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Physical forces & tumor growth

Rapid proliferation of cancer cells introduces strains in the tumor micro-environment
which pushes against and deforms surrounding normal tissue. This leads to the ac-
cumulation of solid stress, mechanical forces between the solid components of the
tissue. Elevated solid stress can drive tumors to more aggressive phenotypes
and compromise therapeutic outcome [1]:

e Cell compression alters gene expression, and cellular behavior.

e Compression of blood and lymphatic vessels reduces delivery of oxygen, nutrients,
and treatment agents.

Solid stress also affects healthy tissue. For example, it causes neuronal loss in
brain tissue [2], and is linked to neurological deficits and reduced survival in patients
with glioblastoma (GBM) [3], the most common malignant primary brain tumor in
adults.
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Figure 1: Tumor-induced solid stress and physiological consequences. Adapted from [2].
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Mechanical solid stress in tumor growth models

We identified over 50 literature contributions of macroscopic spatial tumor growth
models that include aspects of tumor-induced solid stress and their biological or phys-
iological consequences. These studies represent a wide range of modeling ap-
proaches and purposes, as well as evaluation strategies.

Here we distinguish different approaches and extent of evaluation:

e QQualitative: Qualitative evaluation of model behavior.

e Calibration (synthetic/data): Quantitative target metric and optimization ap-
proach, tested against synthetic/real imaging data.

e Prediction: Model calibration and prediction against longitudinal data set.
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Figure 2: Overview of mechanically-coupled tumor growth models, and their degree of evaluation.
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Continuum mechanics — Elasticity

When an elastic material is deformed, it experiences internal resistance to the de-
formation and restores its original shape when the deforming force is no longer ap-
plied. The elastic behavior of a material is described by the relation between strain
€ [relative deformation] and stress & [F'/L?] and defined by empirically determined
constitutive models. About 3/4 of reviewed models are built on the assumption
of linear-elasticity; the remaining cases use (non-linear) hyper-elastic stress-strain
relationships, such as Neo-Hookean and Ogden models.

Linear-momentum equilibrium equation with displacement « and bodyforce f [F'/L7):

V-6(u)+f(x)=0. (1)

Modeling tumor-induced mechanical impact

Tumor growth affects the mechanical state of the tumor micro-environment. The
constitutive equation of tumor growth (e.g. reaction-diffusion model) can be coupled
to eq. (1) by relating tumor cell concentration ¢ (density, fraction, number) to:

e Tumor-induced pressure py(c) = Ac or force fr = A\ Ve:
Several choices for the coupling A are employed, of the general form

5‘:)\][(07/{07 (2)
with linear coupling coefficient A and (optional) (non-)linear function f.
Assuming ¢ to be unit-free, A has dimensions [F'/L~].

® Tumor-induced strain €, = Ac:
The deformation of a body can be decomposed into elastic and growth-induced
components. Under the infinitesimal strain assumption used in linear elasticity,
total strain can be decomposed as €,, = €, + €,. Isotropic growth under this
assumption is frequently modeled by a unit-free linear coupling coefficient A:

A

A=\ (3)

Modeling mechanical feedback on tumor growth.

Experimental observations that the mechanical state of the tumor micro-environment
affects growth are introduced in reaction-diffusion based cancer growth models by:

e Exponential damping of cell motility by van-mises stress oyy, e.g. [4, 5, 6, 7]

D = Dy exp™ 7MW (4)
e Exponential damping of growth rate by van-mises stress [5]
p = pyexp M (5)

Benefits of modeling tissue/tumor mechanics.

Accounting for mechanical effects of tumor growth (with and without out feedback
on growth mechanism) improves:

e Approximation of tumor / healthy-tissue shape (e.g. overlap measures):
Ability to reproduce and capture tumor shape, and tumor-induced healthy tissue
deformation. Typically performed against single time-point imaging and in context
of image-registration and atlas-based segmentation, e.g. [8, 9, 10]. More recent
work aims to characterize mechanical growth phenotypes by fitting mechanically-
coupled growth models to patient imaging data [11, 12].

e Prediction of tumor burden (e.g. volume, tumor cell number):
Slight improvement of predicted tumor volume when accounting for tumor-induced
pressue/force by eq. (2) [13]. Mechanically constrained diffusivity, as in eq. (4),
has been shown to improve prediction of global measures of tumor burden [4, 7,
6], such as total tumor cellularity.
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Example Application: Characterization of GBM growth

Evaluation of mechanically-coupled GBM tumor growth model against single time-
point clinical images. Characterization of GBM growth phenotypes.
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Figure 3: Top left: 2D slice of MR patient image with tumor and ventricle segmentation. Bottom left:
Simulated (primary) tumor and ventricle deformation based on best parameter estimate. Right:
density distribution of best parameter estimates inferred from 2D / 3D clinical images.

Challenges & Opportunities

Additional modeling choices: constitutive mechanical model & parameters
Mechanical boundary conditions often unclear (e.g. CSF pressure)
ncreased computational cost

Data limitations (e.g. lack of “healthy” anatomical reference)

Direct validation of predicted tumor-induced mechanical stresses very difficult.

o Ability of mechanically-coupled models to capture tumor/tissue shapes can likely be
improved by more advanced growth models and (anisotropic) growth modulation.

e |nformation about tumor-induced deformation and mechanical stresses may further
improve integration of multiparametric imaging data and prediction.
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