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ABSTRACT

Land use-land cover (LULC) association with land surface temperature (LST) is well known. Knowledge about land
change effects on LST in urbanizing African drylands is very limited. We examined LST and vegetation variations in
semi-arid Gaborone (Botswana's capital) using MODIS daytime and night-time LST (DNLST), and Normalized Differ-
ence Vegetation Index (NDVI) between 2000 and 2018. Significant land transitions were identified in the land
cover change map using Change Vector Analysis of Landsat-based biophysical indices of vegetation, water and bare
soil. Artificial surface and tree-covered areas were net gaining categories, whereas cropland and grassland were net
losing categories. Detailed profiling of DNLST trends and breakpoints was conducted in five relatively homogenous
sites representing land cover/transitions. Increasing NDVI and DNLST trends found were significant. Per class, LST
change at daytime and night-time are as follows: built-up areas (1.8 K, 2.2 K), Gaborone dam (5.7 K, 0.2 K), settlement
expansion areas (4.6 K, 2.2 K), and rural settlement (2.0 K, 1.5 K). The cooling effect of irrigation on daytime LST was
higher than night-time LST as daytime LST trend as low as — 0.4 K was found in areas of irrigated croplands. Validation
with synoptic station temperature data and dam water levels provides empirical evidence that MODIS gave credible
DNLST estimates in this urbanizing dryland area. Our results also suggest the role of climate variability in urbanizing
drylands alongside land cover change in controlling the LST. Regardless, coupling DNLST and land cover changes can
provide useful information for spatial planning of drylands to create smart cities that are resilient to climate change.

1. Introduction

Land use-land cover change (LULCC) as an environmental change driver
plays an important role in modulating the local microclimate including land
surface temperature (LST), especially in urbanizing areas [1-3]. Although
the product of natural and anthropogenic factors in increasingly globalized
land systems, a region's LULCC mainly reflects the heightening socioeco-
nomic transformations due to human activities [4-7]. Alterations of
urban landscape composition and configuration due to LULCC as well as
the biophysical context (e.g. topography) affect LST [8,9]. In urbanizing re-
gions, natural and semi-natural land covers of mostly rural landscapes are
replaced increasingly with concrete and other construction materials.
Urban LST estimation is complicated due to the surface heterogeneity
occasioned by the different land covers and mixed uses. This is because
land surface emissivity is highly variable and can vary over short distances
[10]. Information about land change impacts on urban LST is needed for
the proper design and spatial planning of smart cities in the face of climate
change. For example, when seeking to mitigate overheating in city designs
that can cause heat stress-related illnesses among urban dwellers [11-13].

Ameliorating extreme temperatures is an issue of increasing concern for
urban areas worldwide [14].

Most studies investigating LST in the global south have concentrated on
megacities and there are only a handful of such studies conducted on
African cities. Examples are Freetown and Bo, Sierra Leone [15]; Warri,
Benin-City and Port Harcourt, Nigeria [16]; Onitsha, Nigeria [10],
Harare, Zimbabwe [17]. Other studies have focused on river basins such
as the Inner Niger Delta, Mali [18], and the Kilombero catchment,
Tanzania [19]. Relatively little is known about land change impacts on
LST in emerging cities in comparison to the megacities, hence the need to
fill this gap. By emerging cities, we refer to small and medium-sized cities
with a million or fewer inhabitants [20]. Knowledge about LST and its in-
teraction with land change in African emerging cities in dryland regions
is also grossly lacking. Drylands are regions classified climatically as arid,
semi-arid, or dry sub-humid, and are characterized by high variability in
both rainfall amounts and intensities [21]. Faced with pressures from envi-
ronmental change, emerging cities in all regions of the world are required
to be resilient as more people will live there and projected future urban
growth is mostly to occur in this type of cities [9,10,20,22-24].
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This study examined the effects of urban land change on LST trends in
Gaborone, a dryland region in Botswana. Although many factors influence
LST and these are quite complex in dryland contexts, we focused on examin-
ing how LULCC is associated with LST, as the former is fundamental in cap-
turing anthropogenic influences. Not much is known about the long-term
spatiotemporal variation of LST and the influence of LULCC in semi-arid
and arid regions [25]. Unlike many LST related studies examining the effects
of specific land transitions such as deforestation, we examined the effects of
all types of urban land transitions as well as areas where land cover persisted,
i.e. remained unchanged. Trends in LST and vegetation conditions, as well as
their relationships with land cover, were analyzed using long-term satellite
time-series data from MODIS between 2000 and 2018. There are not many
studies utilizing remotely sensed time-series such as MODIS and Landsat to
understand the relationship between LST and land cover (e.g. [15,26,27]).
With its very high temporal resolution, we investigated how useful MODIS
datasets are for assessing LST and vegetation changes with land change in
urban dryland contexts. MODIS products are mostly used for global and re-
gional studies because of the coarse spatial resolution [28]. Analyzing
LST's relationship with vegetation is also important as vegetation cover is a
major predictor of urban LST [9,29]. Jonsson [29] found that vegetation
was a major factor influencing the climate over Gaborone.

