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Abstract—In the last few years, a countless number of permis-
sioned blockchain solutions have been proposed, with each one to
claim that it revolutionizes the way of the transaction processing
along with the security and privacy preserving mechanisms that
it provides. Hyperledger Fabric is one of the most popular
permissioned blockchain architectures that has made a significant
impact on the market. However, there are only few papers
of finding architectural risks regarding the security and the
privacy preserving mechanisms of Hyperledger Fabric. This
paper separates the attack surface of the blockchain platform
into four components, namely, consensus, chaincode, network
and privacy preserving mechanisms, in all of which an attacker
(from inside or outside the network) can exploit the platform’s
design and gain access to or misuse the network. In addition, we
highlight the appropriate counter-measures that can be taken in
each component to address the corresponding risks and provide
a significantly secure and enhanced privacy preserving Fabric
network. We hope that by bringing this paper into light, we
can aid developers to avoid security flaws and implementations
that can be exploited by attackers but also to motivate further
research to harden the platform’s security and the client’s
privacy.

Index Terms—Hyperledger Fabric, cyber-security, consensus
protocols, chaincode risks, network threats, privacy

I. INTRODUCTION

Hyperledger Fabric [1] (for simplicity Fabric), has recently

obtained massive popularity with hundreds of implementations

around the world, since it is quite scalable, lenient against

faults, and robust. For these reasons, among others, it can

satisfy more than enough and sufficiently better than any

other permissioned blockchain solution the purposes of an

enterprise-based environment. Only in the past year, it is con-

sidered as the most deployable distributed ledger, in various

areas of interest, such as the IoT ecosystem [2], the supply

chain finance [3], the medical data management [4] and more.

By its permissioned nature, Fabric is a closed system, in

which only the participants that have obtained the necessary

credentials are able to read or write to the ledger. These

participants are called peers and only a subset of them can

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 786698. The work reflects only the authors’ view

and the Agency is not responsible for any use that may be made of the
information it contains.

approve transactions and in order to do so, they have to

mention their identity along with their signatures [5]. This

setting makes it easier for the peers to manage the transactions

on the ledger and it is typically the reason why Fabric is much

faster than the ongoing permissioned blockchains.

For the maintenance of the identities of all the participating

nodes (clients, ordering service nodes (OSNs) and peers)

responsible is the membership service provider, which is

one the most critical components of the platform, since it

manages any type of access by issuing credentials in a form

of cryptographic certificates that are used for authentication

and authorization.

The features of Fabric are not limited only to its design, the

support of pluggable consensus, which is another critical com-

ponent; provides an unprecedented level of extensibility and

specific the support of multiple ordering nodes that establish

consensus regarding the transactions’ total order. Moreover,

since version 1.0, Fabric’s ordering service comes without any

Byzantine Fault Tolerant (BFT) consensus protocol that can

address possible malicious ordering nodes, implementing only

Crash-Fault-Tolerant (CFT) protocols based on Kafka and on

Raft.

Nearly almost all the permissioned blockchain solutions

can implement smart contracts, which are based on a pro-

grammable application logic that is being called each time

a transaction is being proposed. In Fabric’s case the smart

contracts are realized by means of an arbitrary program that

is authored in Go; the chaincode. The chaincode is executed by

a set of peers locally and before each transaction is appended

into the ledger, an output of the chaincode’s execution is taken

into account in order to decide whether a transactions is valid

or not and which data will be included to the ledger.

From the security perspective, we analyze Fabric into four

interconnected components, in which possible attacks and

leakage of private information can occur; namely: the con-

sensus, the chaincode, the network and its privacy preser-

vation mechanisms. As a result of our research, in each of

these components, we define the risks and we provide the

corresponding counter measures needed to be addressed and

enhance its security: a) The implemented consensus protocols

in Fabric can withstand only some of the ordering nodes to

crash but not to behave maliciously. b) The privacy protection
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2) Apache Kafka: Kafka [7] is a distributed pub-

