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The Pistoia criterion (PC) is widely used to estimate the failure load of distal radius segments based on
linear micro Finite Element (lFE) analyses. The advantage of the PC is that a simple strain-threshold
and a tissue volume fraction can be used to predict failure properties. In this study, the PC is compared
to materially nonlinear lFE analyses, where the bone tissue is modelled as an elastic, damageable mate-
rial. The goal was to investigate for which outcomes the PC is sufficient and when a nonlinear (NL) sim-
ulation is required. Three types of simulation results were compared: (1) prediction of the failure load, (2)
load sharing of cortical and trabecular regions, and (3) distribution of local damaged/overstrained tissue
at the maximum sustainable load. The failure load obtained experimentally could be predicted well with
both the PC and the NL simulations using linear regression. Although the PC strongly overestimated the
failure load, it was sufficient to predict adequately normalized apparent results. An optimised PC (oPC)
was proposed which uses experimental data to calibrate the individual volume of overstrained tissue.
The main areas of local over-straining predicted by the oPC were the same as estimated by the NL sim-
ulation, although the oPC predicted more diffuse regions. However, the oPC relied on an individual cal-
ibration requiring the experimental failure load while the NL simulation required no a priori
knowledge of the experimental failure load.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Nonlinear micro Finite Element (lFE) simulations of bone can
lead to unique insights into the failure behaviour of bone. Based
on high-resolution micro computed tomography (lCT) scans the
over-straining of bone tissue can be estimated through-out the
structure on the level of individual trabeculae. However, local
insights at comparable high resolutions are not yet available
experimentally.

Nonlinear modelling of bone tissue is essential to directly
obtain the failure behaviour from simulations. The increased avail-
ability of high performance computing (HPC) resources and paral-
lel solvers enabled a broader community to include material
nonlinearity when modelling bone tissue on the microscopic scale
(Zhou et al., 2016; Hosseini et al., 2017; Arias-Moreno et al., 2019).
Nevertheless, the computational requirements for a nonlinear sim-
ulation are hundred-fold larger than for a linear-elastic simulation
and necessitate special-purpose solvers (Fields et al., 2012; Stipsitz
et al., 2019). However, so far only small improvements in the pre-
diction of the maximum sustainable loads were reported compared
to a linear-elastic material behaviour (MacNeil and Boyd, 2008;
Christen et al., 2013). Thus, it is important to know for which
objectives nonlinear material behaviour is required and when a
linear-elastic constitutive model is sufficient.

Besides studying the predictability of the maximum sustainable
load, lFE is mainly applied for basic research questions where local
estimates are required. For instance, the internal stress distribution
obtained from lFE simulations has been used to study the role of
the cortical-trabecular load sharing (Ulrich et al., 1999; Pistoia
et al., 2003; Eswaran et al., 2006; Johnson and Troy, 2018). In most
of these lFE studies a linear-elastic material model was applied
without investigating if a nonlinear tissue behaviour would alter
the results.

Radius segments are a good choice to study the benefit and lim-
itations of a nonlinear material model: As a comparison to nonlin-
ear simulation results the failure load can be estimated using the
Pistoia criterion (PC) based on linear-elastic lFE simulations
(Pistoia et al., 2002; Varga et al., 2010; Mueller et al., 2011). Radius
segments allow direct comparisons of experimental and simulated
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data since the experimental set-up and the boundary conditions
for lFE models leading to Colles’ fractures are largely standardized
(van Rietbergen and Ito, 2015).

In this study, a damage-based material model was compared to
a linear-elastic model for compression tests of radius segments. A
damage-based material model was chosen because of the availabil-
ity of an efficient implementation which permits the large-scale
simulations required for this study (Stipsitz et al., 2019). To sum-
marize, the purpose of this study is to determine when it is appro-
priate to utilize a nonlinear FE approach versus the linear Pistoia
criterion. We hope that this study will help other biomechanical
researchers to decide if a nonlinear analysis is required, especially
considering the hugely increased computational costs.

Three questions were chosen to qualitatively and quantitatively
compare linear and nonlinear predictions:

(Q1) Are the failure loads predicted either with the Pistoia crite-
rion (PC) or the nonlinear simulations (NL) different from
the experimental measurements?

(Q2) Is the load sharing between the cortical and trabecular
regions evolving differently over the length of the radius
segments with the two methods?

(Q3) To what extend do the local damage patterns from NL simu-
lations differ from the overstrained volume predicted by the
PC?

For points (2) and (3) an optimised Pistoia criterion (oPC) was
used to enable a comparison of the potentials of linear and nonlin-
ear lFE simulations.
2. Materials & Methods

CT scans and experimental load–displacement curves until fail-
ure were taken from a previous study (Hosseini et al., 2017): 21
radius segments of 20 mm height were obtained from 12 human
donors. They were taken from the most distal parts of the radii
(starting 5 mm below the distal subchondral plate, including the
clinical 9 mm section used for Colles’ fracture investigations). The
segments were scanned at 16:4 lm resolution.

To reduce the computational costs, the scans were coarsened to
32:8 lm and segmented into bone and background voxels. All dis-
connected parts were removed. The two most distal and most
proximal layers were removed to eliminate artificial damage local-
ization caused by rough cut surfaces.

To obtain a lFE mesh, each voxel representing bone tissue was
converted to a linear hexahedral element. The axial compression
experiments were mimicked by platen-like boundary conditions:
The most distal nodes were fixed. The most proximal nodes were
axially displaced, and fixed in off-axis directions. Due to the large
model sizes, all simulations were conducted with the highly-
parallel lFE framework ParOSolNL (Stipsitz et al., 2019).
2.1. Nonlinear lFE simulations

A damage-based material model with previously identified
material parameters was used (Stipsitz et al., 2019). It consists of
(1) an isotropic, linear-elastic region (initial Young’s modulus
E0 ¼ 10 GPa, Poisson’s ratio m ¼ 0:3), (2) a nonlinear region where
the material degrades based on a scalar damage quantity D, and
(3) a failure region where the modulus is set to a small fraction
of E0. The transition from the linear to the nonlinear regime is
determined by an isotropic, quadric damage onset surface (adapted
from (Schwiedrzik et al., 2013), shape parameter f0 ¼ 0:3, critical
damage Dc ¼ 0:9). In region (2), isotropic hardening (hardening
modulus Eh ¼ 0:05E0) and a tension–compression asymmetry
2

(via asymmetric tensile and compressive damage-onset strains
eþ0 ¼ 0:68%; e�0 ¼ 0:89%) is included.

