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Telecoupling visualizations through a network lens: a systematic review
Gabi Sonderegger 1,2, Christoph Oberlack 1,2, Jorge C. Llopis 1,2, Peter H. Verburg 3,4 and Andreas Heinimann 1,2

ABSTRACT. Telecoupling is an integrative social-ecological framework that has made important contributions to understanding land
change processes in a hyperconnected world. Visualizations are a powerful tool to communicate knowledge about telecoupling
phenomena. However, little is known about current practices of telecoupling visualization and the challenges involved in visually
displaying connections between multiple social-ecological systems. Our research takes stock of existing telecoupling visualizations and
provides recommendations for improving current practices. We systematically review 118 visualizations presented in the scientific
literature on telecoupling, and assess them in terms of their content and the adopted visualization approaches. To this end, we
conceptualize telecoupling visualizations through a network lens. We find that they typically present networks of social-ecological
systems, which are linked through flows. Displays of telecoupling connections through actor networks or action situation networks
are less frequent. We categorize the existing visualizations into seven main types, which differ in terms of the visual encoding strategies
used to represent telecoupling components. We then draw on insights from data visualization literature to reflect critically upon these
current practices and provide practical recommendations. Finally, we show that network perspectives are inherent in telecoupling
research and visualizations, and may deserve further attention in this field.
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INTRODUCTION
Causes and consequences of land use changes are closely tied to
distant places (Lambin and Meyfroidt 2011). The telecoupling
framework aims to provide a holistic understanding of land use
changes that captures distant linkages between social-ecological
systems (Liu et al. 2013, Eakin et al. 2014). In recent years, there
has been a boom in research on telecoupling phenomena, covering
a wide range of subjects and bridging scientific efforts from
various disciplines (Kapsar et al. 2019). Visualizations are a
common means to depict, analyze, and communicate knowledge
about telecoupled land systems (see, e.g., the telecoupling toolbox,
Tonini and Liu 2017, McCord et al. 2018). They are particularly
valuable and powerful in the context of intangible research
subjects, e.g., those dealing with cross-scale issues or abstract
concepts (McInerny et al. 2014). Visuals can support researchers
in the process of exploring their data (Fox and Hendler 2011),
helping them to unravel the human-environmental dynamics
within and across systems. Furthermore, visual communication
allows the sharing of knowledge in a more accessible, tangible,
and memorable way than text sources (Rodriguez and Dimitrova
2011). It can thus facilitate cross-disciplinary exchange and
coproduction of scientific knowledge, as well as communication
with a nonscientific audience (Grainger et al. 2016). Despite their
many advantages, visualizations also bear risks and limitations.
All visual communications are selective in terms of the data they
present or leave out (Tversky 2011). They can introduce biases
through decontextualization or oversimplification of the subject,
or through low quality data inputs (Dörk et al. 2013, Boehnert
2015). The production of informative and unbiased visualizations
can thus be challenging, but also bring about fundamental gains
for the generation and communication of scientific knowledge.  

A telecoupling understanding of land use change implies the
study of multiple social-ecological systems, and essentially the

connections between them. Applying this more holistic lens to
land use phenomena brings about particular visualization needs,
which go beyond those commonly addressed in land system-based
research, e.g., through land use maps. Despite these potential
challenges and the important role of visualizations in telecoupling
research, little systematic knowledge and guidance is available on
existing visualization practices in this field. Addressing this
knowledge gap is key to making full use of the potentials that
visualizations can offer. Telecoupling research can thus benefit
from a critical reflection of existing visualizations, including the
contents they represent (or leave out) and the visualization
approaches used to portray telecoupling dynamics. Therefore, the
objective of this study is to provide insights into a better
understanding of the current practices of telecoupling
visualization. We further aim to identify key visualization
challenges in this field and provide recommendations for
improving current practice. We will do so by systematically
reviewing visualizations presented in telecoupling publications
and thereby drawing on insights from data visualization and
network analysis literature.

MATERIALS AND METHODS

Key concepts and analytical framework

Data visualization, data representation, and visual encoding
Kirk (2016:19) defines data visualization as the “representation
and presentation of data to facilitate understanding.” This
definition refers to two consecutive steps in the visualization
process. Data representation is the process of converting data to
graphical form. It defines the basic structure of the visualization
and is shaped by the content that is to be visually displayed. Data
presentation concerns more detailed design choices, e.g., on the
use of color schemes or annotations (Kirk 2016). In this study,
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Fig. 1. A selection of visual mark and attribute encodings. Source: Authors, adapted from Iliinsky and Steele (2011)
and Kirk (2016).

we focus on data representation, as we aim to gain insights into
the way specific content, i.e., telecoupling information, is
visualized.  

A common approach to data representation is to select predefined
visualization techniques such as bar charts or sankey diagrams
to visualize the available data. A more elaborate approach is visual
encoding (Kirk 2016, Healy 2018). It involves the translation of
data into a combination of marks and attributes (see Fig. 1 for
examples thereof). Marks include basic graphical elements such
as points, lines, areas, or forms (Munzner 2014). Attributes (also
called channels) define the appearance of marks, e.g., through
color or size variations and respective labeling. For example, in a
bar chart, the bars constitute the marks and the length of the bars
the attributes. A large spectrum of attributes exist, as first outlined
by Bertin (1983). Figure 1 presents a nonexhaustive list of visual
attributes, with an indication of the related suitable data types
(see Iliinsky and Steele 2011, Munzner 2014, Kirk 2016 for more
options). Spatial data is an additional data type to consider, which
is usually represented through spatially explicit marks, e.g., on
maps.

Telecoupling: a network perspective
Several approaches to telecoupling analysis have been suggested
(Friis et al. 2016). Liu et al. (2013) define telecoupling in terms of
sending, receiving, and spillover systems that are connected
through flows of material, information, and energy. Furthermore,
they identify different system components, namely agents, causes,
and effects. Other authors have further elaborated on this system-
flow-based understanding of globalized land use phenomena by
explicitly drawing attention to the role of governance structures
and the underlying actor networks in a telecoupling context
(Eakin et al. 2014, 2017, Lenschow et al. 2016, Oberlack et al.
2018, Munroe et al. 2019).  