As LST varies with time of day [12,25], we also compared daytime and
night-time LST trends over Gaborone. Questions answered in this study in-
clude LST changes over the 18-year study period, and how these relate to
LULCC in an urbanizing dryland context. As dryland environments are highly
sensitive to human and natural perturbations [30], improved understanding
of LST interactions with urban land change can better inform city adaptation
to environmental change, particularly climate change in drylands.

2. Materials and methods
2.1. Study area

The study area located to the southeast of Botswana comprises Gaborone
City (the capital of Botswana), and its immediate surrounding settlements
Zambia
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(Fig. 1). The immediate surroundings are important for consideration of
urban land change as the city is expanding into these peri-urban areas.

With an average altitude of 1014 m a.s.l., the Gaborone region as de-
fined in this study is positioned between the Kgale hill in the southwest
and Oodi hill to its northeast and extends to the southern tip of the Gabo-
rone dam. Drained mainly by the Notwane River and the Segoditshane
River, the region is largely dependent on water availability from the reser-
voir. As a dryland region, the dam's reduced water level over time nega-
tively impacts the city and that of nearby settlements. With incessant
water shortages in Gaborone, the North-South Carrier (NSC) water scheme
was implemented to transport water 360 km to Gaborone from the
Letsibogo and Dikgatlhong dams located northwards [31,32].

The climate of the city is semi-arid, hot steppe (Koppen's BSh classifica-
tion) with annual rainfall ranging between 475 and 525 mm. Temperatures
are highest in summer (October to March) with a daily minimum and max-
imum of 19 °C and 40 °C respectively and night-time temperature occasion-
ally drops below 0 °C in Winter [33]. Due to net in-migration, Gaborone, as
the financial, administrative and educational nerve center of Botswana, is
fast growing into a primate city from 3855 inhabitants in 1964 to
231,592 in 2011 [34,35]. As the number of inhabitants increases, the
higher the water consumption level and it is difficult though to decouple
the consumption of water from variations in precipitation.

2.2. Data

MODIS land surface temperature (MOD11A2.006 LST_Day_lkm and
LST Night_1km) and MODIS Normalized Difference Vegetation Index
(NDVI) (MOD13Q1.006, 250 m) time series data were used to analyze
LST and NDVI trends over Gaborone. The full archive of images available
from July 2000 to June 2018 was used. The MODIS LST and NDVI datasets
are preprocessed by taking into cognizance clear sky conditions and cloud
pixel masking [12]. MODIS has been widely used in studies examining
LST as the data series are standardized [36-40]. Several studies have also
found that NDVI captures the temporal changes in vegetation and positively
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Fig. 1. Study location Gaborone in southeast Botswana.
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correlates with precipitation and temperature although with notable lags
[41,42].

The RCMRD/SERVIR Greenhouse Gas Inventory (30 m) land cover data
(GHG-LULC) for Botswana of the year 2000 was utilized in this study [30].
For 2018, a land cover map was produced based on Landsat 8 images
(30 m) with 85% classification accuracy.

Temperature data from the Sir Sereste Khama International Airport
(SSKA) synoptic station was obtained from the Botswana Department of
Meteorological Services. It was utilized in this study to compute the trend
in comparison with outputs from MODIS LST products. The Gaborone
dam's water level data was used to compute trend and ascertain its relation-
ship to LST. The water level in the dam is monitored regularly.