The compressive displacements were applied in 0:05% strain
increments. The simulations were stopped at the first drop in the
apparent force-strain curve. The apparent strain was computed
as the applied displacement in z-direction on the top layer divided
by the initial height of the sample. The stiffness was computed
from the first (linear) increment. The ultimate load was identified
by the maximum in the apparent force-strain curve. The strains are
displayed instead of the displacements to normalize to the actual
length of the various wrists and better represent the effect of a
strain-based NL simulation. For the estimation of the error in the

ultimate load Fnl
max compared to the experimental ultimate load

Fexp
max, the NL simulation results were stiffness adjusted using an

individual initial modulus Eadj
0 to match the experimental stiffness.

This led to a scaled apparent force, while other quantities (strain,
number of damaged elements, local damage distributions) were
not affected. An element was classified as damaged if the damage
D > 0.

The modelling strategy applied for the NL simulations has been
previously validated for trabecular biopsies on the macroscopic
level (Stipsitz et al., 2019). Good agreement was obtained for the
radius segments (Fig. 1), for further details see Appendix A and
(Stipsitz, 2020).

2.2. Linear lFE with the Pistoia criterion

The bone tissue was modelled as a linear-elastic material with
homogeneous isotropic material properties (E0 ¼ 10 GPa; m ¼ 0:3).
The failure load was estimated using the PC (Pistoia et al., 2002):
Based on the strain energy density U, a local effective strain is com-
puted as eeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U=E0

p
. The ultimate load is predicted by scaling

the apparent load such that a certain percentage V c of the elements
is strained beyond a critical strain ec.

In general, the appropriate values for Vc and ec depend on the
scanning technique and resolution of the lFE model, the segment
size, and the initial modulus E0 (Mueller et al., 2011; Arias-
Moreno et al., 2019). Two different parameter sets were used in
this study (Fig. 2):

1. Standard Pistoia: For question (1), the aim was the investiga-
tion of the predictive power of lFE simulations for the apparent
ultimate load. Thus, standard parameters (ec ¼ 0:7%;V c ¼ 2%)
were used for the evaluation of the PC (Pistoia et al., 2002;
Varga et al., 2010). E0 ¼ 10 GPa was used for all samples.

2. Optimal Pistoia (oPC): For questions (2) and (3), results
obtained with the best possible Pistoia approximation were
investigated: The individual lFE results were stiffness adjusted

to match experimental tests (initial modulus Eadj
0 ). For

ec ¼ 0:7%, the critical volume V c was calibrated for each sample
individually to match the experimental ultimate load.

Based on a linear simulation, an element was defined as ‘‘dam-
aged” (i.e. overstrained) if the effective strain eeff exceeded
ec ¼ 0:7%. The evolution of damaged elements with the applied
strain was computed in virtual increments (Fig. 2). The apparent
strain obtained with the optimal Pistoia parameters was taken as
maximum strain. Increments were obtained by dividing the maxi-
mum strain into 20 equally sized increments, and scaling the local
effective strains accordingly.

2.3. Q1 – Statistics of the failure load

For statistical tests, all samples were treated as independent
although most samples were taken from the left and right hand



Fig. 1. Left: Linear regression analysis for the ultimate load Fmax obtained from axial compression experiments (y-axis, Fexp
max) and NL simulations with individual Eadj

0 (x-axis,
Fsim
max). 18 samples are paired, taken from the left and right hand of the same donor (connected by dashed lines). Right: Experimental curve (black, solid), simulation results

with a uniform initial modulus (E0 ¼ 10 GPa) (blue, filled points), and individually scaled simulation results with Eadj
0 (grey, open points) for a selected radius segment (for

further samples see Fig. A2). The damage distribution at the last increment is shown, from white (no damage) to yellow (damaged) to dark red (fractured). The red square
marks Fmax, the green diamond the 0.2%-offset yield strain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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of the same donors. Previous studies using the same samples have
treated them in a mixed statistics model (Hosseini et al., 2017) or
have treated them independently (Arias-Moreno et al., 2019).

The statistical significance of the difference between values
obtained with the PC and NL simulations were evaluated with
the paired t-test with p < 0:05 (two-sided): To evaluate if the PC
or the NL simulations can predict the failure load without calibra-
tions, we tested if the failure loads from either the PC or NL simu-
lations were significantly different (s.d.) from the measured failure
loads. Additionally, linear regression analyses were performed
between the failure load predicted by either the PC or NL simula-
tion and the experimental values using python (package sklearn).
T-tests were performed to check if the slope and intercept of the
linear regressions differed from one and zero, respectively.
2.4. Q2 – Load sharing

To answer question (2), the progression of the load sharing
between the cortical and the trabecular region over the length of
the radii was evaluated as proposed by Johnson et al. (Johnson
and Troy, 2018): The load was computed for each layer in
z-direction of the radius segments as

Fz ¼
X

hei

heirzz
heiA; ð1Þ

where heirzz is the zz-component of the stress tensor of element hei,
and heiA ¼ A0 is the initial area of an element. Following (Johnson
and Troy, 2018), the two most distal and most proximal layers were
not included. The force contributions by the trabecular and cortical
part were determined and normalized by the total force. The load
sharing from the oPC and NL simulations were compared qualita-
tively at the ultimate load point over the length of the radius seg-
ments. Additionally, the average relative deviation between the
load-sharing curves from oPC and NL simulations was evaluated

as meanðjðFoPC
z � Fnl

z Þ=Fnl
z jÞ, where the mean was evaluated over all

samples, i.e. over all the data points of all the load contribution–
length curves (see Fig. 4). A paired t-test was conducted to test
whether this relative deviation is s.d. from zero, which would mean
that there is on average a s.d. between the curves predicted by the
oPC and NL simulations.
3

2.5. Q3 – Local damage patterns

For the qualitative local comparison of damage patterns
between the oPC and the NL simulations (question (3)), only a bin-
ary value (damaged/not damaged) was compared element-wise. In
the NL simulations, the amount of damage (number of damaged
elements and damage values) strongly increased if the ultimate
load was overestimated, and damage decreased if the load was
underestimated. Thus, only samples for which the NL simulation

resulted in an error (jðFnl
max � Fexp

maxÞ=Fexp
maxj) in the ultimate load

Fmax of less than 5% compared to the experimental value Fexp
max were

included in the comparison. This was done to ensure a fair compar-
ison between the oPC, which exactly reproduced the individual
failure load by definition, and the NL simulations.