A network approach has been gaining prominence in telecoupling
research (Seaquist et al. 2014, Prell et al. 2017, Schaffer-Smith et
al. 2018, Andriamihaja et al. 2019), and areas of synergy have
been proposed for network-related concepts and tools (Seaquist
and Johansson 2019, Sayles et al. 2019). The basic components
of networks are nodes and links. They can differ largely in terms

of the content and the level of aggregation they represent (Bodin
et al. 2019). Nodes can, for example, represent people in a social
network or countries in a trade network. Similarly, links can
indicate friendships between people or commodity flows between
countries. In this sense, telecoupled phenomena can also be
viewed as networks, for example, with social-ecological systems
as nodes and flows as links (see Fig. 2). Nodes and links can thus

Fig. 2. (a) Node-link structure of networks. (b) Network
examples: actor networks and networks of social-ecological
systems. Source: Authors, inspired by Barabási (2016).
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Fig. 3. Publication and case selection process.

represent an array of phenomena. Borgatti et al. (2009, 2018)
identify four basic types of links in social networks: flows (e.g.,
information flows); interactions (e.g., collaborative activities),
relations (e.g., power relations); and similarities (e.g., same
gender).

Visualizing telecoupling networks
Visualizations are fundamental in network-based research,
allowing viewers to detect patterns (Golbeck 2013) and “translate
structural complexity into perceptible visual insights” (Lima
2011:79). Network visualizations differ in terms of how nodes
and links are visually encoded, i.e., whether they are explicitly
visualized through marks, or implicitly through attributes
(Munzner 2014).  

In this study, we adopt a network-based approach to analyzing
visual representations of telecoupling dynamics. Hence, we

interpret existing visualizations in terms of their node-link
structure. We then identify the content that these nodes and links
represent and assess how they are visually encoded through marks
and attributes. This network-based approach presents a means to
analyze telecoupling visualizations in a unified manner,
independent of the definition of the system in use, displayed
analytical units of the telecoupling framework, or scale of the
study region.

Methods: systematic review of telecoupling visualizations

Publication and case selection
In this study, we systematically reviewed visualizations presented
in telecoupling literature in order to investigate current practices
of telecoupling visualization. We conducted the review in line with
the guidelines of the Preferred Reporting Items for Systematic
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Reviews and Meta-Analyses (PRISMA) statement (Moher et al.
2010). Figure 3 presents the publication and case selection process.
In the first stage, we conducted a keyword search in bibliographic
databases to identify scientific journal articles and book chapters
on the topic of “telecoupling.” We cross-checked these results
with other systematic reviews of telecoupling literature (Carlson
et al. 2018, Corbera et al. 2019, Kapsar et al. 2019). Taking specific
exclusion criteria into account (see Fig. 3), we then selected 120
publications. They served as sources to identify potential cases
for our study.  

The second stage involved the selection of cases, i.e.,
visualizations. The selected articles and book chapters contained
495 visualizations, to which we applied the case identification,
inclusion, and exclusion criteria shown in Figure 3. We found that
381 visualizations (77.0%) present empirical, case-specific
information on real world phenomena. Moreover, 85 (17.2%)
displayed purely conceptual information, typically portraying
telecoupling frameworks. The remaining 29 visualizations
presented other types of information, e.g., on methodological
approaches. Of the 381 visualizations, 130 presented explicit
information on telecoupling connections. These cases were
considered for our review, making up 26.3% of the initially
identified potential cases. We then excluded visualizations that
represent similar content through an identical visual design. This
resulted in the selection of 118 visualizations, i.e., cases, displayed
in 62 publications (see Table A1.1 in Appendix 1 for a complete
overview).

Coding process and data analysis
We employed an iterative process to develop the codebook. We
first derived a preliminary version based on insights from
telecoupling, network, and visualization literature. We then
adjusted it throughout several rounds of coding, and recoded all
cases using the final version of the codebook. It consisted of the
following sections: general information; nodes; links; systems;
flows; and data visualization (see Table A2.1 in Appendix 2 for
the full codebook). In order to ensure the quality of the data, we
applied sample-double coding. Of the cases, 33.1% were coded
by at least two of the authors, which resulted in a percentage
agreement intercoder reliability of 0.92.  

We employed descriptive statistics to analyze the resulting data
set. Furthermore, we developed a typology of telecoupling
visualizations based on the characterization of single cases
(Oberlack et al. 2019). The following visualization characteristics
were thereby considered: visual encodings; and spatial explicitness
of nodes and links. We used a truth table approach to identify the
visualization types. A truth table presents the prevailing
combinations of different case characteristics (Rihoux and Ragin
2009). Each unique combination of visualization characteristics
corresponds to one visualization type.

Limitations
Our case selection was limited to those that explicitly refer to
“telecoupling.” This precludes consideration of the numerous
other visualizations presenting information about telecoupling
phenomena without mentioning the term. In addition, there
appears to be a thematic bias in telecoupling visualizations, as the
majority present information on commodity trade (see Fig. 4). It
is clear that much can be learned from other thematic fields in
terms of (alternative) visualization approaches used for

displaying connections. However, by confining the scope of this
study to telecoupling, we were able to systematically review all
existing visualizations in this field and draw more reliable and
concrete conclusions about its practice. Nonetheless, this specific
focus also ruled out the inclusion of visualizations presented in
grey literature and online visualizations. To our knowledge, no
such sources exist that explicitly mention telecoupling and present
visualizations that meet the case selection criteria of this study.
However, because interactive visualizations offer important
features for visualizing complex data sets, we further elaborate on
them in the discussion section, based on illustrative examples.
Finally, our approach of considering each visualization as a
separate case poses two risks. First, this implies that multiple cases
from the same article/book chapter can be included in the analysis.
This may introduce a certain bias, if  authors tend to use similar
visualization approaches for multiple graphs in their articles. We
introduced duplication exclusion criteria to limit this potential
bias (see Fig. 3). Second, our approach bears the risk of neglecting
the complementary function that multiple visualizations can have
within one source. This aspect is also taken up in the discussion
section.

