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DISTORTION OF SPHERES AND SURFACES IN SPACE

SEBASTIAN BAADER, LUCA STUDER, ROGER ZÜST

Abstract. It is known that the surface of a cone over the unit disc
with large height has smaller distortion than the standard embedding
of the 2-sphere in R3. In this note we show that distortion minimisers
exist among convex embedded 2-spheres and have uniformly bounded
eccentricity. Moreover, we prove that π/2 is a sharp lower bound on the
distortion of embedded closed surfaces of positive genus.

1. Introduction

The distortion of a path-connected subset A ⊂ Rn is the largest ratio
between the intrinsic distance and the Euclidean distance of pairs of points
in A:

δ(A) = sup
p,q∈A

dA(p, q)

|p− q|
.

Here the intrinsic distance dA(p, q) of two points p, q ∈ A is defined by
minimising the length of paths connecting p and q. In the special case of
circles embedded in Rn, there is a universal lower bound on the distortion,
π/2, which is attained by round circles only. Surprisingly, this bound does
not carry over to embeddings of higher-dimensional spheres in Euclidean
space, as shown by the following two statements. The first one was observed
by Gromov in [3, Chapter 9].

Theorem 1.

(i) The distortion of the surface of a cone over the unit disc with suffi-
ciently large height (e.g. h = 3) is strictly smaller than π/2.

(ii) The distortion of the boundary of a regular (n+ 1)-dimensional sim-

plex is
√

2 + 2/n. In particular, for n ≥ 5, the boundary of the
regular (n+1)-simplex has a lower distortion than the round sphere.

The eccentricity of an embedded sphere is the ratio of its circumradius
and its inradius. Embedded spheres of distortion ≤ π/2 in R3 can have
arbitrarily large eccentricity, as shown by rotationally symmetric ellipsoids
and long cones. In contrast, distortion minimisers among convex spheres
have uniformly bounded eccentricity.

Theorem 2. There exist convex embeddings of the 2-sphere in R3 min-
imising the distortion among all convex embeddings of the 2-sphere in R3.
Moreover, these minimisers have uniformly bounded eccentricity.
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2 SEBASTIAN BAADER, LUCA STUDER, ROGER ZÜST

The existence of minimisers for non-convex embeddings of the 2-sphere,
as well as for surfaces of positive genus in R3, remains to be settled. Nev-
ertheless, for the latter, we will determine the best possible lower bound on
the distortion among all embeddings.

Proposition 1. The distortion of an embedded closed surface of genus g ≥ 1
into R3 can be arbitrarily close to π/2, but not smaller.

This leaves the 2-sphere as a challenging special case among surfaces.
The proofs of Theorems 1,2 and Proposition 1 are contained in Sections 2,3
and 5, respectivly. Proposition 1 requires a lower bound on the distortion of
subsets of Rn containing systoles, which we derive in Section 4. We conclude
with three basic questions on the distortion of embedded spheres.

Question 1. What is the smallest possible distortion of an n-sphere embed-
ded in Rn+1?

Question 2. Does the smallest possible distortion of an n-sphere embedded
in Rn+k depend on k ≥ 1?

Question 3. Can the distortion of an n-sphere embedded in Rn+k be
√

2,
or even smaller?

This work was triggered by Misev and Pichon’s recent characterisation of
superisolated hypersurface singularity with finite distortion [5]. We thank
Filip Misev for explaining us the details of their result.

2. Upper bounds

In this section we compute the distortion of a cone in R3, and of the
boundary of the standard (n+1)-simplex. We consider the surface of a cone
over the disc of radius 0 < r < 1, S(r) = C(r) ∪D(r), where

C(r) =
{

(x, y, z) ∈ R3 : x2 + y2 = r2

1−r2 z
2, 0 ≤ z ≤

√
1− r2

}
,

D(r) =
{

(x, y, z) ∈ R3 : x2 + y2 ≤ r2, z =
√

1− r2
}
,

see Figure 1. Note that S(r) is a topologically embedded 2-sphere.

1

r

w

rv

u

Figure 1. The closed cone S(r) with r ≈ 0.169 . . .

The following proposition implies the first part of Theorem 1.
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Proposition 2. The distortion of S(r) is smaller than π/2 if and only if
r < 1 − π2/8 and achieves its minimum δ(S(r0)) = 1.552 . . . at the unique
solution r0 = 0.169 . . . of

sin(πr/2)

r
=

√
2√

1− r
.