2.6. Q3 – Damage in cortical and trabecular region

The separation of images into cortical and trabecular regions
was performed on segmented images with a coarsened resolution
of 65:6 lm using the script manager medtool (v4.3, Dr. Pahr Inge-
nieurs e.U., Pfaffstätten, Austria) following the procedure in (Pahr
and Zysset, 2009) (see Appendix B). For the linear simulations,
the sum of the percentage of damaged elements in the cortical

Ncort
D and trabecular region Ntrab

D is equivalent to the critical volume
Vc.

2.7. Evolution of damaged and overstrained elements

Since the PC is defined in the number of overstrained elements
ND, an investigation of the progression of ND with the applied
strain was performed. Specifically, the evolution of ND in the tra-

becular region Ntrab
D and in the cortical region Ncort

D determined
via the oPC and from a NL simulation were compared. In both sim-
ulations, the number of damaged or overstrained elements did not
represent a physical quantity but was a result of the numerical
modelling.

The absolute values are not meaningful, thus, they were only
compared qualitatively: ‘‘Qualitative similarity” in the evolution
of damaged elements from the oPC and the NL simulation was
identified primarily via the transition point (et;ND;t) of the cor-
tical and trabecular damage evolution (marked by a cross in



Fig. 2. Illustration of the force vs strain curve, obtained experimentally and with
the lFE methodologies: Using the standard Pistoia parameters (green square), the
experimental ultimate load (peak of black curve) is generally underestimated. For
the optimal Pistoia parameters, the force is stiffness adjusted using Eadj

0 and scaled
to match the experimental ultimate load. The force obtained from the NL simulation
was stiffness adjusted using Eadj

0 . A clear drop in the force is visible in the NL curve
after exceeding the maximum sustainable load, caused by the failure region of the
nonlinear material model. Bottom: Number of damaged elements (D > 0, nonlinear
material) or overstrained elements (linear-elastic material, eeff > 0:7%) over the
induced apparent strain. For a linear-elastic material, virtual increments are
obtained by dividing the predicted strain at failure from the oPC into 20 equally
sized strain increments. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 7). At this point, the main damage location shifted from the
trabecular to the cortical region. The evolution curves of the
oPC and the NL simulation were categorized as similar if both
curves showed a transition point (or both showed no transition
point), and the location of the transition point et was approxi-
mately at the same strain ratio (et=emax). The strain ratio was
used instead of the absolute strain since the absolute strain in
the inelastic region estimated from a linear simulation is not
reliable.

To quantify the different local distribution of damage predicted
either by the oPC or NL simulation for question (3), the proportion

of damaged elements in the trabecular region (V trab ¼ Ntrab
D =Ntot

D )
was evaluated at the failure point. We tested if the predicted
V trab of the oPC and NL simulation was s.d. (paired t-test) and
investigated systematic differences using a Bland–Altman plot.
4

2.8. Elasticity limit

To compare the role of the different inelastic onset criteria (PC:
effective strain threshold vs NL: quadric damage onset surface), the
inelastic limit eie was computed analogously to (Stipsitz et al.,
2019). In short, a piece-wise quadratic function is fitted to the indi-
vidual ND–e curves using eie as a fitting parameter. Thus, eie is the
strain at which a simulation predicts a decisive amount of damage,
i.e. after which non-linearity plays a role locally. Here, eie is a struc-
tural property since the radius segments cannot be considered rep-
resentative volume elements.

More commonly the 0:2% strain-offset criterion is applied to
estimate the yield load. The difference between the 0:2% yield load
and the elasticity limit applied here is that the 0:2% yield load is
determined purely on the apparent level while the elasticity limit
is based on the amount of local damage. For the radii segments,
the 0:2% yield load is close to the maximum load where already
a decisive amount of local damage is present (Fig. 1 and Fig. A2).
3. Results

3.1. Q1 – Failure load

The linear regression of the ultimate load between simulations
and experiments was comparably good using the standard PC and
NL simulations with an unadjusted E0 ¼ 10 GPa (Fig. 3). However,

the standard PC (FstdPC
max ¼ �1:9� 0:88kN) largely underestimated

the experimental ultimate load (Fexp
max ¼ �6:22� 3:49kN). The dif-

ference was confirmed to be statistically significant by a paired t-
test with p < 0:05.

The regression function of the standard PC was far from a one-

to-one correspondence (Fexp
max ¼ �1:48þ 2:2Fsim

max, t-tests confirmed
that the slope was significantly different from one and the inter-
cept significantly different from zero). To obtain a good agreement
between the experimental results and the PC much higher critical
volumes V c were required. This becomes obvious when comparing
Vc obtained with the oPC with the standard value from the litera-
ture, V c ¼ 2% (Table 1).

The prediction obtained in the NL simulations with standard
parameters was closer to the values from experiments (slightly
lower intercept, slope much closer to one: Fexp

max ¼ �1:29þ
1:32Fsim

max). Nevertheless, the slope was significantly different from
one and the intercept s.d. from zero. When NL results were stiff-
ness adjusted, the ultimate loads were not significantly different
from experimentally obtained values (Appendix A). In this case,
slope and intercept were not s.d. from a one-to-one relation.
3.2. Q2 – Load sharing

The load sharing of the trabecular and cortical region obtained
from a linear simulation (with the oPC) and a NL simulation with

individually adjusted Eadj
0 at the ultimate stress point was compara-

ble for all samples (Fig. 4). On average the oPC led to a ð0:3� 0:2Þ%
relative deviation compared to the NL simulations in the load shar-
ing over length curves (This small difference was reported s.d.
from zero by a paired t-test.) The largest differences were observed
in sample R195. Generally, the trabecular region carried more load
on the distal end than on the proximal end, and the cortical region
vice versa. In most samples (17 out of 21), an intersection point
existed. This indicates that on the distal end the majority of the
load was sustained by the trabecular region, and on the proximal
end by the cortical region. Missing intersections were predomi-
nantly found in weaker radii (Appendix C).