2.3. Methods

2.3.1. Analysis of LST and NDVI trends

To examine how land cover transitions affect LST in the Gaborone re-
gion, we first analyzed and mapped the changes in LST assuming mono-
tonic trends over the 18-year study period. Afterward, changes in LST
were analyzed for breakpoints. The R package Greenbrown was used to an-
alyze LST, NDVI trends and breakpoints [43]. The Seasonal Trend Model
(STM) used as implemented in this package is based on the additive decom-
position model [44]. Linear and harmonic trends are fitted to the original
series using an Ordinary Least Squares (OLS) regression, and a Mann-
Kendall test is used to determine the significance of the trends found. Ana-
lyzing LST for a breakpoint is important, particularly in drylands where
abrupt changes caused by disturbances (e.g. deforestation, fires, drought
and floods) are common [43,45]. To examine the influence of abrupt
changes, the maximum number of breakpoints is set. A breakpoint in the
time series data is detected by searching for structural changes in a regres-
sion and the position is estimated by minimizing the residual sum of
squares [43]. The trend is split into two segments when a breakpoint is de-
tected, and the significance of the segment slope is determined.

A STM generally shows more robust results than aggregation methods
such as the OLS regression over annual means due to the higher availability
of data points [19,43]. Linear regression is used to rescale the slopes of the
trends into LST change in Kelvin (K) for better interpretation of results as in
Eq. (1) [19]:

LST = slope * time + intercept (1)

Results were afterwards classified into significant and non-significant
trends at the 90% confidence level.

2.3.2. Land use-land cover change analysis

The cover maps for 2000 and 2018 utilized the same classification
scheme (Table 1) based on the Intergovernmental Panel on Climate Change
(IPCC) and United Nations Convention on Combating Desertification land
use legend [46-48]. The six classes contained in the scheme are (1) tree-
covered area, (2) grassland, (3) cropland, (4) waterbody, (5) artificial sur-
face area (e.g. settlement) and (6) otherland.

The accuracy of both the 2000 and 2018 maps have been independently
assessed. The Botswana 2000 GHG-LULC map was produced from Landsat
5 and 7 images and validated through field verification by the Botswana
Department of Survey and Mapping (DSM). The 2018 cover map was
based mainly on Landsat 8 image data. The accuracy attained for the
2018 cover map was 85% using ground reference data of land cover sam-
ples collected during fieldwork in 2018 and high-resolution images in Goo-
gle Earth Pro, as well as correction applied to misclassified pixels based on
official and well established external data (e.g. Waterbody vector data from
DSM).

For detecting LULCC in the study area, the post-classification bi-
temporal comparisons (PCC) method was used [49]. This method aligns in-
dependently classified images of two-time points on a per-pixel basis to de-
tect where changes occurred between the dates [50]. The detected changes
form the basis for quantifying the area, i.e. the amount of land involved, in
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Table 1
Land cover classification scheme used in the study.

Land classes Description

Tree-covered An area covered with trees such as sparse, moderate forest and/or
area woodland.

Grassland Aland area covered predominantly with grass and shrubs such as
closed grassland, open grassland, closed shrubland, and open
shrubland.

Cropland An area of crop growth usually irrigated or rainfall dependent.

Waterbody Naturally formed water coverage on the earth surface such as
wetland, river or manmade such as dams.

Artificial The land area of infrastructure and human settlements comprising

surface area buildings, i.e. commercial, residential, industrial, and roads/streets.

Otherland Includes barelands such as exposed land surfaces void of vegetation,

rocky outcrops, dunes, and mining area.

the “from-to” change matrix of transitions among land classes. The output
from the change detection process is necessary to establish an association
with LST. PCCs are often prone to error propagation [51], where the errors
from the maps of the first and second periods are accumulated. To minimize
error propagation in the PCC, we performed a Change Vector Analysis —
CVA [52]. CVA provides information on the magnitude and the direction
of the change, i.e. the intensity and the spectral behavior of the change vec-
tor respectively [53]. The CVA was executed over two multitemporal com-
posites of Landsat images for 1999-2001 (Landsat 7), and 2016-2018
(Landsat 8). These composites contained the percentile 90 of the normal-
ized difference indices of vegetation (normalized difference vegetation
index — NDVI, [54]), water (normalized difference water index — NDWTI)
[55] and bare soil (normalized difference built-up index — NDBI, [56]).
Maxima metrics of these indices have been shown to better capture the bio-
physical conditions of the land surface [57] and significant land cover
changes are expected to produce variations in these metrics. To separate
significant from non-significant changes, we applied a histogram-based
thresholding technique to the magnitude of the CVA [53,58]. Pixels with
low magnitude values were masked out from the PCC, and the change di-
rection of the remaining pixels was used to analyze the land cover transi-
tions of the PCC.