In particular, the standard 2-sphere S2 ⊂ R3 is not a minimiser for the
distortion of topologically embedded 2-spheres in R3.

Proof. Let w = (0, 0,
√

1− r2) the center of the disc D(r) and v a point in
C(r) with distance r from the boundary of the disc D(r), see Figure 1. With

the law of cosines we find the euclidean distance |v −w| =
√

2r − 2r2. This
yields

dS(r)(v, w)

|v − w|
=

2r√
2r − 2r2

=

√
2√

1− r
. (1)

Let u = (−v1,−v2, v3) be the opposite point of v = (v1, v2, v3) on S(r), see
Figure 1. Using an isometric parametrization of C(r) we find the intrinsic
distance dS(r)(u, v) = 2 sin(rπ/2)|v| and get

dS(r)(u, v)

|u− v|
=

2 sin(rπ/2)|v|
2r|v|

=
sin(πr/2)

r
. (2)

A geometric argument (also using Remark 1 below) reveals that the dis-
tortion of S(r) is in fact equal to the maximum of the ratios (1) and (2),
that is

δ(S(r)) = max
(
dS(r)(u,v)

|u−v| ,
dS(r)(v,w)

|v−w|

)
= max

(
sin(πr/2)

r ,
√
2√

1−r

)
.

The function r 7→ sin(πr/2)/r is strictly decreasing on (0, 1) and converges
to π/2 as r tends to 0, whereas the function r 7→

√
2/
√

1− r is strictly
increasing on (0, 1) and converges to

√
2 as r tends to 0. Therefore the

maximum of these two functions is strictly smaller than π/2 if and only if
√

2√
1− r

<
π

2
⇐⇒ r <

π2 − 8

π2
,

and δ(S(r)) achieves its unique minimum on (0, 1) at the solution r0 =
0.169 . . . of

sin(πr/2)

r
=

√
2√

1− r
.

This yields Proposition 2. �

For the second part of Theorem 1, we consider the boundary ∂S of the
regular (n+ 1)-simplex

S = {x ∈ Rn+2 : x1 + . . .+ xn+2 = 1, x1, . . . , xn+2 ≥ 0}
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in Rn+2. First, we show that δ(∂S) ≥
√

2 + 2/n. Consider the midpoints

p = 1
n+1(0, 1, 1, . . . , 1) and q = 1

n+1(1, 0, 1, 1, . . . , 1)

of the two n-facets of S obtained by intersecting S with the hyperplanes
defined by x1 = 0 and x2 = 0 respectively. For both points the distance to
the boundary of the respective n-facet is intrinsically realized by the linear
segment which connects p and q respectively to the midpoint

r = 1
n(0, 0, 1, 1, . . . , 1)

of the (n − 1)-facet contained in the subspace defined by x1 = x2 = 0. In
particular we get d∂S(p, q) = |p−r|+|r−q| = 2|p−r|. A simple computation

yields |p− r| = 1√
n(n+1)

, |p− q| =
√
2

n+1 and hence

δ(∂S) ≥ d∂S(p, q)

|p− q|
=

2|p− r|
|p− q|

=
√

2 + 2/n .

Next, we show that δ(∂S) ≤
√

2 + 2/n: let p, q ∈ ∂S be two arbitrary
points. In the non-trivial case where p and q are not contained in the same n-
facet of S, the intrinsic distance of p and q is bounded above by |p−r|+|q−r|
for any point r in the common (n−1)-facet of the n-facets containing p and
q respectively. It is not hard to see that for a suitable choice r the angle
between p− r and q − r is at least α = cos−1( 1

n+1), the angle between two
n-facets of S. By Remark 1 below, the ratio of intrinsic to extrinsic distance
of p and q is bounded above by 2|v|/|v − w| for vectors v and w of equal
length and angle α = cos−1( 1

n+1). A computation shows that this upper

bound for the ratios of intrinsic to extrinsic distance is precisely
√

2 + 2/n,
as desired.

Remark 1. The distortion of a union of two rays R with a common point
r is realized by pairs of points p and q at the same distance from r and is

equal to δ(R) = |p−r|+|q−r|
|p−q| .

3. Convex minimisers

In this section we prove Theorem 2 stated in the introduction. It is crucial
in the proof that the distortion of a convex 2-sphere is strictly smaller than
π/2. The proof below shows the existence of convex minimisers and uniform
boundedness of their eccentricity. As mentioned in the introduction, this
contrasts the situation for the class of 2-spheres with distortion ≤ π/2,
which can have arbitrarily large eccentricity.