RESULTS

Visualization content
The 118 reviewed visualizations covered a range of topics, most
frequently commodity trade, species migration, and nature
conservation (Fig. 4). They mainly display secondary data (n =
89), but also primary data (n = 5) or a mix of both (n = 8). For
some cases (n = 16), no data sources were exposed.

Fig. 4. Telecoupling topics addressed in the selected 118 cases
(by number of cases).

Nodes and links
We adopted a network lens to analyze telecoupling visualizations,
identifying their node and link components and the content they
represent. We found that they typically presented networks of
social-ecological systems, which were linked through flows (Fig.
5). This is in line with the original framework of Liu et al. (2013),
which proposes social-ecological systems and flows as main
analytical units of telecouplings. Because of their predominance,
a more detailed account of the use of systems and flows in
telecoupling visualizations is given below.  

Our analysis also revealed the presence of alternative node and
link contents (Fig. 5). Besides systems, nodes also represent
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individual or collective actors, or action situations. Nine out of the
118 cases presented actors as nodes in a telecoupling network,
without an explicit display of the systems in which the actors were
embedded (see, for example, Gasparri et al. 2016, Tapia-Lewin et
al. 2017). A small proportion of the reviewed cases (n = 2) displayed
connections between action situations (Boillat et al. 2018, Oberlack
et al. 2018). Action situations are decision arenas in which actors
interact and take interdependent and joint decisions that lead to
specific outcomes (Ostrom 2010).

Fig. 5. Node and link types represented in telecoupling
visualizations and the combination thereof. Link types are based
on Borgatti et al. (2009).

In some cases, telecoupling links represented interactions, relations,
or similarities, rather than flows. Interactions refer to events that
are facilitated through flows (Borgatti et al. 2018). Examples are
market demand and supply interactions (e.g., Liu et al. 2015, Eakin
et al. 2017) as well as collaboration and negotiation (Gasparri et
al. 2016). Two cases also displayed relations, for instance referring
to power or legitimacy (Chignell and Laituri 2016, Oberlack et al.
2018). One study (Andriamihaja et al. 2019) identified the presence
of shared institutions as links between actors, thus indicating
similarity between them. For some cases, the nature of the link was
not specified.

Systems and flows
System nodes mainly differed in terms of three aspects: (1) whether
a distinction was made between sending, receiving, and spillover
systems; (2) whether they presented information about internal
system dynamics; and (3) the way their boundaries were defined.
We found that among all cases that presented system nodes, 31.3%
made explicit reference to sending, receiving, and/or spillover
systems. Furthermore, less than a third (28%) presented
information about dynamics that took place within the respective
systems. Some included specific information about the system
components proposed by Liu et al (2013): actors (12.5%); causes
(23.2%); and effects (17.9%). A range of system boundaries were
used to delineate system nodes (Fig. 6). They were most commonly
based on existing governance units, accounting for 64.6% of all

identified system boundary types. Many thereby referred to
administrative units at different levels (55.7%). Others pointed to
spatial zonings (8.9%) such as protected areas or land concessions.
System boundaries were further based on broader geobased
characteristics (e.g., world regions, 12.5%), diverse social-economic
features (e.g., economic sectors or infrastructure facilities, 10.4%),
ecosystems (e.g., biomes or breeding sites of migrating species,
9.4%), or areas defined through their topographic-hydrological
traits (e.g., watersheds or valleys, 3.1%).

Fig. 6. System boundaries used in telecoupling visualizations.
System categories are partly based on Brondizio et al. (2016).

There was a tendency to define systems at a high level of
aggregation. More than half  of the identified boundary types
(53.6%) represent telecoupled systems at the national level or above,
i.e., systems defined through supra-national governance units,
world regions, the rest of the world (in relation to a focal system),
or the world itself. This often applied to spillover systems (see, for
example, Liu et al. 2015, Parish et al. 2018). Furthermore, most
boundary types (96.4%) provided an indication of the system’s
geographical location. Systems without a geographic reference were
observed merely with regard to socioeconomically defined
boundaries.  

Flows in telecoupling visualizations mainly differed in terms of
content. Material flows were most commonly depicted, accounting
for 34.5% of all flow types identified. They generally referred to
the export and import of goods, in particular agricultural
commodities such as soybeans or beef. Some links also represented
elements implicitly embedded within commodity flows. These can
be virtual resources (5.1%) such as water or land, or virtual risks/
benefits (7.3%) such as deforestation risks or biodiversity loss. The
movement of capital (16.9%), humans (e.g., tourists, 12.4%),
nonhuman beings (e.g., migrating birds, 10.2%), or information
(9%) is also commonly visualized. Flows of ecosystem services are
explicitly mentioned in a number of graphs (2.3%). Few cases
displayed flows, but did not present any detailed information about
their content (2.3%).
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Fig. 7. Overview of visualization types used to display telecoupling dynamics, approaches used to represent node and link data, and
their association with different visualization techniques (the order of the naming of the techniques corresponds to the order of the
listed icons).

Visualization approaches

Visualization types
Our analysis identified seven distinctly different telecoupling
visualization types used in current practice, which correspond to
15 visualization techniques (see Fig. 7). They reflect unique
combinations of data representation strategies used to depict
node and link information visually.  

Relational graphs and quantity graphs are the two most frequently
used telecoupling visualization types (Fig. 8). Of all cases, 55.9%
made use of one of these two types. Neither are spatially explicit.
For relational graphs (n = 36 out of 118 cases), the predominant
visualization technique used was schematic diagrams. In many
instances, these were box and arrow diagrams that reproduced the
telecoupling framework structure proposed by Liu et al. (2013)
and applied it to an empirical context. Chord and network
diagrams are alternative but much less frequently used forms of
relational graphs. Quantity graphs (n = 30) include a number of
different visualization techniques used to display quantitative,
comparative data. Examples are different types of bar charts and
area graphs. In these visualizations, nodes are not explicitly
depicted through a mark, but rather implicitly through a link
attribute.  