The significant land cover transitions were aggregated into cropland ex-
pansion areas, forestation, deforestation, and settlement expansion areas to
better interpret their association with LST and NDVI trends. We also com-
pared LST and NDVI trends over areas of persistence, i.e. no change. The
very small change areas, each covering <1% of the total land area, were
combined and labeled as other transitions. This aids separating the urbani-
zation effect on LST into these individual land transition types. Validating
urban LST values derived from Remote Sensing (RS) is not straightforward
because the derived LST is representative of the whole pixel, whereas field-
based temperature measurements are point-based and LST can vary over
short distances [10]. With these fine-grain data requirements of heteroge-
neous cityscapes [14], field validation of RS-derived LST in urbanizing re-
gions is only meaningful over homogeneous areas [10,59]. LST daytime
and night-time data were extracted over five sites (A to E) with relatively
homogenous LST patterns. These selected sites represent different land
cover and/or transition areas such as abandoned croplands with over-
growths, forest, waterbody, urban and rural settlements in the study area.

3. Results
3.1. Land cover change

LULCC over the 18-year study period in Gaborone was analyzed to iden-
tify and quantify the amount of land involved in land transitions from one
class type to another. The share of land under each land transition type
by class is shown in Table 2, and Fig. 2 depicts their spatial distribution.
The most notable land covers in Gaborone in terms of their share of land
were: artificial surface areas such as settlements, that increased from
108.48 km? (12.26%) in 2000 to 222.98 km? (25.21%) in 2018; tree-
covered areas consisting of deciduous trees and woodlands increased
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from 100.8 km? (11.40%) in 2000 to 210.23 km? (23.77%) in 2018; grass-
land including shrubland decreased from 627.27 km? (70.92%) in 2000 to
421 km? (47.6%) in 2018; and cropland, which lost half its size as it re-
duced from 24.45 km® (2.76%) in 2000 to 12.82 km® (1.45%) in 2018.

Fig. 2(a, b) shows the losses and gains in areas of significant land cover
changes over the study period. The amount of land share among categories
in 2000 and 2018 is available as Fig. S1 (listed as supplementary informa-
tion). The change budget quantified the amount of land area gained, lost
and persistent among land cover classes between 2000 and 2018
(Fig. 2c). Persistent land covers amounted to 89.31% of the total land
area. Artificial surface and tree-covered areas are net gaining categories,
whereas cropland and grassland are net losing categories during the 18-
year study period. The spatial extent of waterbody representing the Gabo-
rone dam fluctuates with the water level.

3.2. LST trends

LST trends during the daytime and night-time were analyzed using the
STM for the period July 2000 to June 2018 as shown in Fig. 3. LST patterns
were examined in five sites (A to E) selected to represent different land tran-
sitions and persistent land cover areas of importance in the study area (see
Table 3 for a detailed description of each site).

Significant increasing trends in daytime and night-time LST were found
over the study area. Daytime LST increase was highest over the Gaborone
dam (site A, min 2.6 K, max 5.7 K). The LST trends at night-time, however,
are reversed as the dam showed a significant decrease when compared to
the daytime LST (min —1.2 K, max 0.2 K), whereas significant increases
were mostly found over the built-up areas in Gaborone (site C, min 0.8 K,
max 2.2 K). Daytime LST increase was lower over the built-up (min 0.1 K,
max 1.8 K) than over the surrounding rural settlements (e.g. site E, min
1.2 K, max 2.2 K) or the settlement expansion areas (min 0.3 K, max
4.5 K). LST trends increased but remained very low over urbanizing areas
(e.g. site D, daytime - min 0.3 K, max 0.8 K; night-time — min 0.5 K, max
0.9 K). LST trends varied over cropland areas depending on whether it is
an area of abandoned croplands (e.g. site B, daytime — min 0.8 K, max
1.3 K; night-time — min 0.8 K, max 1.1 K), or irrigated (daytime — min
—0.4 K, max 0.4 K; night-time — min 0.9 K, max 1.0 K). Detailed examina-
tion of LST trends entailed individual profiling of the five sites (A-E, Fig. 4).