Fig. 3. Linear regression for the apparent ultimate load predicted by linear simulations using the standard PC (left, standard error of estimation SEE ¼ 0:71), NL lFE
simulations with E0 ¼ 10 GPa (right, SEE ¼ 0:79) and obtained from experiments. The slope and the intercept were both significantly different from zero, for both the
standard Pistoia and the NL lFE simulation. However, when NL results were stiffness adjusted, slope and intercept were no more statistically different from zero and one,
respectively (Appendix A).

Table 1
The percentage of damaged elements ND obtained from a NL simulation and a linear
simulation with the oPC are quite large and highly variable. For the PC, ND is
equivalent to the critical volume Vc.

mean ND½%� standard deviation [%] 95% confidence interval [%]

oPC 39.49 19.45 (30.42, 48.56)
NL 22.91 8.24 (19.07, 26.75)

Fig. 4. Load sharing between the cortical and trabecular region over the length of the ra
proximal). Curves obtained from linear simulations with the optimal Pistoia criterion (L
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3.3. Q3 – Local damage patterns

The local damage patterns obtained with the oPC and the NL
simulations showed small differences (Fig. 5). On average,
ð21� 8Þ% of the elements where marked by both methods as dam-
aged, while ð2� 1Þ% (only NL) and ð15� 4Þ% (only oPC)
were identified by only one method. This indicates that the oPC
dius segments for six selected samples (0% relative length is most distal, 100% most
IN) and materially nonlinear simulations with individual Eadj

0 (NL) were similar.



Fig. 5. Comparison of the local damage patterns obtained by linear simulations (with the oPC) and NL simulations. Only samples with less than 5% relative error in the
ultimate load are shown.
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successfully identified damaged regions but while NL simulations
allowed the yielding of elements in these regions, linear simula-
tions led to more diffuse damage since no stress redistribution
was possible. This is especially pronounced at the proximal end.
In some samples, NL simulations led to a connection between
two damage regions which was not present in the linear simula-
tions (e.g. R191, to a limited extent also in R187). The bottom
views indicate that in the NL simulations, the trabecular regions
6

contained a larger number of damaged elements than in the linear
simulations (e.g. R181, R191). However, this observation did not
apply to all samples (for instance not for R188).

3.4. Q3 – Damage in cortical and trabecular region

The proportion of damage in the trabecular region at the

ultimate load (V trab ¼ Ntrab
D =Ntot

D ) predicted by the oPC and the NL



Fig. 6. Bland–Altman plot of the portion of damaged elements in the trabecular
region V trab ¼ Ntrab

D =Ntot
D at the ultimate load point obtained with the oPC and the NL

simulations.
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simulations was significantly different. A Bland–Altman plot
revealed that in most samples more damage was located in the
cortical than in the trabecular region, i.e. V trab < 0:5 (Fig. 6).
The average of the difference between the oPC and NL simulations

V lin
trab � Vnl

trab ¼ �0:07 was negative. This implies that on average the
oPC led to slightly less damage in the trabecular region than the NL
simulation.

Ntrab
D and Ncort

D obtained with the oPC and the NL simulations
showed qualitatively high agreements at the ultimate load point
Fig. 7. Evolutions of the percentage of damaged elements over the applied strain in the t
Pistoia, LIN) and nonlinear simulations (NL). Selected results with qualitatively similar ev
The results in the bottom row were categorized as ‘‘not similar”. The transition points
nonlinear results (vertical dashed line) are depicted. Above each plot the ultimate load

7

as well as in the progression curves over the applied strain
(Fig. 7). Most evolutions (17 out of 21) were qualitatively similar.
In three cases (R184, R185, R195) only either the NL simulations
or the oPC displayed a transition point. In one additional sample
(R194) the transition point obtained in the NL simulation occurred
at a much smaller strain ratio than estimated with the oPC. The
absolute values (strain range, number of damaged/overstrained
elements, etc.) were not comparable.

4. Discussion

This study investigated whether apparent and local results
obtained from linear simulations with two types of the PC, and
NL lFE simulations are comparable for radius segments. The pre-
dictions of the maximum force using linear regressions were com-
parable irrespective of the parameters used. Locally, the PC led only
to comparable results when an optimal individual calibration,
which is practically not possible, was used.

4.1. Q1 – Failure load

The PC and NL simulations showed comparable linear regres-
sions for the ultimate load with experimental data. However, com-
putational demands were quite different: 424–3958 core hours for
a NL simulation compared to 2–12 core hours for a linear simula-
tion (85–380 mio DOF).

NL simulations without stiffness calibration achieved better
absolute predictions of the ultimate loads than linear simulations.
The PC with standard parameters largely underestimated the fail-
ure loads, as also reported in the literature (Zhou et al., 2016).
rabecular and cortical region are compared between linear simulation (with optimal
olutions of ND between linear and nonlinear simulations are shown in the top row.
(crosses), and the inelastic limit eie for the Pistoia results (vertical dotted line) and
obtained from experiments is given.
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For practical applications, where one is interested in assessing the
fracture risk, the PC is sufficient since the systematic error can be
easily determined via a linear regression.

Thus, Pistoia parameters are typically calibrated with the aim of
achieving the best R2 in a linear regression (Mueller et al., 2011;
Arias-Moreno et al., 2019). Using this approach, one study also
reported a regression function that was not significantly different
from a one-to-one correspondence (Arias-Moreno et al., 2019).
However, for the present data set, this calibration approach did
not improve the prediction of absolute ultimate loads compared
to the standard parameters. For this study the absolute failure load
was important because it was the only means of estimating the
quality of the local damage/ overstraining regions which were
studied in question (Q3).

