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FACTORIZATION OF SYMPLECTIC MATRICES INTO

ELEMENTARY FACTORS

BJÖRN IVARSSON, FRANK KUTZSCHEBAUCH, AND ERIK LØW

Abstract. We prove that a symplectic matrix with entries in a ring with
Bass stable rank one can be factored as a product of elementary symplectic
matrices. This also holds for null-homotopic symplectic matrices with entries
in a Banach algebra or in the ring of complex valued continuous functions on a
finite dimensional normal topological space.
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1. Introduction and main results

In this paperR denotes a commutative ring with identity, SLn(R) the matrices of
determinant 1 with entries in R and En(R) the group generated by the elementary
matrices. The problem of whether every matrix in SLn(R) factors as a product of
elementary matrices, i.e. is an element of En(R), has been studied extensively for
various rings of polynomials and functions. For a polynomial ring of one variable
R = k[x] the result is simple. For several variables R = k[x1, · · · , xk] the result is
not true for n = 2 ([Coh66]) but by a famous result of Suslin ([Sus77]) it is true for
n ≥ 3. The second author and E.Doubtsov recently proved that the result holds
for rings with Bass stable rank 1 ([DoKu]) If R is a unital commutative Banach
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2 BJÖRN IVARSSON, FRANK KUTZSCHEBAUCH, AND ERIK LØW

algebra then every null-homotopic matrix in SLn(R) is in En(R) ([Mil71]). In
the case of R = C(X), the continuous complex functions on a finite dimensional
normal topological space, Vaserstein had previously proven the same result for
null-homotopic matrices ([Vas88]). Finally, the first two authors ([IK12]) proved
the result for null-homotopic matrices in the case of R = O(X), the holomorphic
functions on a reduced Stein spaceX , thus solving the so-called Vaserstein problem
of Gromov ([Gro89]).

The corresponding problem for the symplectic matrices, Sp2n(R), has not been
studied to the same degree. The group generated by the elementary symplectic ma-
trices is denoted by Ep2n(R) (definitions will follow in Section 2). Again it follows
easily that Sp2n(R) = Ep2n(R) for R = k[x], this being a Euclidean ring. For n ≥ 2
Kopeiko proved this for R = k[x1, · · · , xk] ([Kop78]) and Grunewald/Mennicke/
Vaserstein proved it for R = Z[x1, · · · , xk]. In this paper we take up the study for
various function spaces and we prove symplectic versions of the results in [Mil71],
[DoKu] and [Vas88]. The Vaserstein problem for null-homotopic holomorphic sym-
plectic matrices turns out to be very complicated and requires the use of Gromov’s
Oka principle for holomorphic sections of elliptic bundles ([Gro89]). In a forth-
coming paper we solve the problem for 4×4 matrices. For one-dimensional spaces
X , however, the result is much easier and follows from our results here, for any
size matrix. More precisely, we will prove :

Theorem 1.1. If R is a commutative Banach algebra with unity and M ∈ Sp2n(R)
is null-homotopic, then M ∈ Ep2n(R).

Theorem 1.2. If R has Bass stable rank 1, then Sp2n(R) = Ep2n(R).

Theorem 1.3. If X is a finite dimensional normal topological space and M ∈
Sp2n(C(X)) is null-homotopic, then M ∈ Ep2n(C(X)).

In Section 2 we will give definitions and some elementary observations. In
Section 3 we give examples and the remaining sections prove the theorems.

2. Definitions

The symplectic group Sp2n(R) is a subgroup of SL2n(R). We shall write matrices
with block notation

(

A B

C D

)

where A,B,C andD are (n×n) matrices with entries inR satisfying the symplectic
conditions

(2.0.1) ATC = CTA

(2.0.2) BTD = DTB

(2.0.3) ATD − CTB = I
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where I is the (n× n) identity matrix.
An elementary symplectic matrix is either of the form

(

I B

0 I

)

where B is symmetric (B = BT ) or of the form
(

I 0
C I

)

where C is symmetric. Products of matrices of the first type are additive in B

and of the second type in C. Special cases are the matrices Eij(a) when B is the
matrix with a in position ij and ji and otherwise zero. For Fij(a) the roles of B
and C are changed. Clearly any elementary matrix of the first type is the product
of matrices Eij(bij) for i ≤ j and similarly for the second type.

We notice that multiplying a matrix by Eij(a) from the left adds a times the
(n+j)-th row to the i-th row and a times the (n+i)-th row to the j-th row. Mul-
tiplying by Fij(a) adds a times the j-th row to the (n+i)-th row and a times the
i-th row to the (n+j)-th row.