Fig. 4 depicts daytime and night-time LST trends and breakpoints for
the selected sites. Daytime and night-time trend breakpoints detected for
years 2005 and 2013 over the Gaborone dam (representing waterbody)
(Fig. 4a) are well captured in the dam water level data depicted in Fig. 5.
Fig. 5 shows fluctuations of the Gaborone dam water level over the study
period. LST patterns over the Gaborone dam match the periods of drought
and non-drought conditions as the temperature peaked at lower water
levels (Fig. 5) and the temperature dropped when the dam flooded.

The LST trend breakpoints captured the low water level in the dam in
2005 and 2013-2014 (Figs. 4a, 5). The water level in the dam is negatively
correlated to daytime LST. The daytime LST trend shows an increase over
the dam, whereas the dam's water level shows a decreasing trend. The latter
is confirmed as the dam's water level dropped from 121.8 m® in 2000 to
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93.1 m® in 2018. For the other four sites (Fig. 4B—E) only one breakpoint
in each is detected with significant trends in 2007 for daytime LST and in
2006 for night-time LST. LST patterns over these four sites were similar be-
fore and after the breakpoints.

3.3. Relationship between LST, NDVI, and LULCC

Changes in daytime LST, NDVI and land cover in Gaborone over the 18-
year study period are shown in Fig. 6. Descriptive statistics such as the min-
imum (min), maximum (max), mean (p) and standard deviation (o) give
further insight into the variations in LST and NDVI trends by land transition
types over the study area (Table 4).

Maximum daytime LST increase was highest over the Gaborone dam. In
the case of night-time LST we see the opposite patterns; decreasing trend
over the dam and increasing trend over the urban built-up core areas
(Fig. 6a, d). These areas have not experienced land cover changes during
the study period. In terms of land change (Fig. 6c¢), significant increases in
the daytime and night-time LST were found in deforested areas.

Areas of significant increasing NDVI trends corresponded to areas that
experienced forestation such as gallery vegetation found around the dam,
along the river courses and irrigated gardens. Increases in LST over areas
of cropland expansion were similar during daytime and night-time and al-
though NDVI increased, it was low. Maximum LST (daytime and night-
time) increased over areas of settlement expansion. Although NDVI de-
creased in most areas of settlement expansion (Fig. 6b), there was a signif-
icant increasing NDVI trend in a few settlement expansion areas. In areas of
persistent land cover, the increase in daytime LST was higher than in night-
time LST. NDVI experienced overall increasing trends over the study area.

4. Discussion

Several studies have examined the influence of urban land cover change
and LST trends. Most of these studies focus on short-term spatiotemporal
patterns such as the annual temperature cycle, the urban heat/cool island
(UHI/UCI) phenomena, and often do not use dense satellite image time-
series as was done in this study [66,67]. While many studies have focused
on large megacities, little is known of the effects of land cover change on
the LST of urbanizing rural settlements in peri-urban areas, and emerging
cities, particularly in drylands. These small to medium-sized cities are im-
portant as they are expected to absorb a larger proportion of the growing
urban populations than megacities in the coming years [20].

4.1. Urban land change

An important land cover change noticeable in the Gaborone region is
the expansion of human settlements, particularly built-up areas of Gabo-
rone city into the surrounding rural areas. Urban expansion occurred
mainly in the western part of the region, northwest with some patches to-
wards the north. This can be mainly attributed to population growth due
to an influx of people into Gaborone from all parts of Botswana. While un-
developed, the areas west of the rail (refer to Fig. 1) were mostly used for

Table 2
LULC change matrix over the study period.
2000 land cover 2018
TC G C w AS 2000 total
km?> % km? % km? % km? % km? % km? %
TC 60.55 28.80 27.35 6.50 0.28 2.16 0.06 0.33 12.57 5.64 100.80 11.40
G 146.52 69.70 368.92 87.63 8.41 65.58 0.45 2.58 102.97 46.18 627.27 70.92
C 0.65 0.31 17.55 4.17 2.79 21.77 0.003 0.02 3.45 1.55 24.45 2.76
w 1.59 0.76 1.96 0.47 0.47 3.67 16.91 97.08 2.52 1.13 23.46 2.65
AS 0.92 0.44 5.22 1.24 0.87 6.81 0 0.00 101.47 45.50 108.48 12.26
2018 Total 210.23 421.00 12.82 17.42 222.98 884.45
2018 (%) 23.77 47.60 1.45 1.97 25.21

Note: Persistence is shown in bold. TC — Tree-covered area, G — Grassland, C — Cropland, W — Waterbody, AS - Artificial surface area.



