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The dimension of an amoeba

Jan Draisma, Johannes Rau and Chi Ho Yuen

Abstract

Answering a question by Nisse and Sottile, we derive a formula for the dimension of the amoeba
of an irreducible algebraic variety.

1. Introduction and main result

Let X ⊆ (C∗)n be an irreducible, closed algebraic subvariety. We define

Log : (C∗)n → Rn, (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|)
and A(X) := Log(X), the amoeba of X. The amoeba is the image of the semi-algebraic set
(algebraic amoeba)

|X| := {(|z1|, . . . , |zn|) | (z1, . . . , zn) ∈ X} ⊆ Rn
>0,

under a diffeomorphism and thus has an obvious notion of dimension, denoted dimR A(X).
Clearly, dimR A(X) � 2 dimC X. In [3], Nisse and Sottile raise the question when this inequality
is strict, as happens in the following two examples.

Example 1 (hypersurfaces). Suppose that n > 2 and that X is a hypersurface. Then
dimR A(X) � n < 2(n− 1) = 2dimC X. ♣

Example 2 (torus-invariant varieties). Suppose that X is stable under a subtorus S ⊆ (C∗)n

of dimension k > 0. Denote by Y the image of X in the algebraic torus (C∗)n/S ∼= (C∗)n−k.
The map X → Y has fibers of complex dimension k, and the corresponding map A(X) → A(Y )
has fibers of real dimension k — namely, translates of A(S), which is a linear subspace of Rn

spanned by its intersection with Qn. Thus, we have

dimR A(X) = k + dimR A(Y ) � k + 2dimC Y = −k + 2dimC X < 2 dimC X. ♣

Our theorem says that these are two instances of the same phenomenon, and that this
phenomenon is responsible for all drops in dimension.

Theorem 3. Let X ⊆ (C∗)n be an irreducible, closed algebraic subvariety. Then

dimR A(X) = min{ 2 dimC X + 2dimC T − dimC S |
T ⊆ S ⊆ (C∗)n subtori and S · (T ·X) = T ·X }.
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An equivalent but more concise formula can then be given as

dimR A(X) = min{2 dimC S ·X − dimC S | S ⊆ (C∗)n subtorus}.

In this theorem, T ·X (respectively, S ·X) is the Zariski closure of the set of all tz with
t ∈ T (respectively, all rz with r ∈ S) and z ∈ X; note that whenever S · (T ·X) = T ·X as in
the formula, the set is also equal to S ·X. Naturally, S and T may be taken zero dimensional,
in which case we recover the upper bound 2 dimC X.

Example 4 (hypersurfaces revisited). If X is a hypersurface, then most one-dimensional
tori T ⊆ (C∗)n will satisfy T ·X = (C∗)n (see Lemma 10), so we may take S = (C∗)n. The
bound in the theorem is 2(n− 1) + 2 − n = n. ♣

To motivate the structure of this paper, we now prove the easy inequality � in our
main theorem.

Proof of � in Theorem 3. Let T ⊆ S ⊆ (C∗)n be subtori such that Y := T ·X is S-stable.
Then

dimR A(X) � dimR A(Y ) � 2 dimC Y − dimC S � 2(dimC X + dimC T) − dimC S,

where the second equality follows from Example 2. �

If we want equality to hold in the proof above, then we need that first, dimC Y = dimC X +
dimC T; second, the bound in Example 2 for the pair (Y,S) is tight; and third, dimR A(X) =
dimR A(Y ) = dimR(A(X) + A(T)). Our proof of Theorem 3 consists of first finding a torus T
with the latter property (see Section 2):

Proposition 5. Let X ⊆ (C∗)n be a closed, irreducible variety. Then the Zariski-closure
|X| in (R∗)n of the algebraic amoeba is stable under a subtorus of the real algebraic torus
(R∗)n of dimension at least 2 dimC X − dimR A(X).

In particular, if the amoeba has dimension strictly less than 2 dimC X, then a positive-
dimensional real torus acts on |X|. Using this positive-dimensional torus, we prove Theorem 3
by induction in Section 3.

Theorem 3 implies [3, Conjecture 4.4], which proposes near torus actions (Definition 12
below) as the only cause of dimension drops for the amoeba.

Corollary 6. For an irreducible, closed subvariety X ⊆ (C∗), we have

dimR A(X) < min{n, 2 dimC X}
if and only if some nontrivial subtorus S ⊆ (C∗)n has a near action on X.

We conclude this introduction with a relation to the tropical variety of X, also to be proved
in Section 3.

