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The generated database GDB17 enumerates 166.4 billion molecules up to 17 atoms

of C, N, O, S and halogens following simple rules of chemical stability and synthetic

feasibility. However, most molecules in GDB17 are too complex to be considered for

chemical synthesis. To address this limitation, we report GDBChEMBL as a subset

of GDB17 featuring 10 million molecules selected according to a ChEMBL-likeness

score (CLscore) calculated from the frequency of occurrence of circular substructures

in ChEMBL, followed by uniform sampling across molecular size, stereocenters and

heteroatoms. Compared to the previously reported subsets FDB17 and GDBMedChem

selected from GDB17 by fragment-likeness, respectively, medicinal chemistry criteria,

our new subset features molecules with higher synthetic accessibility and possibly

bioactivity yet retains a broad and continuous coverage of chemical space typical of

the entire GDB17. GDBChEMBL is accessible at http://gdb.unibe.ch for download and

for browsing using an interactive chemical space map at http://faerun.gdb.tools.

Keywords: chemical space exploration, molecular database, enumeration algorithm, chemical space mapping,

virtual screening

INTRODUCTION

Innovation at the level of chemical structures is an essential part of drug discovery. Novelty often
results from chemical intuition however this approach is increasingly difficult as the number of
known molecules increases. Novelty is similarly limited in virtual combinatorial libraries (Leach
and Hann, 2000; Hu et al., 2011; van Hilten et al., 2019) and generative models trained with
known molecules (Chen et al., 2018; Elton et al., 2019) because these systems mostly shuffle known
patterns, which produces many technically new but often not fundamentally innovative molecules.
To circumvent this limitation, we have initiated the exhaustive enumeration of all possible organic
molecules following simple rules of chemical stability and synthetic feasibility, and reported large
databases enumerating molecules up to 11 (Fink et al., 2005; Fink and Reymond, 2007), 13 (Blum
and Reymond, 2009), and 17 atoms (Ruddigkeit et al., 2012, 2013), as well as of possible ring systems
up to 30 atoms (Visini et al., 2017a). Analyzing the resulting generated databases (GDBs) shows that
there are many orders of magnitude more possible molecules spanning a much broader structural
diversity than already known ones (Reymond, 2015; Awale et al., 2017b).

One of the defining features of the GDB databases is the exponential increase in the number
of possible molecules as function of increasing molecular size and complexity elements, such as
stereocenters and heteroatoms, implying that most possible molecules are in fact far too complex
to be considered as realistic synthetic targets. To address this problem we have designed subsets
of our largest database GDB17 by limiting complexity elements using simplification criteria,
such as fragment-likeness (Congreve et al., 2003), producing the fragment database FDB17, and
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medicinal chemistry rules for functional groups and
complexity (Mignani et al., 2018), producing the
medicinal chemistry aware database GDBMedChem
(Visini et al., 2017b; Awale et al., 2019). These approaches
however also constrain the diversity of GDB molecules,
which partly defeats the purpose of exploring chemical
space broadly.

Herein we report an alternative approach to create subsets of
GDB17 based on the frequency of occurrence of substructures
from known molecules independent of the overall molecular
structure (Figure 1A). We define a “ChEMBL-likeness” score
(CLscore) by considering which substructures in a molecule
also occur in molecules from the public database ChEMBL
(Gaulton et al., 2017), using a subset of molecules with
reported high confidence datapoint of activity on single protein
targets, a type of ChEMBL subset which we have used
previously for target prediction (Awale and Reymond, 2019;
Poirier et al., 2019). We then filter the entire GDB17 with a
cut-off value for CLscore, followed by uniform sampling of
the resulting subset across molecular size, stereocenters and
heteroatoms as done previously with FDB17 andGDBMedChem,
to obtain a ChEMBL-like subset of 10 million molecules forming
the database GDBChEMBL. This database covers chemical
space as broadly as but more continuously than FDB17 and
GDBMedChem yet features a much higher synthetic accessibility
as judged by a calculated synthetic accessibility score (Ertl and
Schuffenhauer, 2009), might contain molecules with a higher
probability of bioactivity, and in any case provides a very
different starting point to serve as a source of inspiration for
molecular design.

RESULTS AND DISCUSSION

ChEMBL-Likeness Score
Our definition of CLscore is related to the synthetic accessibility
score (SAscore) (Ertl and Schuffenhauer, 2009) and natural
product likeness score (NPscore) (Jayaseelan et al., 2012) of a
molecule, which are calculated from the occurrence frequencies
of its substructures in PubChem and fragments from natural
products, respectively, combined with additional functional
group rules. Here we focus on 457,139 compounds recorded in
ChEMBL24 as being active on single protein targets (IC50 or
EC50 ≤ 10µM) with high confidence datapoints (Awale and
Reymond, 2019; Poirier et al., 2019). To design our CLscore
we consider circular substructures, called molecular shingles,
because they form the basis formolecular fingerprints ECFP4 and
MHFP6 which perform best in benchmarking studies (Riniker
and Landrum, 2013; Probst and Reymond, 2018).