In 44.1% of all cases, nodes were depicted with a spatial reference.
However, only 3.4% also presented links in a spatially explicit way.
This is the case for route maps (n = 4), which present links as a

series of geographical data, thus depicting a path from one
location to another. Link maps (n = 21) depict links as geodesic
lines instead, either as connection maps or flow maps. The former
present nodes through points on a map, and the latter through
areas. Quantity maps (n = 7) do not explicitly present link
connections. They indicate the presence of links by presenting
quantitative link information as attributes of geospatially explicit
nodes. For instance, the proportional symbol map presented by
Parish et al. (2018) displays information about the magnitude of
wood pellet exports (links) through the varying size of the bubbles
representing the ports (nodes) from which these goods are
shipped. Furthermore, we have identified hybrid types that
combine multiple visualization approaches, for instance by
overlapping choropleth maps and flow maps (see, for example,
Kastner et al. 2015).  

The identified visualization types can be used to depict node and
link information, irrespective of their thematic content. Each of
them can thus be applied to a variety of telecoupling phenomena.
This is underlined by our results, which show a high diversity in
visualization types used for different telecoupling topics (see Fig.
9). Exceptions are visualizations of land acquisition telecouplings
(though this is possibly linked to the small n for this category)
and those of species migration (showing a relatively large share
of link maps). Each of the visualization types has its own set of
data requirements. Depending on the topic, such data might be
more or less accessible. For example, a route map can in principle
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Fig. 8. Frequency of visualization types by occurrence in cases (n = 118), with an indication of their composition of visualization
techniques (see Fig. 7 for the meaning of the icons).

be used to present any type of flows between two places, e.g., flows
of water, migrating species, or conservation funds. However, it
requires spatially explicit information about the flow route.
Accessing such information might be particularly challenging for
some types of flows, e.g., species migration routes, but relatively
more straight forward for others, e.g., water transfer channel
infrastructure (see, for example, Quan et al. 2016).

Visual attributes
The identified visualization types indicate different approaches
for visually representing the two key components of telecoupling
visualizations, i.e., nodes and links. Moreover, visual attributes
can be applied to node and link marks, in order to present
additional or more detailed information about the telecoupling
phenomena (cf. Fig. 1).  

In Appendix 3, we provide an overview of the main visual
attributes used in existing telecoupling visualizations, based on
illustrative case examples (see Figure A3.1). A large range of
attributes was used, providing different types of information. For
instance, authors use visual attributes to characterize nodes, e.g.,
distinguishing between export and import countries, and to
delineate them, e.g., indicating closed or porous system
boundaries. Visual attributes are also used to indicate the
direction, magnitude, or other characteristics of the displayed
links. For instance, when portraying the flows linked to the
expansion of banana plantations in Laos, Friis and Nielsen
(2017a) apply color attributes to the link marks (i.e., the arrows
representing flows) to add information about flow content (e.g.,

discursive flows or political flows). They also use solid and dashed
arrows to indicate whether or not these arrows represent spillover
flows.  

Visual attributes were also used to display temporal information,
in particular to present comparative data over time. This applied
to 24.6% of all cases (n = 30). The majority thereby presented
temporal variations in quantitative data (n = 26), such as the
changing magnitude of commodity exports (see, e.g., Reenberg
and Fenger 2011). Quantity graphs are the predominant
visualization type used to present such information, using
positioning attributes in reference to a time scale (see, e.g., Yang
et al. 2016). Quantity maps allow to present quantitative
information that is both temporally and spatially explicit. In a
choropleth map, for instance, color attributes can be used to show
net changes of flow magnitude across a certain time period (see
Marston and Konar 2017). Four cases further present qualitative
data in a temporally explicit framing, e.g., through labelling
(Eakin et al. 2017) or positioning on a time line (Raya Rey et al.
2017).

DISCUSSION AND CONCLUSIONS

Data representation in telecoupling visualizations: current
practices, challenges, and recommendations
Our study shows that visualizations are widely used in
communicating knowledge about telecoupled connections, and
that this practice is rich in content and visual diversity. In
particular, we draw attention to the node-link structure of

https://www.ecologyandsociety.org/vol25/iss4/art47/


Ecology and Society 25(4): 47
https://www.ecologyandsociety.org/vol25/iss4/art47/

Fig. 9. Relative frequency of use of visualization types for each telecoupling topic.

telecoupling visualizations and unravel the visual encoding
strategies applied to them. We find that the visual representation
of telecoupling phenomena is particularly challenging, given the
multidisciplinary conceptual foundations, diversity of analytical
approaches, and richness of the data used in this field. In this
section, we reflect upon selected practices of data representation
in telecoupling visualizations, providing specific recommendations
for enhancement. We thereby refer to the two concurrent data
representation processes: visual encoding; and the selection of
visualization techniques.  

Our research identified seven telecoupling visualization types.
These differ in terms of the way node and link information is
visually encoded, i.e., explicitly through visual marks or implicitly
through visual attributes. In relational graphs, route maps, and
link maps, nodes and links are shown explicitly and can thus be
quickly captured by the target audience. In quantity maps and
quantity graphs, either node or link information is implicitly
encoded. This facilitates the visually display of quantitative data,
but also makes the implicitly presented information less accessible
to the viewer. Quantity maps with link marks (hybrid type) attempt
to address this issue, for example by displaying selected links in
the form of arrows, in addition to the presentation of link
information through visual attributes (e.g., color coding in a
choropleth map). However, this approach implies that links are
encoded in multiple ways, which may lead to visual clutter and
encoding inconsistencies. These examples illustrate that several
potentially competing factors (number of data points,
combination of data types, coding consistency, etc.) affect visual
encoding decisions. Careful reflection and design is thus needed
at this stage of the data visualization process, ensuring that the
selected visual encodings facilitate a rapid and intuitive decoding
process (Iliinsky and Steele 2011) and support the main purpose
of the visualization (Kirk 2016).  

The same applies to the selection of visual attributes. Our research
revealed that telecoupling visualizations commonly make use of

(combinations of) visual attributes to represent different
telecoupling contents. The field could learn from data
visualization literature, which discusses a broad range of different
attributes and presents guidance on their selection and
implementation. Iliinsky and Steele (2011), for instance, present
an overview of attributes and indicate their suitability for different
data types and the number of distinct values they can represent.
Munzner (2014) provides an effectiveness ranking for different
visual attributes. Once attributes are selected, their
implementation also requires careful consideration, e.g.,
appropriate color scheme (see, for example, Brewer 1994, Borland
and Taylor 2007) or axis ranges (Tufte 2006). A range of literature
presents and critically discusses recommendations in this respect
(see, for example, Kelleher and Wagener 2011, Kosara 2016, Healy
2018).  