Corollary 7. For any irreducible, closed subvariety X ⊆ (C∗) the dimension dimR A(X)
is determined by the tropical variety Trop(X) ⊆ Rn of X via

dimRA(X) = min{2 dimR Trop(X) + 2 dimR T − dimR S |
T ⊆ S ⊆ Rn rational linear subspaces with S + (T + Trop(X)) = T + Trop(X)},
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where a subspace of Rn is called rational if it is spanned by vectors in Qn. Similar to Theorem 3,
we have the equivalent formula

dimR A(X) = min{2 dimR(S + Trop(X)) − dimR S | S ⊆ Rn rational linear subspace}.

2. In search of a positive-dimensional torus

Throughout this section, we fix an irreducible, closed subvariety X ⊆ (C∗)n. If dimR A(X) <
2 dimC X, then we will find a one-dimensional torus T ⊆ (C∗)n such that T ∩ (R∗)n preserves
the Zariski-closure |X| and dimR(A(X) + A(T)) = dimR A(X).

Preliminaries

We write S1 ⊆ C∗ for the unit circle. Recall that this is a real form of the algebraic group
C∗: indeed, tensoring the coordinate ring R[c, s]/(c2 + s2 − 1) of S1 with C yields the coordinate
ring C[c, s]/((c + is)(c− is) − 1), which we recognize as the coordinate ring of an algebraic
torus with standard coordinate c + is; moreover, the inverse morphism S1 → S1, (c, s) �→
(c,−s) complexifies to the inverse morphism C∗ → C∗, (c + is) �→ 1/(c + is) = (c− is); and
similarly for the multiplication morphism S1 × S1 → S1. Both S1 and the other real form of
C∗, the real algebraic group R∗, will play fundamental roles in our proof.

We write (S1)n ⊆ (C∗)n, where the former is a real form of the latter algebraic group. For
p ∈ (C∗)n and Q any subset of Cn, we write pQ for the for the result of coordinate-wise
multiplication of p with each element of Q. Writing 1 for the unit element in (C∗)n and T••
for (real or complex) tangent spaces, we have

T1(C∗)n = Cn = Rn ⊕R iRn = T1Rn ⊕R T1(S1)n.

Component-wise multiplication by p ∈ (C∗)n yields

Tp(C∗)n = pRn ⊕R ipRn = TppRn ⊕R Tpp(S1)n.

Note that p−1Tpp(S1)n is naturally identified with (the same) iRn for all p ∈ (C∗)n, and
p−1TppRn is identified with (the same) Rn for all p.

Rather than directly working with the amoeba of X, we will work with the algebraic amoeba
|X|, the image of X under the semi-algebraic map

abs : (C∗)n → Rn
>0, (z1, . . . , zn) �→ (|z1|, . . . , |zn|).

The reason for this is that |X| is, by real quantifier elimination, a semi-algebraic set, hence
analyzable with methods from real algebraic geometry. The following is immediate.

Lemma 8. At p ∈ (C∗)n, the derivative dp Log (respectively, dp abs) sends the real vector
space Tpp(S1)n to zero and an element pv with v ∈ Rn to v (respectively, to |p|v).

Subvarieties of real tori

We prove an auxiliary result on subvarieties of real tori. We will use the term real-Zariski to refer
to the real Zariski topology on a real algebraic variety or, more generally, on a semi-algebraic
set. We write Zns for the nonsingular locus of a real algebraic variety.

Lemma 9. Let Z be a real-Zariski-closed subset of (S1)n ⊆ (C∗)n. Then the real subspace∑
p∈Zns

p−1TpZ ⊆ iRn is spanned by its intersection with iQn.

Proof. That subspace is additive under union of irreducible components, so we may assume
that Z is irreducible. Let ZC ⊆ (C∗)n be the complexification of Z, an irreducible algebraic
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variety. After multiplying with p−1 for any fixed p ∈ ZC, we may assume that 1 ∈ ZC. By
[2, Proposition 2.2], there exist a natural number m and exponents e1, . . . , em ∈ {±1} such
that the image T of the multiplication map

μZ : Zm
C → (C∗)n, z = (z1, . . . , zm) �→ ze11 · · · zemm

is a closed, connected algebraic subgroup T of (C∗)n, that is, a subtorus. Since Zns is Zariski-
dense in ZC, there exists a point z = (z1, . . . , zm) ∈ Zm

ns (no complexification!) such that the
complex-linear map dzμZ : TzZ

m
C

→ Tμ(z)T is surjective. Now μZ is the restriction to Zm
C

of
the multiplication map μ : ((C∗)n)m → (C∗)n with the same definition. We have

μ = Lμ(z) ◦ μ ◦ (Lz−1
1

× · · · × Lz−1
m

),

where Lx is left multiplication with x ∈ (C∗)n, and accordingly,

dzμ = d1Lμ(z) ◦ d(1,...,1)μ ◦ (dz1Lz−1
1

× · · · × dzmLz−1
m

).