The frequency of occurrence of the 636,979molecular shingles
up to a diameter of six bonds found in our ChEMBL subset
follows a power law distribution (Figure 1C). To compute the
CLscore of a molecule, we assign to each of its shingles (S) a
shingle value calculated from the logarithm of its frequency of
occurrence fS in our ChEMBL subset, considering only shingles
occurring at least 100 times in this subset (141,261 shingles,
22.2% of the total). We then sum all shingle values and divide the
sum by the total number of shingles in the molecule (Equation 1).

CLscore =

∑m
i=1 log10
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CLscore : = ChEMBL− likeness score

S : = shingleinmolecular structure

fS : = abundanceofmolecularshinglein ChEMBL

N : = totalnumberofshinglesinmolecular structure

m : = numberofshinglessharedwith ChEMBL

The histogram of CLscore for the 457,139 ChEMBL reference
molecules is approximately Gaussian with a peak at CLscore =
3.9 (Figure 1B). DrugBank (Law et al., 2014) and particularly
ZINC (Sterling and Irwin, 2015) peak at a similar CLscore,
showing that these three databases consist of molecules built
from the same type of substructures. By contrast GDB17 and its
subsets FDB17 and GDBMedChem have a much lower CLscore
distribution peaking at CLscore = 2.7, reflecting the fact that
GDB molecules are very different from ChEMBL molecules.
CLscore values correlate with SAscore values, reflecting the
similar principles underlying both scores, and suggesting that
molecules with high CLscore should also be synthetically
accessible (Figure 1D).

GDBChEMBL Database
Calculating CLscores on the entire GDB17 (166.4 billion
SMILES) and keeping molecules with CLscore ≥ 3.3, a cut-off
value which retains 78.3% of our ChEMBL subset, eliminates
84.3% of GDB17. The remaining 26.2 billion molecules are then
binned in triplet value bins considering heavy atom count (HAC
1-17), stereocenter count (0–4, ≥ 5) and heteroatom count (0–
8, ≥ 8). There are 538 different triplet value bins, which are
occupied by 1 to 1.6 × 109 molecules. Uniform sampling finally
yields a final set of 10 million molecules evenly distributed across
molecular size, stereochemical complexity and polarity, forming
the database GDBChEMBL (Figure 1E).

As a consequence of uniform sampling, the heavy atom count
(HAC) profile of GDBChEMBL resembles that of FDB17 and
GDBMedChem and is relatively flat compared to the very steep
peak at HAC = 17 in the parent database GDB17 (Figure 2A).
Uniform sampling also explains the rotatable bond count (RBC)
profile in GDB subsets compared to GDB17 (Figure 2B), as well
as the fact that the profiles of the three GDB subsets across these
parameters are generally more similar to the profile of molecules
up to 17 atoms in ChEMBL (ChEMBL17) and to natural products
(UNPD17) (Banerjee et al., 2015) than to the profile of GDB17.

GDBChEMBL displays a very broad distribution in terms of
hydrogen bond donor atoms (HBD, Figure 2C), hydrogen bond
acceptor atoms (HBA, Figure 2D) and nitrogen plus oxygen
atom count (N+O, Figure 2E) due to the absence of heteroatom
capping criteria in selecting GDBChEMBL compared to FDB17
and GDBMedChem, for which fragment-likeness criteria,
respectively, caps on the number of functional groups were
applied. Similar differences are visible in topological polar
surface area (TPSA, Figure 2F) and calculated octanol/water
partition coefficient (alogP, Figure 2G). The broader distribution
of polarity parameters in GDGChEMBL compared to GDB17
results from uniform sampling since the procedure gives
relatively more importance to molecules with extreme size and
polarity values.