We also introduce the symplectic matrices Kij(a) defined by B = C = 0 and
A = I except in position ij, where there is an a. Finally, D = (At)−1. This equals
I except in position ji, where there is −a if i 6= j and a−1 if i = j (this requires
a ∈ R∗). Multiplying a matrix M from the left by Kij(a) adds a times the j-th
row to the i-th row and −a times the (n+i)-th row to the (n+j)-th row when i 6= j

and multiplies the i-th row by a and the (n+i)-th row by a−1 when i = j.
These matrices are products of elementary matrices :

(2.0.4) Kii(a) = Eii(a− 1)Fii(1)Eii(a
−1 − 1)Fii(−a)

and if i 6= j:

(2.0.5) Kij(a) = Fjj(−a)Eij(1)Fjj(a)Eii(a)Eij(−1)

An element (x1, · · · , xk) ∈ Rk is called unimodular if

k
∑

j=1

xjR = R.

R is said to have Bass stable rank k if k is the smallest integer such that for
any unimodular (x1, · · · , xk+1) ∈ Rk+1 there exist (y1, · · · , yk) ∈ Rk such that
(x1 + y1xk+1, · · · , xk + ykxk+1) is also unimodular. We write bsr(R) = k. If no
such k exists we set bsr(R) = ∞. If bsr(R) = 1, then for any x1, x2 ∈ R such that
x1R + x2R = R, there is y ∈ R such that x1 + yx2 ∈ R∗.

If R is a Banach algebra, then the n× n matrices with entries in R is a normed
vector space in the following way. If M = (aij) is a matrix with entries from
R (equipped with a norm || · ||), then N = (||aij||) is a matrix of positive real
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numbers. We can now apply any matrix norm to N and this gives a norm of M.
These norms will all be equivalent. We say that M ∈ Sp2n(R) is null-homotopic
if there is a continuous map M(t), 0 ≤ t ≤ 1, into Sp2n(R) such that M(0) = I

and M(1) = M . A matrix M ∈ Sp2n(C(X)) is said to be null-homotopic if M is
homotopic to the identity when regarded as a map from X to Sp2n(C).

3. Examples

We mention here the main examples from [DoKu]. The interested reader should
consult that paper for further examples.

Example 3.1. If Ω ⊂ Cn is a bounded star-shaped domain and A(Ω) is the set of
holomorphic functions in Ω which are continuous up to the boundary, then every
element M ∈ Sp2n(A(Ω)) is null-homotopic under the homotopy M(t)(z) = M(tz)
(assuming Ω is star-shaped with respect to the origin). Hence Sp2n(A(Ω)) =
Ep2n(A(Ω)) by Theorem 1.1.

For the disc algebra A(D) this result also follows from Theorem 1.2 since the
Bass stable rank of A(D) equals one. (See Jones, Marshall and Wolff ([JMW86])
and Corach and Suarez ([CoSu85]).) It is known that the Bass stable rank of the
disc and ball algebras in higher dimensions is strictly greater than one, so these
cases do not follow from Theorem 1.2.

Example 3.2. If X is an open Riemann surface, then O(X) has Bass stable rank
one. This follows from the sharpened version of Wedderburn’s lemma which can
be found in R.Remmert’s textbook (page 137 of [Rem98]). Hence Sp2n(O(X)) =
Ep2n(O(X)) by Theorem 1.2 and every M ∈ Sp2n(O(X)) is null-homotopic. This
provides an easy proof of the symplectic Vaserstein problem in dimension one.

Example 3.3. Treil proved that H∞(D) has Bass stable rank one ([Tre92]). Hence
Sp2n(H

∞(D)) = Ep2n(H
∞(D)) by Theorem 1.2 and every M ∈ Sp2n(H

∞(D)) is
null-homotopic.

4. Proof of Theorem 1.1

In this section R is a commutative Banach algebra with unity. Sp2n(R) is
a metric space with metric induced by a norm of M2n(R). The main part of
the proof consists in showing that the Gauss-Jordan process can be carried out
by multiplying by elementary symplectic matrices. If we start with a matrix
sufficiently close to the identity, there is no need to change the order of the rows
and the diagonal elements will stay close to 1 during the whole process. It is clear
that this process is well defined and continuous in a neighbourhood of I ∈ Sp2n(R)
and even holomorphic in case R = C.