Regarding the selection of visualization techniques, our research
revealed some diversity in existing telecoupling visualizations,
with 15 different techniques being used. The field of data
visualization, however, offers a wider range of visualization
techniques. Multiple online catalogues exist that group them by
function (see, e.g., the Data Visualization Catalogue (https://
datavizcatalogue.com/search.html) and the R Graph Gallery
(https://www.r-graph-gallery.com/), data input (From Data to Viz
web site (https://www.data-to-viz.com/), or both (Data Viz
Project, https://datavizproject.com/). Figure 10 presents a
selection of techniques that were not identified in the cases but
could provide interesting opportunities to display telecoupling
phenomena. Some form the basis of well-known interactive
visualizations on land-related themes, such as the sankey diagram
used in the Trase platform (SEI and Global Canopy 2020) and
the nonribbon chord diagram presented on the Land matrix
platform (ILC et al. 2019). Matrix-based charts (Ghoniem et al.
2005), hive diagrams (Krzywinski et al. 2012), and biofabrics
(Longabaugh 2012) are alternatives to node-link diagrams, which
aim to address the challenge of visual clutter in large and dense
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networks[1]. The edge bundling technique, involving the visual
bundling of adjacent links, can also be helpful in this respect. It
is commonly applied to chord diagrams (Holten 2006) or link
maps (Holten and Van Wijk 2009, Lambert et al. 2010). Finally,
brick maps present an alternative technique for quantity maps 
(Few, 2013). They portray spatially explicit, quantitative values
through an accumulation of squares representing a specific value
range. Few (2013) suggests that this approach could be more
effective in terms of visual perception than the use of varying
colors (as in choropleth maps) or bubble sizes (as in proportional
symbol maps).

Fig. 10. Selection of additional visualization techniques suitable
for the visualization of telecoupling connections, grouped by
the visualization types.

Integrating multiple perspectives: a telecoupling visualization
challenge
A combination of different views is essential for achieving a sound
understanding of social-ecological phenomena (Berkes et al.
2003), particularly in a hyperconnected world. Nonetheless, in
order to produce purposeful results, researchers may need to
choose between different entry points and analytical foci on the
subject matter. A similar challenge exists in presenting research
visually. Visualizations can display single or multiple perspectives
of the portrayed subject, accounting for different levels of
complexity (Kirk 2016). Lima (2011) identifies three main
perspectives in network visualizations: (1) a micro perspective
providing detailed information on specific network entities; (2) a
relationship perspective focusing more on dismantling network
links and presenting analytics thereof; and (3) a macro perspective

presenting a bird’s eye view of the network and offering insights
on its topology. Many of the reviewed cases seem to emphasize
one of these perspectives, respectively: (1) providing a detailed
characterization of social-ecological systems and their internal
dynamics but presenting limited information on the flows
connecting them (e.g., Chignell and Laituri 2016, Hulina et al.
2017); (2) identifying and characterizing the links in telecoupled
connections (e.g., Reenberg and Fenger 2011, Schierhorn et al.
2016); (3) displaying large telecoupled networks while presenting
less detail about individual nodes and links (e.g., Prell et al. 2017,
Andriamihaja et al. 2019).  

The data visualization process thus requires and is guided by
choices on the perspectives and levels of details that are to be
visually presented. The following case examples illustrate how the
identified visualization types (cf. Fig. 7) allow for different
presentations of commodity trade phenomena, the most
frequently visualized telecoupling topic (cf. Fig. 4). Quantity
graphs are commonly used to display highly aggregated trade
data, thus presenting a relationship view between trade partners
(e.g., Schierhorn et al. 2016). Quantity maps and link maps add a
spatial component to this, potentially revealing spatial trade
patterns (e.g., Liu 2014). Route maps present more detailed spatial
information by displaying the precise transport routes and
mapping the multiple sites, e.g., cities or ports, that the
commodities pass through (e.g., Godar and Gardner 2019). This
allows a better understanding of such telecoupling phenomena,
for example by indicating potential spillover sites or the different
actors involved along the route. Relational graphs can have
multiple uses. For example, schematic diagrams are commonly
used to map existing trade phenomena in terms of the telecoupling
schema and present micro views on internal system dynamics (e.
g., Garrett and Rueda 2019). Network and chord diagrams depict
trade networks from a more macro perspective (e.g., Xiong et al.
2018). They can provide insights on the structure of a trade
network, for example by highlighting predominant trade
relationships or showing clusters among trade partners.  

The more perspectives combined, the more challenging it is to
accommodate them in a single visualization (Munzner 2014).
Visually portraying telecoupling phenomena while avoiding both
an oversimplification of the complex subject matter and an
overloading of the visualization is thus a key challenge in this
field. It is essential for researchers first to reflect on all potential
perspectives that could be combined, and then to select with care
just enough perspectives to represent the telecoupling
phenomenon adequately and purposefully. Once a selection is
made, different approaches can be used to simultaneously portray
multiple perspectives in a visual form. Hybrid visualization
techniques, for instance, can be used for joint display of multiple
types of information (see hybrid types, Fig. 7). However, they may
be challenging and time-consuming to decode if  not carefully
designed. Text boxes and labels within visualizations can also be
a helpful means to provide contextual information (see, e.g.,
Godar and Gardner 2019). Furthermore, data can be juxtaposed
and presented across separate visual objects (Gleicher et al. 2011).
Thereby, data comparison can be facilitated through side-by-side
presentation of the same chart types presenting different
subsamples of a dataset (see the small multiples technique, Tufte
2001). An alternative is using multiple graphs of different design
to present complementary data (Munzner 2014). For example,
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Liu et al. (2018) complement a flow map on soybean trade with
more specific information through additional bar charts. Data
can further be visualized through multiple, superimposed layers
(Gleicher et al. 2011). López-Hoffman et al. (2017), for instance,
present a schematic representation of bird migration with a
background map that provides additional geographic context
about these systems. Finally, comparative data can be combined
in a visualization through explicit encodings that compute the
relationship between objects (Gleicher et al. 2011). Sun et al.
(2018), for instance, indicate net imports of soy using a color scale.