Synthetic accessibility is better (lower SAscore) in
GDBChEMBL than for GDB17, FDB17, or GDBMedChem,
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FIGURE 1 | (A) Generation process of GDBChEMBL. (B) CLscore distributions for GDB17, its subsets FDB17 and GDBMedChem, and public databases ChEMBL,

ZINC, and DrugBank. (C) Frequency distribution of molecular shingles up to a diameter of 6 bonds in ChEMBL. (D) SAscore vs. CLscore in various databases. A

lower SAscore indicates higher synthetic accessibility, and a higher CLscore indicates higher similarity to ChEMBL molecules. (E) Occupancy of triplet value bins

(HAC, stereocenters, heteroatoms) in all GDB17 cpds with CLscore ≥3.3 (black line) and after uniform sampling forming GDBChEMBL (red line).

reflecting the correlation between CLscore and SAscore noted
above (Figure 2H). Similar to GDB17 and its other subsets,
GDBChEMBL displays a much higher fraction of sp3 atoms than
ChEMBL (fsp3, Figure 2I). As a consequence GDB molecules
are closer to natural products, which is reflected in the NPscore
profile (Figure 2J). Despite of these differences and similarities
in SAscore and NPscore, it must be noted that GDB17 and its
subsets stand out by the fact that they contain fewer aromatic
and more heterocyclic molecules than ChEMBL and natural
products (Figure 2K).

Visualization and Similarity Searching
To gain an overview of GDBChEMBL we computed Molecular
Quantum Number (MQN) fingerprint values (Nguyen et al.,
2009), performed a principal component analysis (Rosén et al.,
2009), and visualized the resulting 3D-map in the interactive
web-based application faerun (Probst et al., 2018). In this 3D-
map accessible at http://faerun.gdb.tools, each point represents
one or more molecules present at the corresponding position and
can be color-coded according to a molecular property selected
from the faerun menu.

Comparing MQN maps of GDBChEMBL, FDB17 and
GDBMedChem shows that each of the three GDB17 subset cover
a similar range of properties, however coverage by GDBChEMBL
is more continuous, as is well visible in the vertical stripe at
right containing all acyclic molecules (Figures 3A–C). Note that
CLscore values are not correlated with MQN properties, which
is not surprising considering that ChEMBL substructure span
a broad range of properties (Figure 3D). Color-coding by the
calculated logP value (alogP, Figure 3E) and by rotatable bond
count (RBC, Figure 3F) illustrate the distribution of molecules in
the MQNmap.

The fact that molecules in GDBChEMBL are substantially
different from those in the other subsets FDB17 and
GDBMedChem can be shown by retrieving 1,000 MQN-nearest
neighbors of nicotine from each database, and representing
each dataset in a similarity map (Medina-Franco et al., 2007;
Raghavendra and Maggiora, 2007; Awale and Reymond, 2015)
using the molecular shape and pharmacophore fingerprint
Xfp (Awale and Reymond, 2014), computed with the web-
based application WebMolCS (Awale et al., 2017a). This
visualization shows that each database provides different types
of nicotine analogs (Figure 3G) with a good number of high
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FIGURE 2 | (A) Heavy atom count (HAC), (B) rotatable bonds (ROTB), (C) hydrogen bond donors (HBD), (D) hydrogen bond acceptors (HBA), (E) nitrogen plus

oxygen count (N+O), (F) topological polar surface area (TPSA), (G) computed partition coefficient (aLogP), (H) synthetic accessibility score (SAscore), (I) Fraction of

sp3 hybridized atoms (fsp3), (J) natural product likeness score (NPscore), and (K) fraction of structures by ring class. Property histograms for GDB17 (black),

GDBMedChem (orange), FDB17 (yellow), GDBChEMBL (red), ChEMBL (cpds with HAC ≤ 17, blue) and natural products (cpds with HAC ≤ 17, purple).

similarity analogs (Figure 3H). To facilitate similarity searches
in GDBChEMBL, we have implemented a similarity search
portal by which nearest neighbor searches of any molecule
can be performed in GDBChEMBL using MQN, ECFP4, or a
combined MQN-MHFP6 similarity, as described previously for
GDBMedChem (Awale et al., 2019).

CONCLUSION

The data above demonstrate a substructure-based approach
to select molecules from the generated database GDB17.
As selection criterion we defined a ChEMBL-likeness
score (CLscore) from the frequency occurrence of circular

substructures, called molecular shingles, in a subset of the
database ChEMBL consisting of compounds active on single
protein targets with high confidence datapoints. This selection
reduced GDB17 by 84.3%, leaving 26.2 billion molecules, which
we sampled uniformly across molecular size, stereochemistry
and heteroatoms to form GDBChEMBL comprising 10
million molecules.