Hence we start with a matrix

M =

(

A B

C D

)
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sufficiently close to the identity. We denote A = (aij) and similarly for B,C and
D. We shall now multiply successively from the left by elementary matrices, but
use the same notation for the result, i.e the entries of the matrices A,B,C and D

will change in every step. The goal is to end up with the identity matrix.
Multiplying by K11(a

−1

11 ) gives a11 = 1. We then proceed by multiplying by
Ki1(−ai1) for i = 2, · · · , n to achieve ai1 = 0 for i > 1. Next step is to multiply
by Fi1(−ci1) for i = 1, · · · , n to obtain ci1 = 0 for all i. We are now done with
the first column. It also follows by (2.0.1) that the first row of C is zero.The steps
that follow will not affect this column or row.

We now multiply by K22(a
−1

22 ) to get a22 = 1. Then multiply by Ki2(−a12) for
i = 1, 3, · · · , n to get ai2 = 0 for those i. Finally multiply by Fi2(−ci2) for i ≥ 2
to get ci2 = 0 for i ≥ 2.We already know that c12 = 0 so the second column of C
is zero and we are done with the second column. Again by (2.0.1) it follows that
the second row of C is also zero and the first two columns of M and rows of C are
not affected by the remaining steps.

Continuing in this way on the first n columns gives A = I and C = 0. By
(2.0.3) and (2.0.2), D = I and B is symmetric. Multiplying by Eij(−bij) for
1 ≤ j ≤ i ≤ n annihilates B and we get M = I , the 2n× 2n identity matrix. We
have now proved

Lemma 4.1. (Gauss-Jordan process for symplectic matrices) Let R be a commu-
tative Banach algebra with unity. There is a neighbourhood V of the identity in
Sp2n(R) and elementary matrices E1, · · · , EN (N = (N(n)), depending continu-
ously on M ∈ V , such that Ei(I) = I and M = E1 · · ·EN for all M ∈ V .

Proof of Theorem 1.1. Let M be a null-homotopic matrix in Sp2n(R) and denote
the homotopy by Mt. By uniform continuity of Mt (and a lower bound on ||Mt||)
it follows that there is a δ > 0 such that MtM

−1

t′ ∈ V whenever |t− t′| < δ. Hence
for k > 1

δ
we have

M = M1 = (M1M
−1

1− 1

k

)(M1− 1

k

M−1

1− 2

k

) · · ·M 1

k

Hence M is a product of k matrices in V and each of these is a product of N
elementary matrices by the previous lemma. This completes the proof. �

5. Proof of Theorem 1.2

As for the Gauss-Jordan process we start with a matrix

M =

(

A B

C D

)

and multiply from the left by elementary matrices without changing the notation.
The Bass stable rank condition will allow us to produce invertible pivots so we
can proceed with Gauss-Jordan as above.
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Expanding the determinant along the first column gives the existence of xi and
yi, 1 ≤ i ≤ n such that

x1a11 +

n
∑

i=2

xiai1 +

n
∑

i=1

yici1 = 1

By the Bass stable rank condition there is α ∈ R such that

a11 +
n

∑

i=2

αxiai1 +
n

∑

i=1

αyici1 ∈ R∗

We now multiply from the left by K1i(αxi) for 2 ≤ i ≤ n. The first column now
becomes

(a11 +

n
∑

i=2

αxiai1, a21, · · · , an1, c11, c21 − αx2c11, · · · , cn1 − αxnc11)
T

We then multiply by E1i(αyi) for 2 ≤ i ≤ n. The first element now becomes

a11 +
n

∑

i=2

αxiai1 +
n

∑

i=2

αyici1 −
n

∑

i=2

α2xiyic11

and the value of c11 does not change. We now multiply by E11(αy1+
∑n

i=2
α2xiyi)

and the first element becomes

a11 +

n
∑

i=2

αxiai1 +

n
∑

i=1

αyici1

which is invertible and we may proceed as in Gauss-Jordan to make the first
column equal to e1. We can now proceed to the next column, sticking to the
same notations (xi, yi, α). After multiplication by K2i(αxi) for 3 ≤ i ≤ n the first
column is

(a12, a22 +

n
∑

i=3

αxiai2, a32, · · · , an2, c12, c22, c32 − αx3c22 · · · , cn2 − αxnc22)
T

Multiplying by E2i(αyi) for i = 1, 3, · · · , n produces

a22 +

n
∑

i=3

αxiai2 +
∑

i 6=2

αyici2 −

n
∑

i=3

α2xiyic22

in position 22 without changing c22. Finally we multiply by E22(αy2+
∑n

i=3
α2xiyi)

to produce an invertible element in position 22 and we may proceed with Gauss-
Jordan. It is clear that we can continue this process and complete the proof as in
the Gauss-Jordan process.
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6. Proof of Theorem 1.3

The proof consists of three ingredients; the Gauss-Jordan elimination result for
R = C, the Gram-Schmidt process for complex symplectic matrices and a result
on uniform homotopies by Calder and Siegel ([CS78],[CS80]).