Thus, an individual oPC was proposed which exactly repro-
duced the failure load. This approach led to substantially higher
overstrained volumes than the standard Vc ¼ 2%. However, the
mesh resolution was higher than in the original study (Pistoia
et al., 2002) and the literature suggests that, generally, a finer
image resolution requires a larger V c (Mueller et al., 2011). In a
previous study with comparable resolutions, a V c ¼ 19% was used
(Zhou et al., 2016).

In both simulation types, the accuracy of the predicted ultimate
loads depended on the material parameters. The experimental ulti-
mate force was needed to evaluate the oPC. In contrast, the NL sim-
ulations did not necessarily require experimental data but it was
possible to improve the failure load predicted by the NL simula-
tions by using the experimental stiffness, which can be obtained
in a non-destructive test. Nevertheless, some samples showed high
deviations in the predicted ultimate load, but a calibration of the
NL simulation beyond the initial modulus was not easily possible.
4.2. Q2 – Load sharing

The load sharing between the cortical and the trabecular region
depended much more on the individual microstructure than on the
tissue model (Fig. 4). Thus, for simple structures as the radius a
materially linear simulation seems to be adequate to estimate
the normalized load sharing or evolution of the apparent forces.

The general trend to more load in the trabecular region at the
distal end, and more load in the cortical region at the proximal
end was confirmed (Johnson and Troy, 2018). However, some sam-
ples exhibited no transition point. It seemed that weaker samples
(lower load at failure) exhibit earlier or no transition compared
to stronger samples (see Appendix C). This could be evidence of
advancing osteoporosis where it is known that trabecular struts
resorb and the load transfer is taken up by the cortical compart-
ment (Rüegsegger et al., 1991).
4.3. Q3 – Local damage patterns

Damage patterns obtained from the NL simulations and the oPC
were observed at similar locations. This can be explained by the
definition of a damaged element as D > 0 or eeff > ec and quite sim-
ilar values for the damage-onset strains e�0 and ec. However, higher
damaged areas could not be investigated via the PC. Furthermore,
local results with the oPC cannot be obtained independent of
experiments since they rely on an accurate individual calibration.
In contrast, NL simulations did not require any material parameter
calibration to obtain the damage patterns.

The local damage distributions are modelling results which
were not validated experimentally. In experiments, damage can
be visualized as whitening of bone tissue (Thurner et al., 2007)
or by sequential staining (Lee et al., 2000). To obtain three-
dimensional images lCT scans can be performed repeatedly during
8

loading (Müller and van Lenthe, 2006). However, this is very time
consuming and the microdamage is not accessible at a sub-
trabecular resolution (Mueller et al., 2011; Costa et al., 2017;
Martelli and Perilli, 2018).
4.4. Q3 – Damage in cortical and trabecular region

The extent to which damage was shifted from the trabecular to
the cortical region between a materially nonlinear and linear sim-
ulation was small (Fig. 6). This was surprising since in a NL simu-
lation, after damage onset the failure of individual trabeculae and
the subsequent stress-relocations could have easily led to larger
damaged regions in the trabecular region compared to a linear
simulation.

The distribution of damaged elements over the trabecular and
cortical region (Fig. 7) showed larger differences than the load
sharing (Fig. 4). This could be expected since the load distribution
is a physical quantity while the percentage of damaged elements is
a modelling parameter. Results indicate that the percentage of
overstrained elements may not be unique. However, the PC is
based on this assumption since it was formulated in V c (Pistoia
et al., 2002). This finding could explain why it is necessary to cal-
ibrate the PC for most new data sets.

The evolution of the number of damaged elements ND was qual-
itatively similar between the oPC and NL simulations. The absolute
strains from oPC were mostly smaller than from the NL simulations
since they were based on a single linear simulation. The absolute
values of ND were not comparable since different criteria were
used to decide if an element was damaged: a strain-threshold
(PC) or a quadric damage-onset surface (NL). The difference
between the two criteria is obvious when comparing the inelastic
limit eie, which marks the point after which the simulations pre-
dicted that nonlinearity plays a role in the structure (Fig. 7). Most
curves suggest that in healthy radii, trabecular bone absorbs the
damage first and protects the cortex until the intersection where
the cortex receives more damage and causes failure of the
structure.
4.5. Limitations

As far as possible similar modelling strategies were chosen in
the linear and NL simulations so that a comparison of results is
legitimate. Most importantly, simplified boundary conditions were
used. Spurious damage was found on the top and bottom layer and
may lead to differences in the load distributions (Johnson and Troy,
2018). However, these boundary conditions are widely used in the
literature for the distal radius (Vilayphiou et al., 2011; Hosseini
et al., 2017) and seem to be meaningful (Varga et al., 2010).

Additionally, only the impact of materially nonlinear modelling
using a damage formulation was investigated. Geometric non-
linearity and other aspects of the constitutive behavior of bone
(viscosity, poroelasticity, plasticity) were neglected. Thus, the
reported results have to be seen as a first step. Due to high compu-
tational demands and availability of suitable specialized solvers it
was not possible to investigate the impact of a wider range of
material models.

It is not clear to what extent the results can be transferred to
other anatomic sites. The PC was originally used for Colles’-type
fractures of the distal radius (Pistoia et al., 2002) but was also suc-
cessfully applied to the tibia (Vilayphiou et al., 2010). Generally,
stress redistributions could play a much larger role in whole bones
or under non-trivial loading.
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4.6. Conclusion

Good agreement between linear (oPC) and NL (damage-based)
simulations was found on all levels for distal radius segments.
For practical applications, where one is interested in the failure
load (as in Q1) or apparent properties like the load distribution
(as for Q2) the PC with adequate normalization and calibration of
the results was sufficient. If the failure load is known from exper-
iments, the oPC can even estimate local properties (as for Q3)
although the predicted overstrained regions were more diffuse
compared to a NL simulation. These local damage distributions
could be interesting for basic research, for instance, to investigate
the impact of structural changes on bone strength. The benefit of
NL simulations is that the damage localization is represented and
obtainable even if no experimental measurements until failure
are available, although, at much higher computational costs.

Declaration of Competing Interest

DP is CEO of Dr. Pahr Ingenieurs e.U. which develops and dis-
tributes the software medtool. MS and PZ have no conflicts of inter-
est to declare.