F.O. Akinyemi et al. City and Environment Interactions 4 (2019) 100029

I Waterbody
[ Persistence
I Tree-covered area|

I Artificial surface

[ Grassland
I cropland
0 10 Km
c) Waterbody ]
Artificial surface - |
| = Gain
Cropland || Persistence
wloss
Tree-covered i

Grassland -

T T

0 5 10 15 20 25 30 35 40 45 50

Fig. 2. Land cover change during 2000-2018, a) losses and persistence, b) gains and persistence, c) change budget (percent of the study area).

w
. ALST Daytime

S g High:57K

- B ow:-06K

-
; - . ALST Night-time
© A e High: 2.2 K
Z ; —— K
F , 0 5 10 " — Low:-1.2K

Sites

A - Waterbody (Gaborone dam)
B - Abandoned cropland

C - Urban built-up core area

D - Urbanising settlement
E - Rural settlement

Fig. 3. Daytime and night-time LST trends in Kelvin (2000-2018) and assuming monotonic trends. Trends in pixels with a horizontal strip (—) are statistically significant at
the 90% confidence level.



F.O. Akinyemi et al.

City and Environment Interactions 4 (2019) 100029

Table 3
Description and land cover characteristics for sites A to E.
Site Coordinate Cover/transition Description
A - Gaborone 25.905003 Waterbody (persistence) ~ Impervious materials are used to create a reservoir for water storage in the Gaborone dam. The dam serves domestic,
dam —24.716490 institutional, and industrial water supply to Gaborone and Lobatse located 72 km south of Gaborone city.
B — Abandoned 26.033038 Cropland to These are croplands with overgrowths to the south of Gaborone city and close to the South African border.
cropland —24.695680 grassland/tree-covered
area
C - Urban 25.912632 Artificial surface Gaborone Extension 34 is a highly compact built-up commercial/industrial neighborhood.
—24.620127 (persistence)
D - Urbanizing  26.125890 Urbanizing, settlement Modipane is a small urbanizing settlement located 25 km east of Gaborone city. The area is surrounded by croplands and
—24.623460 expansion some deforested patches.
E — Rural 25.889671 Cropland and grassland This area is in Letlhajweng, a rural agricultural landscape with predominantly croplands, grassland, and bare soils, to the
—24.520864 exchanges northwest of Gaborone city.

commercial livestock farming [68]. The finding of increasing artificial sur-
face areas due to settlement expansion is confirmed [33].

The findings that cropland decreased and tree-covered areas increased
are not in line with the findings of Matlhodi et al. [33] which found that

cropland increased and tree-covered areas decreased between 1984 and
2015. This disparity is mainly due to the different extent of the study loca-
tions. With a focus on urban LST, our study area comprised Gaborone city
and the immediate surrounding up to the southern limit of the dam
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Table 4
Statistics of the ALST and ANDVIL.
Min Max n o
ALST —-0.55 5.69 1.21 0.65
ANDVI —-0.86 0.88 —-8.14 0.10

Minimum (min), maximum (max), mean (p), and standard deviation (o).

reservoir (refer to Fig. 1), whereas they examined the Gaborone dam catch-
ment, an area south of the dam excluding the city. To the south and south-
east are patches of mostly croplands overgrown with shrubs and some areas
of tree savannas. Visual inspection of high-resolution imagery confirms that
many former croplands are now overgrown as they were left uncultivated,
probably due to the recurrent droughts.
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While applying the CVA minimizes error propagation from the PCC, cer-
tain false positives likely remained. For instance, the PCC flagged “new”
waterbodies around the dam, products of flood dynamics. This is a false
change that could not be entirely masked out with the CVA. The LST trends
as well as the water table level (refer to Fig. 5) shows that there is indeed an
overall decrease in water level. The increases in NDVI around the dam
(Fig. 6b) seem to be a consequence of the growth of vegetation that the
low water levels have allowed. Therefore, using biophysical indicators
(e.g. LST, NDVI) can provide additional information on land cover trends
and help to identify false changes, especially in complex and dynamic envi-
ronments such as dams and/or natural wetlands in urbanizing contexts
[19].