Interactive visualizations
Interactive visualizations offer far greater possibilities to
represent multiple aspects of telecouplings than static ones.
Interactive features can enable users to navigate between different
scales and perspectives, tailoring the visual display to their needs
and interest (Bostrom et al. 2008, Janvrin et al. 2014). They allow
them to engage actively with the data, and possibly analyze and
download it. The following examples of interactive visualizations
on commodity trade illustrate a few of the many potential benefits
of using interactivity in this field. The interactive flow map
Resourcetrade.earth (Chatham House 2018) presents elaborate
possibilities for users to define the level of analysis shown in the
visualization. Through data filtering processes, they can choose
among different types of flows at varying levels of aggregation
(commodity [sub]types). On the trase platform (SEI and Global
Canopy 2020), commodity production data is presented in a
spatially explicit way and also interactively linked to other supply
chain stages. Users have various options to customize the data
display, e.g., by applying different scales to the commodity
production data (municipality, biome, country, logistic hubs). On
the Economic Complexity Observatory web site (Simoes and
Hidalgo 2011, CID 2020a), users can also choose different
visualization techniques to display the same trade data. This
feature helps to address the needs of different users (Spiegelhalter
et al. 2011). Furthermore, interactive features can allow users to
explore data in a three-dimensional space (see, for example, the
Globe of Economic Complexity, Cornec and Vuillemot 2015,
CID 2020b). They also offer interesting opportunities to present
longitudinal data, for instance through time sliders or movies
(Moody et al. 2005). This is particularly relevant to this field,
given its spatio-temporal dynamics. As we have shown, a temporal
angle is often missing in telecoupling visualizations.  

However, interactive graphs also bring about challenges. Their
development and maintenance can be demanding in terms of
resources. Furthermore, their use requires computer literacy and
potentially more refined user skills, preventing some potential
users from accessing the displayed information (Spiegelhalter et
al. 2011). Visualization developers have a high responsibility to
ensure the legitimacy and validity of the data that is visualized
and can potentially be downloaded by users. In terms of design,
the web interface needs to allow users to navigate intuitively
between different levels of analysis. Shneiderman’s renowned
mantra “overview first, zoom and filter, details on demand”
(1996:337) can be helpful in this respect, along with other
techniques proposed to reduce intricacy in multiperspective
visualizations (Lima 2011).  

Hence, although static visualizations are and will remain
important tools for scientific communication, interactive graphs

and dashboards present novel opportunities to accommodate the
multiplicity of perspectives often present in telecoupling research.
Because visual encodings, i.e., marks and attributes, also form the
basis of interactive graphs, the insights and recommendations
proposed in this study are equally relevant to this form of
visualization. Though falling outside of the scope of this analysis,
alternative mediums for cocreating and communicating scientific
knowledge, e.g., videos, participatory mapping and art, and
augmented and virtual reality, may further be explored, as they
offer other stimulating ways to engage with the target audience
and knowledge holders.

Reflecting the content of telecoupling visualizations: system
boundaries and actor dynamics
Visualizations are simplifications of a complex reality, and thus
naturally emphasize certain elements and perspectives while
leaving others out. They are a representation of researchers’
mental models of the phenomena they are investigating. In this
study, we have analyzed the content of telecoupling visualizations,
offering a glimpse into current telecoupling research practice and
the underlying choices that go with it. Here, we discuss and reflect
on selected findings that reveal how certain perspectives and
telecoupling components receive dissimilar attention in
telecoupling visualizations. We thereby focus on the results
regarding the presence of system boundaries and actor dynamics.

The definition of system boundaries has been put forward as a
critical issue in telecoupling research (Friis et al. 2016, Friis and
Nielsen 2017b). In visualizations, where systems are often clearly
delineated, researchers’ boundary choices are highly visible. Our
study reveals that in telecoupling visualizations, systems are often
defined at a high level of aggregation (country level and above)
and commonly based on territorial governance structures. These
results are in line with previous claims suggesting that system
boundaries in telecoupling research are predominantly territory-
based (Friis and Nielsen 2017b) and frequently delineated at
country level (Seaquist and Johansson 2019). Although data
availability issues may also play a role in this, e.g., trade data often
being recorded at national level, these results may indicate that
certain systemic perspectives and scales of analysis are
predominant in telecoupling research. By all accounts, they call
for a careful selection and (visual) communication of system
boundaries, which includes a critical reflection on the potential
gains and limitations that different perspectives may bring.  

Furthermore, we have shown that system boundaries are usually
drawn based on one or more specific characteristics of real world
phenomena, e.g., hydrological-topographic. A social-ecological
system approach, however, postulates the consideration and
integration of multiple dimensions or subsystems within one
geographic area (Ostrom 2009). In empirically-based
visualizations, it can be challenging to present this
multidimensionality and multiplicity of (sub)systems visually
because of their limited capacity to portray manifold perspectives
(as outlined in the previous section). Brondizio et al. (2016)
address this challenge by visually displaying multiple layers of
one geographic area, each showing different subsystems of the
social-ecological system. Others make use of nested views to
present multiple systems of varied scales conjointly (Drakou et
al. 2017).  
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Our analysis further reveals that actors and the interactions
between them are given relatively little emphasis in the reviewed
cases. Though present in visualizations of actor networks and
action situation networks, we have found that actor-specific
information is less frequently represented in visualizations
showing connections between systems, i.e., as elements within the
systems. A recent systematic review of telecoupling literature
presents similar observations, suggesting that actors and their
interactions deserve further attention in telecoupling research
(Kapsar et al. 2019). In terms of explaining their visual absence
from telecoupling visualizations, additional factors may play a
role. For example, actor-related information may be particularly
challenging to capture visually and accommodate within
telecoupling visualizations. Similarly, disciplines that place more
emphasis on actor perspectives may make less use of
visualizations. However, considering the importance of actor
dynamics for understanding and governing telecoupling processes
(Liu et al. 2013, Eakin et al. 2014, Munroe et al. 2019), it is
important to develop effective visualizations that capture these
components.  