Using that the derivative of multiplication is addition and the derivative of inverse is negation,
we find

dμ(z)Lμ(z)−1 ◦ dzμZ : TzZ
m
C → T1T, (v1, . . . , vm) �→ e1z

−1
1 v1 + · · · + emz−1

m vm;

and by the choice of z this map is surjective. For each j, we have TzjZC = TzjZ ⊕R iTzjZ and
the complex-linear map dμ(z)Lμ(z)−1 ◦ dzμZ sends the real direct sum

⊕
j TzjZ surjectively

onto T1(T ∩ (S1)n) = (T1T) ∩ (iR)n =: Q. Since T is an algebraic torus, Q is spanned by its
intersection with iQn, and the space in the lemma contains Q. Moreover, for all z ∈ Z, we have
z−1TzZ ⊆ Q, so that the space in the lemma is in fact equal to Q. �

A real torus action

We return to our irreducible variety X ⊆ (C∗)n. By standard results in real algebraic geometry,
X is also irreducible when regarded as a real algebraic variety of dimension 2 dimC X. Then
the semialgebraic set |X| is irreducible in the sense that its (real) Zariski closure in Rn is
irreducible. To see that, first note that the square

|X|2 := {(|z1|2, . . . , |zn|2) | (z1, . . . , zn) ∈ X} ⊆ Rn
>0

is irreducible, since it is the image of X under an algebraic morphism. Now, since the
map (x1, . . . , xn) �→ (x2

1, . . . , x
2
n) on (R∗)n is a finite flat morphism, there exists exactly one

irreducible component of the preimage of the Zariski closure |X|2 which intersects the positive
orthant. Hence, |X| is irreducible.

Proof of Proposition 5. For q ∈ |X|, write Zq := q−1X ∩ (S1)n, which is a real Zariski-
closed subset of (S1)n such that qZq = abs−1(q) ∩X is the fiber of abs |X over q. By Sard’s
theorem, there is an open subset U of |X|, dense in |X| in the real Zariski-topology, such that
Zq has dimension equal to the expected dimension c := 2 dimC X − dimR |X| = 2dimC X −
dimR A(X). For each q ∈ U , define

Qq :=
∑

p∈(Zq)ns

p−1TpZq ⊆ iRn,

which is a real vector space of dimension at least c, spanned by Qp ∩ iQ by Lemma 9.
Fix q ∈ U . For each p ∈ Zq, we have qp ∈ X and qp(p−1TpZq) ⊆ TqpX and hence, since X

is a complex algebraic variety, also (qp)(ip−1TpZq) ⊆ TqpX. The space on the left is contained
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in qpRn, and hence, by Lemma 8, dqp abs maps it onto |qp|(ip−1TpZq) = q(ip−1TpZq). We
conclude that the latter space is contained in TqU for each p ∈ Zq. Therefore,

TqU ⊇ q
∑

p∈(Zq)ns

ip−1TpZq = q(iQq);

here iQq ⊆ Rn is spanned by its intersection with Qn. Now for each vector space R ⊆ Rn of
dimension at least c and spanned by its intersection with Qn, the set

VR := {q ∈ U | TqU ⊇ qR}
is a real-Zariski-closed subset of U . There are only countably many such R, and the above
discussion shows that the closed sets VR cover the semialgebraic set U .

But then one of them must have dimension equal to that of U , and in fact, since the Zariski
closure of U is irreducible, be equal to U . We conclude that there exists a real vector space
R ⊆ Rn, of dimension at least c and spanned by R ∩ Qn, such that qR ⊆ TqU for all q ∈ U .
But then qR ⊆ Tq|X| for all q in the real algebraic variety |X|. Since R is spanned by its
intersection with Qn, there exists a real algebraic torus RR ⊆ (R∗)n with Lie algebra R. The
subbundle of the tangent bundle of (R∗)n that arises by differentiating the action of RR on
(R∗)n is tangent to |X|. This implies that |X| is RR-stable. �

3. Proofs of the main results

We begin with a lemma that was already used in the introduction (Example 4).

Lemma 10. Let X ⊆ (C∗)n be a closed, irreducible subvariety and S ⊆ (C∗)n a
subtorus. Then there exists a subtorus T ⊆ S with dimC T = dimC S ·X − dimC X such that
T ·X = S ·X.