Let us first see how to carry out the Gram-Schmidt process for a matrix M ∈
Sp2n(C). Let

v1, · · · , vn, w1, · · · , wn

denote the rows of M . We shall now proceed to multiply M by the elementary
matrices introduced above, but will still refer to the result by the same notation,
i.e. M and v1, · · · , wn will change in every step.

The first step is to make all the v’s orthogonal. Multiplication by Ki1(
−<vi,v1>

||v1||2
)

for i = 2, · · · , n removes the components of v2, · · · , vn along v1, i.e. we get vi ⊥ v1
for i ≥ 2. This also changes the w’s. We can now continue to multiply by
Ki2(

−<vi,v2>

||v2||2
) for i ≥ 3, etc. The end result makes all the v’s orthogonal.

In the next step we make the v’s orthonormal by multiplying by Kii(
1

||vi||
) for

i = 1, · · · , n. Notice that the w’s change in all the above steps.
In the final step we make wj orthogonal to vi for i ≥ j. Starting with w1, we

multiply by F1j(− < w1, vj >) for j = 1, · · · , n to make w1 orthogonal to all the
v’s. This changes w2, · · · , wn. We then continue to multiply by F2j(− < w2, vj >)
for j = 2, · · · , n to make w2 orthogonal to v2, · · · , vn. This changes w3, · · · , wn,
but not w1. Continuing like this produces the desired result.

We shall see that M is now in SU(2n). The matrix MM∗ is symplectic since
Sp2n(C) is closed under transposition and complex conjugation. It is also Hermit-
ian and satisfies A = I by construction. By the final step C has zeroes on and
above the diagonal. By (2.0.1), C = Ct hence C = 0. Since MM∗ is Hermitian it
follow that B = C∗ = 0. Finally, (2.0.3) gives us that D = I.

It is clear from the construction that all the matrices we used to multiply our
original matrix by depend continuously on the initial matrix. Denoting the com-
pact symplectic group Sp2n(C) ∩ U(2n) by Sp(n) we have now proved:

Lemma 6.1. (Gram-Schmidt process for symplectic matrices) For every integer
n there is an integer L(= L(n)) and elementary symplectic matrices F1, · · · , FL,
depending continuously on M ∈ Sp2n(C) such that F1 · · ·FLM ∈ Sp(n) for all M .

The final ingredient in the proof of Theorem 1.3 is a version of a result of Calder
and Siegel ([CS78], [CS80]). Here ||·|| denotes any matrix norm. Since the compact
symplectic group Sp(n) is simply connected (Proposition 13.12, [H15]), we get the
following result.

Theorem 6.2. (Calder/Siegel) Let X be a finite dimensional normal space and
assume M : X → Sp(n) is null-homotopic. Then there is a uniform homotopy
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Mt : X → Sp(n) with M1 = M and M0 = I, i.e. for any ǫ > 0 there is a δ > 0
such that ||Mt(x)−Mt

′ (x)|| < ǫ for all x ∈ X and |t− t
′

| < δ.

By writing
M = (M1M

−1
k−1

k

)(Mk−1

k

M−1
k−2

k

) · · ·M 1

k

for some large k it follows that for any ǫ > 0 there are finitely many continuous
matrices N1, · · · , Nk in Sp(n) such that M = N1 · · ·Nk and ||I − Nj(x)|| < ǫ for
all x ∈ X and j. We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let Pt denote the null-homotopy, i.e. Pt : X → Sp2n(C)
with P1 = M and P0 = I. By Lemma 6.1 there are elementary symplectic matrices
F1, · · · , FL such that Vt = F1(Pt)F2(Pt) · · ·FL(Pt)Pt is a null-homotopy with values
in Sp(n) such that V1 = F1(M) · · ·FL(M)M .

By Theorem 6.2 there is a uniform null-homotopy Mt : X → Sp(n) with

M1 = F1(M) · · ·FL(M)M

and by the above comment there are finitely many continuous matrices N1, · · · , Nk

in Sp(n) such that M1(x) = N1(x) · · ·Nk(x) for all x ∈ X and we may choose k

such that all values Nj(x) lie in the neighbourhood V of Lemma 4.1.
It now follows that we can write

F1(M(x)) · · ·FL(M(x))M(x) =

k
∏

j=1

N
∏

i=1

Ei(Nj(x))

hence this gives us

M(x) = F−1

L (M(x)) · · ·F−1

1 (M(x))

k
∏

j=1

N
∏

i=1

Ei(Nj(x))

All the matrices on the right-hand side are elementary symplectic matrices de-
pending continuously on x ∈ X . This completes the proof of the theorem. �
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