optimally consider the potential evolution of agricultural practices 

and be carried out in controlled experimental setups. Additionally, whether other sympatric 



 

species with similar ecological requirements benefit from such practices should be evaluated, 

as habitat management recommendations formulated here may have far-reaching positive 

effects for the biodiversity of treeline ecosystems. 
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SUPPLEMENTARY MATERIALS 

Table S1 Set of best-ranked models from the model selection process within ΔAICc < 2, at the site and 

home-range scale, respectively. 

# Model df AICc ΔAICc weight 

 Site scale 
1 AGC + AGC2 + SMoist + SMoist2+ SPen 8 529.79 0.00 0.37 
2 AGC + SMoist + SMoist2+ SPen 7 530.13 0.34 0.31 
3 SMoist + SMoist2 + SPen + GrGH 7 531.38 1.59 0.17 
4 SMoist + SMoist2 + SPen 6 531.70 1.91 0.14 

 Home-range scale 

1 
AGC + AGC2 + SMoist + SMoist2+ SPen + GrGH + 
MinCov + North 

11 482.67 0.00 0.35 

2 
AGC + AGC2 + SMoist + SMoist2 + SPen+ GrGH + 
North 

10 483.03 0.36 0.29 

3 AGC + AGC2 + SMoist + SMoist2 + SPen + GrGH 9 483.63 0.96 0.22 

4 
AGC + SMoist + SMoist2 + SPen + GrGH + MinCov + 
North + GrGH x AGC 

11 484.62 1.95 0.13 

AGC: accessible ground cover; SMoist: soil moisture; SPen: soil penetrability; GrGH: green grass height; 
MinCov: mineral cover; North: northness; 2: quadratic term; x: interaction 
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