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Physical forces & tumor growth

Rapid proliferation of cancer cells introduces strains in the tumor micro-environment
which pushes against and deforms surrounding normal tissue. This leads to the ac-
cumulation of solid stress, mechanical forces between the solid components of the
tissue. Elevated solid stress can drive tumors to more aggressive phenotypes
and compromise therapeutic outcome [1]:
• Cell compression alters gene expression, and cellular behavior.
• Compression of blood and lymphatic vessels reduces delivery of oxygen, nutrients,

and treatment agents.
Solid stress also affects healthy tissue. For example, it causes neuronal loss in
brain tissue [2], and is linked to neurological deficits and reduced survival in patients
with glioblastoma (GBM) [3], the most common malignant primary brain tumor in
adults.

Figure 1: Tumor-induced solid stress and physiological consequences. Adapted from [2].

Mechanical solid stress in tumor growth models

We identified over 50 literature contributions of macroscopic spatial tumor growth
models that include aspects of tumor-induced solid stress and their biological or phys-
iological consequences. These studies represent a wide range of modeling ap-
proaches and purposes, as well as evaluation strategies.
Here we distinguish different approaches and extent of evaluation:
• Qualitative: Qualitative evaluation of model behavior.
• Calibration (synthetic/data): Quantitative target metric and optimization ap-

proach, tested against synthetic/real imaging data.
• Prediction: Model calibration and prediction against longitudinal data set.
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Figure 2: Overview of mechanically-coupled tumor growth models, and their degree of evaluation.

Continuum mechanics – Elasticity

When an elastic material is deformed, it experiences internal resistance to the de-
formation and restores its original shape when the deforming force is no longer ap-
plied. The elastic behavior of a material is described by the relation between strain
ϵ̂ [relative deformation] and stress σ̂ [F/L2] and defined by empirically determined
constitutive models. About 3/4 of reviewed models are built on the assumption
of linear-elasticity; the remaining cases use (non-linear) hyper-elastic stress-strain
relationships, such as Neo-Hookean and Ogden models.
Linear-momentum equilibrium equation with displacement u and bodyforce f [F/L3]:

∇ · σ̂ (u ) + f (x) = 0 . (1)

Modeling tumor-induced mechanical impact

Tumor growth affects the mechanical state of the tumor micro-environment. The
constitutive equation of tumor growth (e.g. reaction-diffusion model) can be coupled
to eq. (1) by relating tumor cell concentration c (density, fraction, number) to:
• Tumor-induced pressure pT(c ) = λ̃ c or force fT = λ̃ ∇c :

Several choices for the coupling λ̃ are employed, of the general form
λ̃ = λ f (c , κi) , (2)

with linear coupling coefficient λ and (optional) (non-)linear function f .
Assuming c to be unit-free, λ̃ has dimensions [F/L2].

• Tumor-induced strain ϵ̂g = λ̂ c :
The deformation of a body can be decomposed into elastic and growth-induced
components. Under the infinitesimal strain assumption used in linear elasticity,
total strain can be decomposed as ϵ̂tot = ϵ̂e + ϵ̂g. Isotropic growth under this
assumption is frequently modeled by a unit-free linear coupling coefficient λ:

λ̂ = λ I . (3)

Modeling mechanical feedback on tumor growth.

Experimental observations that the mechanical state of the tumor micro-environment
affects growth are introduced in reaction-diffusion based cancer growth models by:
• Exponential damping of cell motility by van-mises stress σVM, e.g. [4, 5, 6, 7]

D = D0 exp−γ σVM (4)
• Exponential damping of growth rate by van-mises stress [5]

ρ = ρ0 exp−γ σVM (5)

Benefits of modeling tissue/tumor mechanics.

Accounting for mechanical effects of tumor growth (with and without out feedback
on growth mechanism) improves:
• Approximation of tumor / healthy-tissue shape (e.g. overlap measures):

Ability to reproduce and capture tumor shape, and tumor-induced healthy tissue
deformation. Typically performed against single time-point imaging and in context
of image-registration and atlas-based segmentation, e.g. [8, 9, 10]. More recent
work aims to characterize mechanical growth phenotypes by fitting mechanically-
coupled growth models to patient imaging data [11, 12].

• Prediction of tumor burden (e.g. volume, tumor cell number):
Slight improvement of predicted tumor volume when accounting for tumor-induced
pressue/force by eq. (2) [13]. Mechanically constrained diffusivity, as in eq. (4),
has been shown to improve prediction of global measures of tumor burden [4, 7,
6], such as total tumor cellularity.

Example Application: Characterization of GBM growth

Evaluation of mechanically-coupled GBM tumor growth model against single time-
point clinical images. Characterization of GBM growth phenotypes.
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Figure 3: Top left: 2D slice of MR patient image with tumor and ventricle segmentation. Bottom left:
Simulated (primary) tumor and ventricle deformation based on best parameter estimate. Right:
density distribution of best parameter estimates inferred from 2D / 3D clinical images.

Challenges & Opportunities

• Additional modeling choices: constitutive mechanical model & parameters
• Mechanical boundary conditions often unclear (e.g. CSF pressure)
• Increased computational cost
• Data limitations (e.g. lack of “healthy” anatomical reference)
• Direct validation of predicted tumor-induced mechanical stresses very difficult.

• Ability of mechanically-coupled models to capture tumor/tissue shapes can likely be
improved by more advanced growth models and (anisotropic) growth modulation.

• Information about tumor-induced deformation and mechanical stresses may further
improve integration of multiparametric imaging data and prediction.

Project Information

Glioma mass-effect Simulator
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