Proof. We prove the statement by induction on k = dimC S ·X − dimC X. If k = 0, then
S ·X = X and T = {1} will do. If k > 0, choose a one-dimensional subtorus R ⊂ S such that
dimC R ·X > dimC X. Such R exists since otherwise X would be invariant under all such R
and hence under S. Then the statement follows from the induction assumption applied to
X ′ = R ·X and a torus S′ such that S = R × S′. �

We now use Proposition 5 to establish our dimension formula for the (ordinary or
algebraic) amoeba.

Proof of Theorem 3. Let X ⊆ (C∗)n be Zariski-closed and irreducible. Since we have already
proved the inequality � of the theorem, it suffices to establish the existence of subtori T ⊆ S of
(C∗)n such that T ·X is S-stable and dimR A(X) = 2 dimC X + 2dimC T − dimC S. We proceed
by induction on n. For n = 0, we have X = (C∗)0 and we can take S = T = {1}. So we assume
that n > 0 and that the statement holds for subvarieties of tori of dimension n− 1.

If dimR A(X) = 2 dimC X, then we may take T = S = {1} and we are done. So we may
assume that dimR A(X) < 2 dimC X. Then, by Proposition 5, there exists a one-dimensional,
real algebraic torus RR ⊆ (R∗)n which stabilizes the Zariski-closure |X| of the algebraic amoeba.
Let R ⊆ (C∗)n be the complexification of RR. Then we find an open subset U ⊆ A(X) whose
complement has positive codimension such that U is a smooth manifold with A(R) ⊆ TuU for
each u ∈ U (use Lemma 8 for the tangent vectors coming from the action of RR). We find that
the fibers of the map U → Rn/A(R) have dimension 1, and this implies

dimR A(R) + A(X)/A(R) = −1 + dimR A(X).
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(We note that we are working with the closure with respect to the Euclidean topology of Rn

in the above formula.)
Define

X̃ := R ·X/R ⊆ (C∗)n/R ∼= (C∗)n−1.

Then the previous equation implies that the amoeba

A(X̃) = A(R) + A(X)/A(R)

has real dimension equal to −1 + dimR A(X).
By the induction hypothesis, there exist subtori T̃ ⊆ S̃ of (C∗)n/R such that T̃ · X̃ is S̃-stable

and

dimR A(X̃) = 2 dimC X̃ + 2dimC T̃ − dimC S̃.

We distinguish two cases. First, assume that X is not stable under R, so that dimC X̃ = dimC X.
Then let T,S be the pre-images in (C∗)n of T̃, S̃ ⊆ (C∗)n/R, respectively. Then T ⊆ S are
subtori such that T ·X is S-stable, and we find

dimR A(X) = 1 + dimR A(X̃)

= 1 + 2dimC X̃ + 2dimC T̃ − dimC S̃

= 1 + 2dimC X + 2(−1 + dimC T) − (−1 + dimC S)

= 2dimC X + 2dimC T − dimC S.

Second, assume that X is stable under R. As before, let S be the pre-image of S̃ in (C∗)n,
but now let T be any torus in (C∗)n of complex dimension equal to dimC T̃ that projects
surjectively onto T. Using that X is R-stable and T̃ · X̃ is S̃-stable, we find that T ·X is
S-stable. Furthermore,

dimR A(X) = 1 + dimR A(X̃)

= 1 + 2dimC X̃ + 2dimC T̃ − dimC S̃

= 1 + 2(−1 + dimC X) + 2 dimC T − (−1 + dimC S)

= 2dimC X + 2dimC T − dimC S,

as desired.
For the second formula, let T,S be subtori as in the first formula. We then have

2 dimC S ·X − dimC S = 2dimC T ·X − dimC S � 2 dimC X + 2dimC T − dimC S,

so the second formula is a lower bound to the first formula. Conversely, if S is any subtorus, then
by Lemma 10 there exists a subtorus T ⊆ S such that T ·X = S ·X and dimC T = dimC S ·X −
dimC X, and we find

2 dimC X + 2dimC T − dimC S = 2dimC S ·X − dimC S,

hence the first formula is a lower bound to the second formula. �

Example 11. We give an alternative proof of [3, Theorem 4.5], which says that if
dimR A(X) = dimC X, then X is a single orbit under a subtorus of (C∗)n. Take a subtorus
S ⊆ (C∗)n that achieves the minimum in the second formula of Theorem 3. Since we always
have dimC S ·X � dimC S,dimC X, from our choice of S, we have

dimC X = 2dimC S ·X − dimC S � dimC X.

Hence, dimC S = dimC X = dimC S ·X. But S ·X is irreducible and contains both X and an
orbit of S, so X must be equal to such an orbit. ♣
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Near Torus Actions

We start by reviewing Nisse–Sottile’s notion of near torus actions [3, Definition 4.1].