These reflections show that, on the one hand, the decisions that
researchers make during the visualization design process are
shaped by their ability to visualize certain research contents. On
the other hand, they are also intrinsically guided by their view of
the telecoupling phenomenon and the selected approach to
investigating it. Do we present a micro, macro, or link perspective
of the telecoupling phenomenon, or a combination thereof? How
do we define our system boundaries? Do we consider spillover
dynamics? And do we take temporal dimensions into account?
These and many more choices define research directions and the
way we communicate about them, leading to different,
complementary understandings and visual presentations of
telecoupling connections. In this regard, the visualization process
offers researchers an opportunity to reflect upon the underlying
assumptions and perspectives that define their research, and to
communicate them in a transparent way.

The potential of network perspectives
This study demonstrates the ubiquity of network perspectives in
telecoupling visualizations, even if  networks are often not
explicitly discussed. Such a networked view of telecoupling is
inherent in its definition, as the framework is built on the idea of
connectivity. Nonetheless, visual depictions of telecoupling
dynamics often do not appear to go beyond the display of broader
large-scale flows between systems whose boundaries are typically
defined based on administrative units at high levels of
aggregation. The contexts, drivers, and actors operating across
these systems are thus often not visually captured at the levels at
which decisions are made. However, our research also underpins
alternative avenues for portraying telecoupling phenomena,
namely through actor networks and action situation networks.
These approaches allow for the depiction of telecoupling
connections that span geographical locations and scales and
emphasize the actors driving these dynamics and their
interrelations. Furthermore, by introducing insights from the field
of social network analysis, we have pointed to additional ways of
conceptualizing links in telecoupling, i.e., as interactions,
relations, or similarities. These can complement the predominant
flow-based perspective and may be useful for exploring more
intangible linkages, e.g., values, power relations, or political

dynamics, that are increasingly considered as crucial for governing
telecoupled processes (Eakin et al. 2017). These insights support
previous calls for the further integration of network-based views,
concepts, and methods in telecoupling research (Sayles et al. 2019,
Seaquist and Johansson 2019). This may provide for more in-
depth understandings of the relations that drive and shape
telecoupling connections, as well as the broader network structure
of telecoupled social-ecological systems. Particularly if  paired
with effective visuals, network-based understandings of
telecoupling phenomena may thus offer promising new directions
for identifying and communicating the main leverage points for
addressing global sustainability challenges within local realities.  

__________  
[1]See also R. Kosara, blog, https://eagereyes.org/techniques/
graphs-hairball#more-1685
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Table A1.1. List of selected cases                          



Code categories Coding information 
 

General information 

Telecoupling 

topic 

Description: the main telecoupling topic of the visualization, based 

on its content and the figure caption.  

 

Instructions: one option is to be selected 

Data source 

type 

Description: the type of data that served as input to the visualization.  

,  

Instructions: one option is to be selected, and the methods section is 

to be consulted in addition to the visualization. 

Nodes 

Node type Description: the type of content that the visualized nodes represent.  

or .  

Instructions: multiple options can be selected, e.g. if different options 

apply for different nodes. 

Node 

representation 

Description: Visual encoding strategy used for the visualized nodes 

 or .  

Instructions: multiple options can be selected, e.g. if different options 

apply for different nodes. 

Spatial 

explicitness of 

nodes 

Description: Spatially explicit representation of visualized node 

information. 

 or .  

Instructions: multiple options can be selected, e.g. if different options 

apply for different nodes.  

Links 

Link type Description: The type of content that the visualized links represent. 

or 

. 

Instructions: multiple options can be selected, e.g. if different options 

apply to different links. Flow mediums (e.g. roads or canal 

 

Link 

representation 

Description: Visual encoding strategy used for the visualized links. 

 or . 

Instructions: multiple options can be selected, e.g. if different options 

apply to different links. 
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Spatial 

explicitness of 

links 

 

Description: Spatially explicit representation of visualized link 

information. 

 or .  

Instructions: multiple options can be selected, e.g. if different options 

apply to different links. 

Systems 

System 

boundary type 

Description: types of system boundaries are used to delineate the 

visualized systems and indication of whether or not there is a 

reference to a geographical location.  

-national 

-national 

- -

-  or  

Coding instructions: multiple options can be selected, e.g. if different 

options apply to different systems. This code category only applies to 

those cases where systems have been identified.  

Geographic 

location of 

system 

Description: Indication of whether the systems are presented in a 

location-specific way or not.  

Options: - -location-  

Coding instructions: multiple options can be selected, e.g. if different 

options apply to different systems. This code category only applies to 

those cases where systems have been identified. 

System 

boundary 

detailed 

Description: Specific information about the nature of the system 

boundaries of the visualized systems. 

Coding instructions: Indicate how the visualized systems are 

applies to those cases where systems have been identified. 

Internal system 

elements and 

dynamics 

Description: Presence of information about any elements and/or 

dynamics within any of the visualized systems.  

 or .  

Coding instructions: one option is to be selected. This code category 

only applies to those cases where systems have been identified. 

Internal system 

elements: actors 

Description: Presence of information about actors within any of the 

visualized systems.  

 or .  

Coding instructions: one option is to be selected. This code category 

only applies to those cases where systems have been identified. 



Internal system 

elements: 

causes 

Description: Presence of information about causes within any of the 

visualized systems.  

 or .  

Coding instructions: one option is to be selected. This code category 

only applies to those cases where systems have been identified. 

Internal system 

elements: 

effects 

Description: Presence of information about effects within any of the 

visualized systems.  

 or .  

Coding instructions: one option is to be selected. This code category 

only applies to those cases where systems have been identified. 

System types: 

sending and 

receiving 

systems 

Description: Explicit reference to sending and receiving system types 

in visualization or visualization caption. 

 or .  

Coding instructions: one option is to be selected. This code category 

only applies to those cases where systems have been identified. 

System types: 

spillover 

systems 

Description: Explicit reference to spillover system types in 

visualization or visualization caption. 

 or .  

Coding instructions: one option is to be selected. This code category 

only applies to those cases where systems have been identified. 