Acknowledgments

The computational results presented have been achieved in part
using the Vienna Scientific Cluster (VSC). PZ would like to grate-
fully acknowledge SNF Grant No. 165510.

Appendix A. Apparent level agreement of nonlinear and
experimental data

While the PC is widely standardized for radii segments, nonlin-
ear lFE simulations can be performed with different settings
depending on how the nonlinear material behaviour is modelled.
Fig. A1. Linear regression analyses for the apparent stiffness k (E0 ¼ 10 GPa, left – standa
SEE ¼ 0:81) obtained from axial compression experiments (y-axis) and NL simulations (x
(connected by dashed lines).

Table A1
Mechanical properties obtained from experiments and lFE simulations (average value and
significantly different as tested with a paired t-test (p < 0:05, two-sided).

FE modulus property simu

E0 stiffness 33:79�
E0 0:2% yield load �5:6
E0 ultimate load �5:7

Eadj0
ultimate load �6:34
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To validate the nonlinear lFE approach applied in this study, addi-
tional paired t-tests were conducted to test if the stiffness and stiff-
ness adjusted failure load differ from the experimental
measurements. This information should facilitate the comparison
of different nonlinear lFE approaches.

The apparent stiffness and adjusted ultimate load obtained
from the NL simulations showed good correlation with experi-
ments (Fig. A1). The concordance correlation coefficient was 0:87
for the stiffness and 0:92 for the ultimate load. Both stiffness and
ultimate load were generally underestimated using E0 ¼ 10 GPa.

Using Eadj
0 , the ultimate load was slightly overestimated.

All apparent measures (stiffness, yield load and ultimate load

with uniform or individual Eadj
0 ) were not significantly different

from the experimental results (Table A1). Absolute errors were
not notably higher in weaker or stronger radii.

Qualitatively, most force-strain curves matched quite well
to the experimentally obtained curves (Fig. A2). However,
some samples showed high deviations between experiments and
simulations.

The initial tissue modulus had a strong impact on the one-to-
one predictive power for the ultimate load while not affecting
the coefficient of determination. To illustrate this effect, apparent
forces were scaled to match the apparent stiffness from experi-
ments. These are also shown in Fig. A2. In the individual simula-
tions, E0 of 10:56� 2:51 GPa (confidence interval: ð9:38;11:73Þ)
were required to reproduce the experimental stiffness.

In some samples an exceptionally good agreement between
simulated and experimentally obtained force-strain curves was
achieved (e.g. R191 in Fig. A2) while in other samples, no resem-
blance was found (e.g. R180). The shape of the curve suggests a
poor contact between the sample and the loading platten. Experi-
mental artefacts may also be at the origin of the mismatch
between the curves. Other possible reasons could be natural vari-
ation in the apparent modulus, variations in the sample prepara-
tion and testing, or structural details that were not resolved at
rd error of estimation SEE ¼ 6:9) and the ultimate load Fmax (individual Eadj
0 , right –

-axis). 18 samples are paired, taken from the left and right hand of the same donor

standard deviations). Simulation estimates and experimental measurements are not

lation experiment unit

15:39 39:58� 22:45 kN/mm
� 2:55 �6:06� 3:39 kN
� 2:59 �6:22� 3:49 kN
� 3:74 �6:22� 3:49 kN



Fig. A2. Selected force-strain curves: Experimental curve (black, solid), simulation results with a uniform initial modulus (E0 ¼ 10 GPa) (blue, filled points), and individually
scaled simulation results with Eadj

0 (grey, open points). The apparent 0:2% yield point (green, rhombus) is close to the ultimate load point (red square). Damage distributions at
the last increment are shown (small figures), the damage increases from white (no damage) to yellow (damaged) to dark red (fractured). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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the scan resolution which led to damage localization. Also, it was
assumed that there was no initial damage in the structures, for
instance introduced by the preparation process.
10
Generally, simulations overestimated the stiffness of low stiff-
ness samples, while under-estimating the stiffness of high stiffness
samples. Thus, lFE was not able to reproduce the full variability



Fig. A3. Part 1: Evolution of the load sharing between the cortical and trabecular region over the length of the radius segments (0% of length is most distal, 100% most
proximal). Evolutions obtained from linear simulations with the oPC and materially NL simulations were similar.
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found in experiments. This led to lower standard deviations
obtained from lFE simulations compared to experiments
(Table A1).

The proposed material model did not include all aspects rele-
vant for reproducing the experimental results: First, variations in
the stiffness and ultimate load obtained in the simulations were
generally lower than variations in the experiments (Table A1). Sec-
ond, the simulated stress–strain curves showed an abrupt drop
after the ultimate load rather than a slow decrease which was
found in the experiments (Fig. A2). This abrupt drop of the simu-
lated apparent stress is caused by the discontinuous failure beha-
viour in the material model. However, in the literature a similar
simple material model (an asymmetric bilinear model in principal
strain) was able to reproduce the post-ultimate behaviour
(MacNeil and Boyd, 2008). Third, the failure strains obtained from
simulations was much more constant than from experiments
(�1:07� 0:09% vs �1:25� 0:3%).

Interestingly, the 0:2% yield point was close to the ultimate
load point in all samples. Thus, it is not surprising that the yield
point has been found to be a good predictor of strength for
11
radius segments (MacNeil and Boyd, 2008). Generally, the yield
point is used in combination with an elasto-plastic material
behaviour. Since the location of the 0:2% yield point depends
on the applied material model, it cannot be concluded that its
location is similar using a damage-based or an elasto-plastic
material model.

Appendix B. Separation of cortical and trabecular volume

The radius segments were extended on the top and bottom, and
large pores were filled using a morphological closing operation.
Outer and inner masks were obtained using a ray based filling
operation. The cortical mask at the coarse resolution was obtained
by subtracting the inner mask from the outer mask. Finally, the fine
mask at 32:8 lm resolution was obtained by refining the coarse
mask and mapping it onto the original segmented image.