Proof of Theorem 2. We employ the direct method of the calculus of vari-
ations to find a minimiser in this class. Let C be the class of compact and
convex subsets of R3 and C′ ⊂ C be the subclass of those sets with nonempty
interior. Let (Kn) be a sequence in C′ such that

S := lim
n→∞

δ(∂Kn) = inf{δ(∂K) : K ∈ C′} .
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Since the distortion is translation and scaling invariant we may assume that
diam(Kn) = 2 and the diameter is achieved at the points ±p := (±1, 0, 0) ∈
Kn. With this normalization, the Blaschke selection principle guarantees a
subsequence of (Kn) that converges in Hausdorff distance to some K ∈ C,
see [1] or [2, Theorem 7.3.8, Remark 7.3.9] for a modern reference. Without
loss of generality we assume that (Kn) already converges to K. In two steps
we show that K has nonempty interior and then that S = δ(∂K).

First it is easy to see that diam(K) = 2 and ±p ∈ K. Assume by
contradiction that K has empty interior. Then K is contained in a two-
dimensional plane V . This plane has to contain the x-axis, rotating all the
sets (Kn) we may assume that K is contained in the (x, y)-plane V . Now
either K has nonempty interior in V or K = [−p, p].

In the first case we find a point c = (cx, cy, 0) ∈ V ∩K and an open disc
D ⊂ V ∩K with center c and some radius r > 0. Because of the convergence
of Kn to K, the orthogonal projections πV (Kn) also converge to πV (K) = K
and if n is big enough, say n ≥ N , then πV (Kn) also contains the disc D.
Moreover there are an, bn > 0 that converge to 0 for n → ∞ such that
q+n := (cx, cy, an), q−n := (cx, cy,−bn) ∈ ∂Kn. For any n ≥ N , the preimage

π−1V (D) ∩ ∂Kn is composed of two disjoint sets and πV is a homeomophism
onto D on each of them. Thus if γ : [0, 1] → ∂Kn is a curve in Kn that
connects q+n and q−n in ∂Kn, then πV ◦ γ is a curve in V of length at least
2r. Because πV is 1-Lipschitz, γ has length at least 2r and it follows

δ(∂Kn) ≥ d∂Kn(q+n , q
−
n )

|q+n − q−n |
≥ 2r

an + bn
→∞

for n→∞. This contradicts the choice of the sequence (Kn).
In the second case K = [−p, p]. Let W be the (y, z)-plane and consider

the intersection K ′n := Kn ∩ W . Each K ′n is a compact convex set with
nonempty interior in W and a boundary circle Cn. As an embedded circle
Cn has distortion at least π/2, see [3]. So there are two different points
sn, tn ∈ Cn with

L([sn, tn])

|sn − tn|
≥ π

2
,

where L([sn, tn]) is the smaller length of the two arcs in Cn that connects
sn and tn. Now since Kn is convex it contains the cone A±n with base K ′n
and vertex ±p. Set An := A+ ∪A−. This is the union of two cones with the
same base, so An is itself compact, convex and contains the points ±p. Let
πn : ∂Kn → An be the nearest point projection. Because An is contained in
Kn, πn is a 1-Lipschitz map from ∂Kn onto ∂An. Because sn, tn ∈ ∂An it
follows that

d∂Kn(sn, tn) ≥ d∂An(sn, tn) .

By assumption, rn := supt∈Cn
|t| converges to 0 for n → ∞. Because of

Proposition 2 we know that S < π/2, so we may assume that δ(∂Kn) <
π/2 − ε for all n and some ε > 0. Thus for any n there is a curve γn
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connecting sn and tn in ∂An such that

L(γn) < (π/2− ε)|sn − tn| ≤ (π/2− ε)2rn ≤ πrn .

Since An is mirror symmetric with respect to W we may assume that the
image of γn is contained in A+

n . Because of the estimate above the projection
of the curve γn onto the x-axis is contained in the interval [0, πrn]. Let
P : ∂An ∩ ([0, πrn] × R2) → W be the radial projection from the point p
onto W . If n is big enough, then L(P ◦γn) ≤ (1+6πrn)L(γn) (see Lemma 1
below). Since P ◦ γn connects sn and tn in Cn it follows that

L([sn, tn]) ≤ L(P ◦ γn) ≤ (1 + 6πrn)L(γn)

≤ (1 + 6πrn)(π/2− ε)|sn − tn| .