4.2. LST trends

Increasing daytime LST trends found over Gaborone built-up core areas
(e.g. site C representing Gaborone Extension 34) were lower in magnitude
when compared to night-time LST. Maximum daytime LST increases over
the built-up areas were also lower than over the surrounding rural settle-
ments with predominantly agricultural landscapes (e.g. site E Letlhajweng)
or areas of settlement expansion. Decreasing trends in annual maximum
temperature between 1985 and 2014 were found around the SSKA synoptic
station, although not significant [69].

The rural areas surrounding Gaborone such as Letlhajweng (site E) have
higher LST both during the day and at night than at Modipane (site D, ur-
banizing) where the increase in daytime and night-time LST remained
low. The main difference between these two sites is that site E is predomi-
nantly an agricultural landscape with more bare soils and less vegetation,
whereas site D is gradually urbanizing with built-up compactness although
surrounded by cropland and grassland areas. Areas with bare soils and de-
sert sands surrounding cities in dryland regions have been found with
higher LST [25]. The variation in urban-rural minimum temperature pat-
terns in Gaborone during the period 1994-1996, was attributed to the dif-
ferences in urban and rural vegetation cover, particularly in winter [29].
Measures to reduce deforestation and exposure of bare soils are needed in
urbanizing dryland regions.

Findings show the loss of most cropland areas within the city as these
are converted into urban or abandoned. Daytime and night-time LST in-
creases in cropland expansion areas are in line with previous researches
[19]. However, milder increases in daytime LST than in night-time LST
over some areas of cropland expansion may be because of irrigation such
as at the Glen valley irrigation scheme (refer to Fig. 1) [70]. Similar patterns
were found in China [71] where irrigation cooled down daytime LST more
than night-time LST in arid zones, whereas the effects of irrigation in day-
time and night-time LST were negligible in humid areas. Since Gaborone
has since exceeded its planned limit of 20,000 inhabitants [35], the pros-
pect for urban agriculture is very slim with the increasing loss of croplands
within the city. Based on field observations, many residential buildings in
Gaborone now have ornamental trees in the compound. In addition to pro-
viding shade, planting more fruit trees around buildings will increase access
to fresh fruits for enhanced health of urban dwellers.

Increases in daytime LST were highest over the Gaborone Dam (site A),
whereas night-time LST did not vary much across the study period. The two
LST trend breakpoints detected over the dam in 2005 and 2013-2014 cor-
respond to peaks in LST related to very low water levels. The first daytime
LST trend breakpoint in 2005 was followed by floods in 2006 [65]. This ex-
plains the reduced LST values over the dam afterwards till 2013-2014
when a second breakpoint was detected, both in the daytime and night-
time LST as the dam dried up [34]. Daytime LST variation over the dam
seems to be mainly driven by the water level with which it is negatively cor-
related. Many factors affecting the dam water level include evaporation, in-
crease in sediment load transported into the dam (which causes siltation),
and reduced water inflow from the Notwane River catchment especially
during droughts [33,72]. Water demand also increases as the population
of Gaborone grows well beyond its 20,000 planned capacity [68].
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All the monotonic significant trends we found for daytime and night-
time LST were increasing over the study period, except for the LST over
the Gaborone Dam, which depended more on the dam's water level. In-
creasing daytime and night-time LST trends, projected increasing tempera-
ture and drought frequency at varying global warming levels (GWL) mark
this urbanizing dryland region out as being highly vulnerable. For example
at 2.0 GWL, an increase in the number of hot nights and hot days by 8 to
9 days are projected over the region [73] as well as an increase in severe
drought intensity and frequency of up to —1.0 and 2 event decade —' re-
spectively [31]. An LST trend breakpoint was often detected around 2006
(night-time) and 2007 (daytime), from where the increasing trends start.
Note that a trend under the 90% confidence interval as was set in this
study does not necessarily mean that there is no trend. For such a relatively
short period covered by this study (18-years) and because of the several
maxima found within this period, the location of the breakpoint might
vary depending more on the parameters set rather than the actual data.