The number of damaged elements in the cortical and trabecular
region was obtained by applying the fine masks to the resultant
damage distributions. The percentage of damaged elements ND is
normalized to the total number of tissue elements in the image.
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Appendix C. Load sharing

The load distributed on the trabecular and cortical regions for
all 21 radius segments is given in Figs. A3 and A4. The samples
Fig. A4. Part 2: Evolution of the load sharing between the cortical and trabecular regio
proximal). Evolutions obtained from linear simulations with the oPC and materially NL

12
are ordered according to the experimentally measured load at fail-
ure (given above each plot).
n over the length of the radius segments (0% of length is most distal, 100% most
simulations were similar.



M. Stipsitz, P.K. Zysset and D.H. Pahr Journal of Biomechanics 116 (2021) 110205
References

Arias-Moreno, A.J., Hosseini, H.S., Bevers, M., Ito, K., Zysset, P., van Rietbergen, B.,
2019. Validation of distal radius failure load predictions by homogenized- and
micro-finite element analyses based on second-generation high-resolution
peripheral quantitative CT images. Osteoporos. Int. 30, 1433–1443. https://doi.
org/10.1007/s00198-019-04935-6.

Christen, D., Melton, L.J., Zwahlen, A., Amin, S., Khosla, S., Müller, R., 2013. Improved
fracture risk assessment based on nonlinear micro-finite element simulations
from HRpQCT images at the distal radius. J. Bone Miner. Res. 28, 2601–2608.
https://doi.org/10.1002/jbmr.1996.

Costa, M.C., Tozzi, G., Cristofolini, L., Danesi, V., Viceconti, M., Dall’Ara, E., 2017.
Micro finite element models of the vertebral body: validation of local
displacement predictions. PLOS One 12, e0180151. https://doi.org/10.1371/
journal.pone.0180151.

Eswaran, S.K., Gupta, A., Adams, M.F., Keaveny, T.M., 2006. Cortical and trabecular
load sharing in the human vertebral body. J. Bone Miner. Res. 21, 307–314.
https://doi.org/10.1359/jbmr.2006.21.2.307.

Fields, A.J., Nawathe, S., Eswaran, S.K., Jekir, M.G., Adams, M.F., Papadopoulos, P.,
Keaveny, T.M., 2012. Vertebral fragility and structural redundancy. J. Bone
Miner. Res. 27, 2152–2158. https://doi.org/10.1002/jbmr.1664.

Hosseini, H.S., Dünki, A., Fabech, J., Stauber, M., Vilayphiou, N., Pahr, D.,
Pretterklieber, M., Wandel, J., van Rietbergen, B., Zysset, P.K., 2017. Fast
estimation of Colles’ fracture load of the distal section of the radius by
homogenized finite element analysis based on HR-pQCT. Bone 97, 65–75.
https://doi.org/10.1016/j.bone.2017.01.003.

Johnson, J.E., Troy, K.L., 2018. Simplified boundary conditions alter cortical-
trabecular load sharing at the distal radius; a multiscale finite element
analysis. J. Biomech. 66, 180–185. https://doi.org/10.1016/J.
JBIOMECH.2017.10.036.

Lee, T.C., Arthur, T.L., Gibson, L.J., Hayes, W.C., 2000. Sequential labelling of
microdamage in bone using chelating agents. J. Orthop. Res. 18, 322–325.
https://doi.org/10.1002/jor.1100180222.

MacNeil, J.A., Boyd, S.K., 2008. Bone strength at the distal radius can be estimated
from high-resolution peripheral quantitative computed tomography and the
finite element method. Bone 42, 1203–1213. https://doi.org/10.1016/J.
BONE.2008.01.017.

Martelli, S., Perilli, E., 2018. Time-elapsed synchrotron-light microstructural
imaging of femoral neck fracture. J. Mech. Behav. Biomed. Mater. 84, 265–
272. https://doi.org/10.1016/J.JMBBM.2018.05.016.

Mueller, T.L., Christen, D., Sandercott, S., Boyd, S.K., van Rietbergen, B., Eckstein, F.,
Lochmüller, E.M., Müller, R., van Lenthe, G.H., 2011. Computational finite
element bone mechanics accurately predicts mechanical competence in the
human radius of an elderly population. Bone 48, 1232–1238. https://doi.org/
10.1016/J.BONE.2011.02.022.

Müller, R., van Lenthe, G.H., 2006. Trabecular bone failure at the microstructural
level. Curr. Osteoporosis Rep. 4, 80–86. https://doi.org/10.1007/s11914-006-
0007-4.

Pahr, D.H., Zysset, P.K., 2009. From high-resolution CT data to finite element models:
development of an integrated modular framework. Comput. Meth. Biomech.
Biomed. Eng. 12, 45–57. https://doi.org/10.1080/10255840802144105.
13
Pistoia, W., van Rietbergen, B., Lochmüller, E.M., Lill, C.A., Eckstein, F., Rüegsegger, P.,
2002. Estimation of distal radius failure load with micro-finite element analysis
models based on three-dimensional peripheral quantitative computed
tomography images. Bone 30, 842–848. https://doi.org/10.1016/s8756-3282
(02)00736-6.

Pistoia, W., van Rietbergen, B., Rüegsegger, P., 2003. Mechanical consequences of
different scenarios for simulated bone atrophy and recovery in the distal radius.
Bone 33, 937–945. https://doi.org/10.1016/J.BONE.2003.06.003.

van Rietbergen, B., Ito, K., 2015. A survey of micro-finite element analysis for clinical
assessment of bone strength: the first decade. J. Biomech. 48, 832–841. https://
doi.org/10.1016/J.JBIOMECH.2014.12.024.

Rüegsegger, P., Durand, E., Dambacher, M., 1991. Differential effects of aging and
disease on trabecular and compact bone density of the radius. Bone 12, 99–105.
https://doi.org/10.1016/8756-3282(91)90007-6.

Schwiedrzik, J.J., Wolfram, U., Zysset, P.K., 2013. A generalized anisotropic quadric
yield criterion and its application to bone tissue at multiple length scales.
Biomech. Model. Mechanobiol. 12, 1155–1168. https://doi.org/10.1007/s10237-
013-0472-5.

Stipsitz, M., 2020. Development of a Nonlinear Micro Finite Element Framework for
Image-based Simulations in Bone Biomechanics Ph.D. thesis. Technische
Universität Wien, Austria.