But this contradicts L([sn, tn]) ≥ π/2|sn − tn| if n is big enough.
With this preparation we know that K has nonempty interior and there-

fore that K ∈ C′. It remains to show that δ(K) = S. First it is clear
that δ(K) ≥ S by the definition of S. The other inequality follows di-
rectly from the lower semicontinuity of δ. Here is a proof for the conve-
nience of the reader: Fix two points x, y ∈ ∂K. By construction there
are sequences xn, yn ∈ ∂Kn that converge to x and y respectively, because
∂Kn converges in Hausdorff distance to ∂K (which is implied by the con-
vergence of Kn to K because K has nonempty interior). Choose curves
γn : [0, 1] → ∂Kn with L(γn) ≤ (δ(Kn) + 1

n)|xn − yn|. We can assume that
each γn is parametrized proportional to arc length, see [2, Proposition 2.5.9].
With this parametrization, the sequence γn has a uniform bound on the Lip-
schitz constants (namely supn≥1(δ(Kn)+ 1

n)|xn−yn|) and due to the theorem
of Arzelà-Ascoli there exists a subsequence (γnk

) that converges uniformly
to some Lipschitz curve γ : [0, 1] → R3 that connects x with y. The length
of γ is estimated by

L(γ) ≤ Lip(γ) ≤ lim sup
n→∞

Lip(γn)

≤ lim sup
n→∞

(δ(Kn) + 1
n)|xn − yn| = S|x− y| .

Because ∂Kn converges to ∂K it follows that the image of γ is contained
in ∂K. The points x, y ∈ ∂K are arbitrary and therefore we conclude
δ(K) ≤ S. �

Here is a technical lemma used in the proof above:

Lemma 1. L(P ◦ γn) ≤ (1 + 6πrn)L(γn) if 6πrn ≤ 1.

Proof. Assume that n is big enough such that 6πrn ≤ 1. The map P is
given by

P (x, y, z) =
1

1− x
(0, y, z) .
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We estimate the Lipschitz constant of P on the cylinder Z = [0, πrn] ×
B2(0, rn). For q = (x, y, z), q′ = (x′, y′, z′) ∈ Z it holds

|P (q)− P (q′)| =
∣∣∣∣ (y, z)1− x

− (y′, z′)

1− x′

∣∣∣∣ =

∣∣∣∣(y, z)(1− x′)− (y′, z′)(1− x)

(1− x)(1− x′)

∣∣∣∣
≤ 1

(1− πrn)2
|(y, z)(1− x′)− (y′, z′)(1− x)|

≤ 1

(1− πrn)2
(
|(y, z)− (y′, z′)|+ |(y, z)x′ − (y, z)x|+ |(y, z)x− (y′, z′)x|

)
≤ 1

(1− πrn)2
(
|(y, z)− (y′, z′)|+ rn|x′ − x|+ πrn|(y, z)− (y′, z′)|

)
≤ 1 + 2πrn

(1− πrn)2
|q − q′| ≤ 1 + 2πrn

1− 2πrn
|q − q′| ≤ (1 + 6πrn)|q − q′| .

In the last estimate we used that 1+s
1−s ≤ 1 + 3s if s ∈ [0, 13 ]. The estimate

for the length of the curves follows immediately. �

4. Lower bounds

In this section we derive lower bounds on the distortion of closed subsets of
Rn. The third one requires the existence of a systole of a subset A ⊂ Rn, i.e.
a non-contractible loop of minimal length in A. All these bounds have been
discovered and proved by Gromov and Pansu, see Chapter 1 and Appendix A
in [4]. We provide proofs since they are short and instructive.

Proposition 3. Let A be a closed subset of Rn.

(i) If the complement of A has a bounded component, then the distortion
of A is at least π

2
√
2
.

(ii) If A = −A and A does not contain the origin, then the distortion of
A is at least π/2.

(iii) If A has a systole, then the distortion of A is at least π/2.

In all three statements, closedness of the subset A is essential, as shows
the example A = Rn \ {0} ⊂ Rn, whose distortion is one. The following
strengthening of the first statement is derived in [4, Section 1.14]: Let A ⊂
Rn be compact with distortion δ(A) < τn, for some fixed τn ∈ ( π

2
√
2
, π2 ), then

A is contractible.
The third inequality applies to all compact submanifolds of Rn with non-

trivial fundamental group, since these admit systoles.