Definition 12. Let X ⊆ (C∗) be an irreducible closed subvariety and S ⊆ (C∗)n. We set
Y := (S ·X)/S. Then S has a near action on X if

2 dimC X > dimC S + 2dimC Y and n > dimC S + 2dimC Y.

We now show that, as conjectured in [3], unexpected amoeba dimension is equivalent to a
near torus action. The implication ⇐ is [3, Theorem 4.3].

Proof of Corollary 6. For any subtorus S ⊆ (C∗)n, setting Y := S ·X/S we have dimC(Y ) =
dimC(S ·X) − dimC(S). Note that 2 dimC(S ·X) − dimC(S) < 2 dimC(X) and 2 dimC(S ·X) −
dimC(S) < n imply S �= {1} and S �= (C∗)n, respectively. Hence, the statement follows directly
from the second formula of Theorem 3. In particular, in case of a dimension drop, a torus S
providing the minimum in this formula has a near action on X. �

Proof of Corollary 7. We start by presenting a well-known fact in tropical geometry.

Lemma 13. Let X ⊆ (C∗) be an irreducible (in particular, reduced) closed subvari-
ety and denote by Trop(X) ⊆ Rn its tropicalization. Let S ⊂ (C∗)n be a subtorus and
S = Trop(S) = A(S) ⊂ Rn the associated (rational) linear subspace. Then S ·X = X if and
only if S + Trop(X) = Trop(X).

Proof. By basic tropical geometry, Trop(S ·X) = S + Trop(X). Hence, S ·X = X implies
S + Trop(X) = Trop(X). Let us assume S + Trop(X) = Trop(X) now. Note that for irre-
ducible varieties Y ⊆ (C∗)n, we have dimC Y = dimR Trop(Y ), see [1, Theorem A]. Since both
X and S ·X are irreducible, it follows that dimC S ·X = dimC X. Since X ⊆ S ·X, this implies
X = S ·X = S ·X. �

Proof of Corollary 7. By Lemma 13, the pairs of subtori T ⊆ S ⊆ (C∗)n such that
S · (T ·X) = T ·X are in bijection to the pairs of rational linear subspaces T ⊆ S ⊆ Rn such
that S + (T + Trop(X)) = T + Trop(X), via T = Trop(T), S = Trop(S). Using the relation
dimC Y = dimR Trop(Y ) again, we have

2 dimC X + 2dimC T − dimC S = 2dimR Trop(X) + 2 dimR T − dimR S.

Hence, the two minima agree. The second formula follows similarly as in the proof of
Theorem 3. �

We conclude this paper with a question on computability.

Question 14. Does there exist an algorithm that, on input a balanced, pure-dimensional,
rational polyhedral complex Σ ⊆ Rn which is connected in codimension 1, computes the
expression

min{2 dimR(S + Σ) − dimR S | S ⊆ Rn rational subspace}
from Corollary 7?

The first term is the maximum, over all maximal cones C of Σ, of dimR Σ + dimR S −
dimR(〈C〉R ∩ S), and hence it is minimized by an S have certain incidences with given linear
subspaces of Rn. If the rationality assumption is dropped, then real quantifier elimination



THE DIMENSION OF AN AMOEBA 23

answers the question in the affirmative. However, similar incidence problems often have real
but no rational solutions. For instance, a classical result in enumerative geometry says that the
number of two-dimensional subspaces in R4 (lines in projective three-space) that nontrivially
intersect four given two-dimensional subspaces in general position is either zero (in which
case there are two complex conjugate solutions) or two. In the latter case, even if the four
given spaces are rational, the two solutions will typically not be. We do not know whether
the existence of rational solutions for such incidence problems is decidable in general, nor
whether the additional conditions on Σ force that real solutions imply rational solutions. On
the other hand, if X is a variety given by equations with coefficients in, say, some number field,
then of course, by real quantifier elimination, there does exist an algorithm for computing
dimR A(X) = dimR |X|.
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72076 Tübingen
Germany

johannes.rau@math.uni-tuebingen.de

Chi Ho Yuen
Mathematisches Institut
Universität Bern
Alpeneggstrasse 22
CH-3012 Bern
Switzerland

chi.yuen@math.unibe.ch

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical
Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its
publishing programme is used to support mathematicians and mathematics research in the form of research
grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

mailto:jan.draisma@math.unibe.ch
mailto:johannes.rau@math.uni-tuebingen.de
mailto:chi.yuen@math.unibe.ch

	1
	2. In search of a positive-dimensional torus
	3. Proofs of the main results
	References