Flows 

Flow content 

type 

Description: The type of content that the visualized flows represent.  

-human living 

. 

Coding instructions: multiple options can be selected. This code 

category only applies to those cases where flows have been 

identified. 

Flow content 

detailed 

Description: Specific information about the content of the flows that 

are visualized. 

Coding instructions: Indicate which contents the visualized flows 

e category only applies to those 

cases where flows have been identified. 

Other visualization characteristics 

Visualization 

techniques  

Description: Predominant chart type used for the visualization.  

Coding instructions: Indicate the visualization techniques used. 

Multiples can be listed, e.g. in case of a hybrid.  



Visual 

attributes 

Description: Visual attributes (cf. Figure 1) used in the visualization. 

Coding instructions: Take note of specific uses of visual attributes 

and which information the represent.  

Temporal 

explicitness of 

visualization 

Description: any temporal reference given for the information 

presented in the visualization, either in the visualization or its 

caption. 

 or .  

Coding instructions: one option is to be selected. 

Comparison 

across time  

Description: Presentation of data across different moments in time.  

 or .  

Coding instructions: one option is to be selected.  
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An overview of visual attributes used to display node, link and temporal information in 

telecoupling visualizations, with illustrative case examples:  

 

Telecoupling information Visual attributes Illustrative examples from cases 

Nodes 

Node delineation 

Examples: 

- 

system boundaries (vs. 

soft ones) 

- Indication of porous 

system boundaries (vs. 

non-porous ones) 

Categorical data: 

- Color   

 

- Pattern 

 

 

 Bagstad et al. (2019), Fig. 2: 

fading colors used to indicate 

system boundaries 

 Eakin et al. (2017), Fig. 3: 

dotted lines used to indicate 

system boundaries 

Node type, characteristics, 

or context 

Examples:  

- Type of actor, or scale at 

which he/she operates 

- Distinguishing 

receiving, sending and 

spillover systems 

through colors 

- Degree centrality in 

networks (total number 

of links entering or 

leaving the node) 

Categorical data: 

- Color 

 

Quantitative data:  

- Node size 

 

Relational data: 

- Position 

 

- Containment 

 

All data types: 

-Text labels 

 

 
 Chung et al. (2018), Fig. 3: 

Colors indicate types of 

systems 

 

 
 Prell et al. (2017), Fig. 1: Node 

export centrality 

 

 
 Andriamihaja et al. (2019), Fig 

2: actor node positions indicate 

actor levels and domains  

 
 Carter et al. (2014), Fig. 4: 

containment attributes indicate 

the sub-systems  

 

 
 Godar et al. (2019), Fig. 8.3: 

text labels provide detailed 

information on the presented 

systems, incl. potential impacts 
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Links 

Link direction: 

Examples:  

- Direction of species 

migration 

- Import & export of 

commodity flows 

Categorical data:  

- Line endings 

 

- Color 

 

- Text label, or indicated 

in figure caption or title 

 
 Boillat et al. (2018), Fig. 2: 

line endings indicate directions 
 

 López-Hoffman et al. (2017), 

Fig. 6: combination of line 

endings and line color to 

indicate direction 

 Garrett et al. (2013), Fig. 4: 

figure title indicates direction 

of flows 

Link strength/magnitude 

Examples: 

- Amount of soy being 

traded between different 

countries 

- Amount of land 

acquired for large-scale 

land acquisitions 

- Flow-linked impacts, 

such as deforestation 

risk embedded in soy 

flows 

 

Quantitative data  

through link attribute: 

- Line strength  

 

- Length of link marks  

  
 

- Text labels  

 

 
 Liu et al. (2015b), Fig. 2: line 

strength indicates the 

magnitude of the flows 

 

 Schierhorn et al. (2016), Fig. 3: 

length of bar indicates 

magnitude of trade flows 

 Semmens et al. (2018), Fig. 3: 

text labels indicate the specific 

link magnitude 

Quantitative data - 

through node attribute: 

- Color saturation of 

nodes proportional to 

link strength 

 

- Size of nodes 

proportional to link 

strength 

 

 
 

 Sun et al. (2018), Fig. 1: color 

of countries representing the 

systems indicate net imports of 

soy 

 

 

 Liu et al. (2015a), Fig. 2a: Size 

of bubbles representing the 

systems indicates the 

magnitude of the link  



Link type, characteristics, 

or context: 

Examples:  

- Flow content (material, 

capital or information 

flows; or soybean or 

beef commodities) 

- Differentiation of spring 

and fall migration of 

migrating species 

- Impacts of trade flow 

(e.g. in CO2 emissions) 

Categorical data: 

- Color 

 

- Pattern 

 

- Symbols, photos 

 

All data types: 

- Text labels 

 

 

 Liu et al. (2016), Fig 2: line 

color indicates different line 

types 

 

 Gasparri et al. (2016), Fig 4: 

line pattern indicates different 

types of actor relations  

 Zhang et al. (2018), Fig. 5: 

photos and text labels to 

indicate link types 

 Liu et al. (2017), Fig. 4: 

symbols indicate link type 

 Godar et al. (2019), Fig. 8.3: 

text labels provide detailed 

information on trade flow and 

their impacts  

Link connections 

Examples:  

- Linking countries on a 

map through arrows 

that represent 

commodity flows 

Relational data: 

- Connection 

 

 
 Tonini et al. (2017), Fig. 6: 

connection attributes indicate 

links between telecoupled 

systems 

Other 

Temporal data 

Examples:  

- Showing the change of 

the magnitude of 

commodity exports over 

time 

- Illustrating how 

institutional setups 

change in telecoupled 

systems over time  

Quantitative data:  

- Position 

 

- Color saturation 

 

Categorical data: 

- Position 

 

- Textual labels 

 
 

 Reenberg & Fenger (2011), 

Fig. 6: position of bar provides 

temporal reference 

 
 Marston & Konar (2017), Fig. 

9: color attributes show net 

changes of flows across a 

certain time period 

 Raya Rey et al. (2017), Fig. 2: 

position of information on 

timeline gives time indication 

 Eakin et al. (2017), Fig. 3: text 

labels indicate differing 

temporal stages (t0, t1  
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