Proof. For (i), let C be a bounded component of Rn \ A and let B be an
open ball of maximal radius contained in C. Since the distortion is invariant
under scalings and translations we may assume that B is the open unit ball
centered at the origin. Let p ∈ B ∩ A and assume for a contradiction that
for every q ∈ B ∩ A the angle between p and q is smaller than π/2. This
implies that B ∩A is contained in the hemisphere {b ∈ ∂B : 〈p, b〉 > 0}. For
sufficiently small t > 0 the closed ball B − tp is also contained in the open
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component C, a contradiction to the maximality of the radius of B. This
shows that there exists a point q ∈ B∩A such that the angle between p and
q is at least π/2. We conclude

δ(A) ≥ dA(p, q)

|p− q|
≥ d∂B(p, q)

|p− q|
≥ π

2
√

2
,

where we used that the standard projection Rn \B → ∂B is 1-Lipschitz and
that the angle between p and q is at least π/2. This finishes the proof of (i).

For (ii), let B be a closed ball centered at the origin with minimal positive
radius r such that B ∩ A is non-empty. By the symmetry of A there are
antipodal points ±p contained in B ∩A. We conclude

δ(A) ≥ dA(p,−p)
|p− (−p)|

≥ d∂B(p,−p)
2|p|

=
πr

2r
=
π

2
,

where we used again that the standard projection Rn\B → ∂B is 1-Lipschitz
and that ±p are antipodal points on ∂B. This proves (ii).

For (iii) we first show the following crucial statement: if S ⊂ A is a systole
of A, then dS(p, q) = dA(p, q) for all pairs of points p, q ∈ S. To see this,
let γ ⊂ A be a path connecting two given points p, q ∈ S. Moreover, let
γ1, γ2 ⊂ S be the two paths connecting p and q in S. We have S = γ1 ∪ γ2.
If both closed loops γ ∪ γ1 and γ ∪ γ2 are contractible, then both pairs γ, γ1
and γ, γ2 are homotopic relative to the endpoints p and q. In particular
γ1, γ2 are homotopic relative to the endpoints, which contradicts the fact
that γ1∪γ2 = S is not null-homotopic. Therefore we can assume that γ∪γ1
is not null-homotopic and get

l(γ) + l(γ1) = l(γ ∪ γ1) ≥ l(S) = l(γ1 ∪ γ2) = l(γ1) + l(γ2)

by the minimality of the length of S among non-null-homotopic curves.
This implies l(γ) ≥ l(γ2) ≥ dS(p, q). Since γ ⊂ A was arbitrary we conclude
dA(p, q) ≥ dS(p, q), as desired. With the statement dA(p, q) = dS(p, q) for
p, q ∈ S at hand we see immediately that the distortion of A is bounded
below by the distortion of S. Since S is a closed loop, its distortion is at
least π/2. This proves (iii). �

5. Surfaces with low distortion

Thanks to Proposition 3, the distortion of an embedded closed surface
of genus g ≥ 1 in Rn is at least π/2. Indeed, closed non-simply connected
surfaces admit a systole with respect to any Riemannian metric. In order
to prove Theorem 2, we need to construct embeddings of surfaces with dis-
tortion arbitrarily close to π/2. We start with the closed torus, which we
embed as the boundary of an ε-neighbourhood Nε(S

1) of a unit circle S1 in
R3. We claim that

lim
ε→0

δ(∂Nε(S
1)) = π/2 .
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This follows from the fact that ∂Nε(S
1) looks locally like a straight cylin-

der of radius ε and globally like a unit circle (both of which have distortion
π/2). The deviation of the distortion from π/2 is governed by a linear ex-
pression in ε. In fact, we suspect that the distortion of every individual
torus ∂Nε(S

1) is π/2, for all ε < 1.
For surfaces of higher genus g, we consider a disjoint union of g tori as

above, arranged at large distance along a line. We connect these tori by
g − 1 thin cylinders (say of radius ε2) along that line. The large distance
between consecutive tori makes sure that the intrinsic distance of pairs of
points contained in two consecutive tori is close to their Euclidean distance.
As for a single torus, the distortion of the resulting surface of genus g tends
to π/2, as ε tends to zero. However, the distortion of such a surface might be
larger than π/2, since connecting consecutive tori by thin cylinders involves
cutting out small discs from these tori and this slightly changes the inner
metric.
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