Property profiles, chemical space maps and similarity searches

show that GDBChEMBL is very different from our earlier

GDB subsets FDB17 and GDBMedChem and spans chemical

space more continuously. At the same time, the correlation

between CLscore and the synthetic accessibility score (SAscore)

implies that GDBChEMBL molecules will be on average easier
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FIGURE 3 | Chemical space maps of GDBChEMBL, FDB17, and GDBMedChem. (A) PCA 3D-map of GDBChEMBL in MQN-space, color coded by heavy atom

count; (B) same as a for FDB17; (C) same as a for GDBMedChem; (D) GDBChEMBL color-coded by CLscore value; (E) GDBChEMBL color-coded by calculated

octanol/water partition coefficient alogP; (F) GDBChEMBL color-coded by rotatable bond count; (G) similarity map of MQN-nearest neighbors of nicotine from

GDBChEMBL (red), FDB17 (cyan), and GDBMedChem (blue). Points in green and yellow indicate molecules shared by two databases. (H) Same as g color-coded by

Xfp-similarity to nicotine. MQN maps a to f are accessible at http://faerun.gdb.tools. The similarity map of nicotine analogs g and h is accessible at: http://gdbtools.

unibe.ch:8080/webMolCS/.

to synthesize than molecules from FDB17 and GDBMedChem,
which have significantly lower CLscore and higher SAscores. We
anticipate that the requirements for GDBChEMBL molecules
to share a minimum number of substructures with molecules
of known bioactivities from ChEMBL will also facilitate target
prediction and the selection of interesting GDB molecules for
synthesis and testing.

METHODS

Preparative Steps
ChEMBL Shingle Extraction
The ChEMBL (v 24.1) database was downloaded from https://

www.ebi.ac.uk/chembl/. Data points for extraction of molecular

shingles were selected by applying the same restrictions that were
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used for extraction of training data for our Polypharmacology
Browser PPB2 (Visini et al., 2017b). Structures were normalized
to their major protonation state at pH 7.4 using ChemAxon
cxcalc (v. 18.23.0). Molecular shingles for radii 1–3 were created
using RDkit (2019.03.4) and converted to rooted, canonical,
aromatic SMILES strings without retaining stereochemistry
information. In association with abundancy in the ChEMBL, the
SMILES substructures were stored as pickled python dictionary.
Molecular substructures that were found <100 times were
not stored.

CLscore Calculation
Scoring of GDB17 molecular structures was achieved by
decomposition to molecular shingles in the exact same way
as described for ChEMBL reference shingle extraction. For a
specific query structure, all shingles are uniquely counted, then
looked up in the ChEMBL reference database and upon match,
logarithmic abundancy is summed up. The final CLscore is given
by the ratio of total logarithmic abundancies of matched unique
shingles to total unique shingles in the query structure. All
respective scripts are accessible at: https://github.com/reymond-
group/GDBChEMBL.

GDBChEMBL Generation
All 166.4 billion molecular structures of GDB17 were
decomposed to unique substructures in the same way as
described for ChEMBL reference molecules. Only structures
with CLscore ≥3.3 were stored. The final GDBChEMBL was
obtained by distribution of all filtered 26.2 billion structures
to 538 property triplet bins (heavy atom, heteroatom and
stereocenter count). Property information was gathered using
RDKit. Bins with 5+ hetero atoms and/or 8+ chiral atoms were
merged. The actual even sampling was performed by sorting
all property bins by size and defining target structure count as
10 million. Iteratively, remaining target count was divided by
count of remaining bins, keeping all bins of size smaller than
the current number to sample randomly. For each step, number
of previously selected structures was subtracted from target
count until random sample per remaining bins was lower than
bin size. At this point, sample size was kept constant for all
further bins.

Visualizing GDBChEMBL in Faerun
Property color coded 3D maps for GDBChEMBL, FDB17, and
GDBMedChem were generated using FUn (doc.gdb.tools/fun),
an in-house developed framework for interactive visualization of
chemical spaces on the web. Datasets were given as plain text,
consisting of the four columns (space-separated): SMILES-string,
numeric ID, 42 MQN descriptors (semicolon-separated) and
further molecular properties used for map coloring (semicolon-
separated). Next, the preprocessing toolchain was used to project
the 42-dimensional MQN-space to 3D by applying Principal
Component Analysis (PCA) and to generate all further files
needed for visualization. Finally, the Underdark server was run
using docker with Faerun visualization containers mapped.

Similarity Searching in GDBChEMBL
For better accessibility, GDBChEMBL is provided as a web-
based interactive similarity search tool. The implementation uses
HTML, Bootstrap, JavaScript, and the python Flask framework.
Search times were reduced using Annoy trees (Approximate
Nearest Neighbors Oh Yeah, https://github.com/spotify/annoy)
which were created for the 42-dimensional MQN property space,
as well as for 256-bit ECfp4. A third search option, MQN-
MHFP6, initially searches using the MQN Annoy tree followed
by resorting after Jaccard distance to query molecule in the
MHFP6 fingerprint space (https://github.com/reymond-group/
mhfp). The search tool is available at: gdb.unibe.ch/tools.
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