Stipsitz, M., Zysset, P.K., Pahr, D.H., 2019. Efficient materially nonlinear lFE solver
for simulations of trabecular bone failure. Biomech. Model. Mechanobiol.
https://doi.org/10.1007/s10237-019-01254-x.

Thurner, P., Erickson, B., Jungmann, R., Schriock, Z., Weaver, J., Fantner, G., Schitter,
G., Morse, D., Hansma, P., 2007. High-speed photography of compressed human
trabecular bone correlates whitening to microscopic damage. Eng. Fract. Mech.
74, 1928–1941. https://doi.org/10.1016/J.ENGFRACMECH.2006.05.024.

Ulrich, D., van Rietbergen, B., Laib, A., Rüegsegger, P., 1999. Load transfer analysis of
the distal radius from in-vivo high-resolution CT-imaging. J. Biomech. 32, 821–
828. https://doi.org/10.1016/S0021-9290(99)00062-7.

Varga, P., Pahr, D.H., Baumbach, S., Zysset, P.K., 2010. HR-pQCT based FE analysis of
the most distal radius section provides an improved prediction of Colles’
fracture load in vitro. Bone 47, 982–988. https://doi.org/10.1016/J.
BONE.2010.08.002.

Vilayphiou, N., Boutroy, S., Sornay-Rendu, E., van Rietbergen, B., Munoz, F., Delmas,
P.D., Chapurlat, R., 2010. Finite element analysis performed on radius and tibia
HR-pQCT images and fragility fractures at all sites in postmenopausal women.
Bone 46, 1030–1037. https://doi.org/10.1016/J.BONE.2009.12.015.

Vilayphiou, N., Boutroy, S., Szulc, P., van Rietbergen, B., Munoz, F., Delmas, P.D.,
Chapurlat, R., 2011. Finite element analysis performed on radius and tibia HR-
pQCT images and fragility fractures at all sites in men. J. Bone Miner. Res. 26,
965–973. https://doi.org/10.1002/jbmr.297.

Zhou, B., Wang, J., Yu, Y.E., Zhang, Z., Nawathe, S., Nishiyama, K.K., Rosete, F.R.,
Keaveny, T.M., Shane, E., Guo, X.E., 2016. High-resolution peripheral
quantitative computed tomography (HR-pQCT) can assess microstructural
and biomechanical properties of both human distal radius and tibia: Ex vivo
computational and experimental validations. Bone 86, 58–67. https://doi.org/
10.1016/J.BONE.2016.02.016.

https://doi.org/10.1007/s00198-019-04935-6
https://doi.org/10.1007/s00198-019-04935-6
https://doi.org/10.1002/jbmr.1996
https://doi.org/10.1371/journal.pone.0180151
https://doi.org/10.1371/journal.pone.0180151
https://doi.org/10.1359/jbmr.2006.21.2.307
https://doi.org/10.1002/jbmr.1664
https://doi.org/10.1016/j.bone.2017.01.003
https://doi.org/10.1016/J.JBIOMECH.2017.10.036
https://doi.org/10.1016/J.JBIOMECH.2017.10.036
https://doi.org/10.1002/jor.1100180222
https://doi.org/10.1016/J.BONE.2008.01.017
https://doi.org/10.1016/J.BONE.2008.01.017
https://doi.org/10.1016/J.JMBBM.2018.05.016
https://doi.org/10.1016/J.BONE.2011.02.022
https://doi.org/10.1016/J.BONE.2011.02.022
https://doi.org/10.1007/s11914-006-0007-4
https://doi.org/10.1007/s11914-006-0007-4
https://doi.org/10.1080/10255840802144105
https://doi.org/10.1016/s8756-3282(02)00736-6
https://doi.org/10.1016/s8756-3282(02)00736-6
https://doi.org/10.1016/J.BONE.2003.06.003
https://doi.org/10.1016/J.JBIOMECH.2014.12.024
https://doi.org/10.1016/J.JBIOMECH.2014.12.024
https://doi.org/10.1016/8756-3282(91)90007-6
https://doi.org/10.1007/s10237-013-0472-5
https://doi.org/10.1007/s10237-013-0472-5
http://refhub.elsevier.com/S0021-9290(20)30629-1/h0095
http://refhub.elsevier.com/S0021-9290(20)30629-1/h0095
http://refhub.elsevier.com/S0021-9290(20)30629-1/h0095
https://doi.org/10.1007/s10237-019-01254-x
https://doi.org/10.1016/J.ENGFRACMECH.2006.05.024
https://doi.org/10.1016/S0021-9290(99)00062-7
https://doi.org/10.1016/J.BONE.2010.08.002
https://doi.org/10.1016/J.BONE.2010.08.002
https://doi.org/10.1016/J.BONE.2009.12.015
https://doi.org/10.1002/jbmr.297
https://doi.org/10.1016/J.BONE.2016.02.016
https://doi.org/10.1016/J.BONE.2016.02.016

	Prediction of the Inelastic Behaviour of Radius Segments: Damage-based Nonlinear Micro Finite Element Simulation vs Pistoia Criterion
	1 Introduction
	2 Materials & Methods
	2.1 Nonlinear μFE simulations
	2.2 Linear μFE with the Pistoia criterion
	2.3 Q1 – Statistics of the failure load
	2.4 Q2 – Load sharing
	2.5 Q3 – Local damage patterns
	2.6 Q3 – Damage in cortical and trabecular region
	2.7 Evolution of damaged and overstrained elements
	2.8 Elasticity limit

	3 Results
	3.1 Q1 – Failure load
	3.2 Q2 – Load sharing
	3.3 Q3 – Local damage patterns
	3.4 Q3 – Damage in cortical and trabecular region

	4 Discussion
	4.1 Q1 – Failure load
	4.2 Q2 – Load sharing
	4.3 Q3 – Local damage patterns
	4.4 Q3 – Damage in cortical and trabecular region
	4.5 Limitations
	4.6 Conclusion

	Declaration of Competing Interest
	Acknowledgments
	Appendix A Apparent level agreement of nonlinear and experimental data
	Appendix B Separation of cortical and trabecular volume
	Appendix C Load sharing
	References