Even though the selected sites represent different land covers or transi-
tions as evident from the NDVI trends, the LST patterns were similar except
for the dam (refer to Fig. 4). The difference between the LST, NDVI and land
cover change patterns might be partly explained by the different spatial res-
olutions of the datasets (1 km for the LST, 250 m for the NDVI, and 30 m for
land cover). At coarser resolutions, it will be difficult to detect significant
trends if the land cover changes took place at a finer scale. The similarity
between the temporal patterns of the sites plotted in Fig. 4 suggests that
for these types of dryland urbanizingscapes, climatic variables might ex-
plain a higher proportion of the variability of the LST than land cover
changes. This also suggests a higher vulnerability of drylands to tempera-
ture change due to climatic events. For example, the daytime LST
breakpoint from 2007 may be associated with the strong La Nifia event in
that year [60,74]. Additionally, in 2015 when daytime LST peaked over
most sites, there was a very strong El Nifio event [75]. The associated severe
drought necessitated the official declaration of the year 2015 as a drought
year by the government of Botswana [76]. Abundant storm waters brought
about by Tropical Cyclone Dineo from the Indian Ocean may have contrib-
uted to the drop in daytime LST as observed during 2016/2017 [77].

5. Implications for sustainable urban land management and conclud-
ing remarks

Illustrated by the case of Gaborone, this study examined the effects of
urban land cover change on LST by analyzing significant trends and
breakpoints in daytime and night-time LST. The study area covered Gabo-
rone City and its immediate surroundings to the southern limit of the Gabo-
rone dam. Semi-arid Gaborone, as in many emerging African cities, is
experiencing land cover changes driven by climatic changes, increasing
population and consumption levels. Such cities in predominantly rural dry-
lands in Africa and beyond must implement a wide range of adaptation op-
tions as the need to implement bioclimatic plans is higher in arid and semi-
arid climatic regions.

For example, increasing nocturnal LST trends found in the built-up areas
implies more energy will be required for cooling at night. Ameliorating the
UHI condition to better improve the level of thermal comfort of city inhab-
itants is also important. With higher daytime and night-time LST found in
areas of settlement expansion than the city core, better designs to mitigate
increasing temperature are required in new development neighborhoods.
New low-density housing developments in Erbil, Iraqi Kurdistan also had
higher LST than in the urban core areas [27]. The role of parks, urban gar-
dens and tree planting for shade around buildings in Gaborone ought to be
explored. Studies such as Donovan and Butry [78] examined the impacts of
trees on urban summertime electricity use in Sacramento, California and
concluded that the effects of shade trees depend on which side of the build-
ing the trees were located. Urban gardens can also contribute to minimizing
heat stress among urban dwellers and gardening is a good way to supply
fresh produce from urban agriculture [79,80].

The built-up areas at the city core exhibited lower daytime LST in-
creases than over the rural settlements and areas of settlement expansion.
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Maximum night-time LST trends, however, showed inverse patterns as
higher LST increases were found over the built-up areas than over the
rural agricultural settlements. Although daytime and night-time LST trends
increased over croplands, LST increases during the day were not as high as
increases in night-time LST. This difference between daytime and night-
time LST is probably due to irrigation of some croplands. Further study of
the effects of irrigating croplands on urban LST in the study area is required.

All the daytime LST increases were highest over the Gaborone dam than
elsewhere. Times in which the Gaborone dam dried up were picked up in
the time series analysis as LST trend breakpoints in 2005 and 2013-2014
despite the coarse spatial resolution of MODIS LST (1 km). With daytime
LST negatively correlated to the dam's water level, further analysis regard-
ing the dam water level's influence on LST ought to be conducted in the
future.

The high variability of LST when compared to NDVI, which appeared
more stable, made it necessary to analyze the LST trends on a case by
case basis. Apart from the Gaborone dam, most of the temporal LST patterns
were very similar regardless of whether it was a land cover transition area
or where a land cover type persisted. This finding suggests that for these
types of urbanizing dryland landscapes, climatic variables might explain a
proportion of the variability of the LST alongside land cover changes. Re-
gardless, the loss of vegetation cover which increases bare soils and expan-
sion of artificial surfaces (often with higher capacity to accumulate heat
from the sun's radiation), will work synergistically with increases in tem-
perature due to climate change.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.cacint.2020.100029.
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