lish/subscribe messaging pattern that is being used to transfer

large amount of log data with significantly low latency. Kafka’s

key components are the producers, the topics, the consumers

and the brokers. The recorded information is published from

the producers to a stream of messages called the “topic”,

which is a partition of segments of files. The messages are

stored from the brokers as the latest segment file and when

the producers publish messages to the partitioned logs, only

the subscribed consumers can consume these messages -

sequentially - by making requests to the brokers. Kafka’s fault

tolerance properties derive from the ZooKeeper [8] and they

can be achieved with the replication of the partitions between

the brokers. Since, Kafka follows the leader-follower design,

each partition has its own leader, whose actions are passively

replicated by its followers. Therefore, if the ongoing leader

crashes, a new election process begins with one of its followers

to take its place. Regarding its performance, Kafka showed

momentous results in [1] and brought significant enhance-

ments in the area of the business oriented and permissioned

blockchains. Thus, Kafka, surpassing Solo, is the suggested

protocol in version 1.0.
3) Raft: The Raft consensus protocol [9] is also based on

the “leader-election” model to establish consensus by electing

a leading node to acquire the incoming entries from the clients

and replicate them. To provide strong leader and coherency, the

protocol is separated into three phases, i.e. the leader election,

the log replication and the safety. The time in Raft proceeds

in arbitrary time periods, called “terms”, with each term to

be defined by an increasing number. The nodes in Raft are

hierarchically ranked in different states, with each node to be

either a leader, a follower or a candidate. The leader is the

principal entity of the protocol and it is elected per channel,

with the task to interact with the clients and then replicate its

entries to its synchronized followers. Therefore, in order to

achieve the best possible synchronization, it sends systematic

heartbeats to its followers and even if the network suspects

that the leader has crashed, at least one of its followers will

detect this divergence, cast a vote to the network and attempt

to take its place [10]. Some nodes might compete to win the

election by seeking votes from other nodes. Therefore, these

nodes are considered as “candidates”.
Raft ensures that exclusively a single node can become a

leader, even if some nodes miss a term or split ups occur. In the

first case the outdated node will revise the term’s number and

fall into the follower’s state; and in the latter, the current term

will be ended without any outcome of the election process.

Raft’s performance is not fully tested, but its adoption as

the recommended consensus protocol since the version 1.4.1,

showed that Raft can provide thousands of transactions in real

world scenarios [11] and twice the transaction’s throughput of

Kafka with even less latency [12].
4) BFT-SMaRt: BFT-SMaRt [13] is java-based consensus

protocol that can provide a secure ordering service for Fabric

[14]. In the ideal case where no adversarial validation repli-
cas (VRs) exist in the network, the BFT-SMaRt’s message

processing is identical to PBFT’s [15].

WHEAT is the component that BFT-SMaRt’s ordering

service [14] relies upon [16] to provide a powerful vote

assignment scheme, low latency and fast replication among the

VRs, without imperiling the network’s security. The ordering

service consists of the cluster nodes and the frontends. By

adopting BFT-SMaRt as the consensus protocol, the trans-

action flow is almost the same to [1]. Upon the collections

of the endorsements from the peers, a client generates a

signed envelope that contains the channel’s identity and the

peer’s endorsements accompanied by their signatures [1]. This

envelope is disseminated to the frontends and finally sent to the

OSNs for ordering. When the OSNs collect a predetermined

number of envelops from some trusted frontends or when a

predetermined time has elapsed, a new block is created that

contains only the valid transactions. Therefore, the transac-

tions’ validation differs from [1] and it occurs prior to the

creation of the block’s signature. Finally, all the same, the

block is transferred to the frontends and then to the peers that

manage the ledger. BFT-SMaRt’s performance is measured in

[14] and showed that it can achieved throughput more than 10
thousand TPS and the block confirmation time to be less than

1sec.

B. Comparison

The adoption of Solo creates a SPoF, since it is not lenient

against malicious failures and crashes and for this reason, it

should not be deployed in real world environments. Both Raft

and Kafka benefit from the “leader-follower” model to address

crashes, but despite Kafka’s popularity, various intricate com-

ponents have to be handled for its implementation. In Raft’s

case, these components are enclosed to the ordering service

[11], meaning that there are less components that might crash.

Kafka is designed to be deployed in an environment with a

small number of OSNs and the cluster to be managed by a

single entity. This concept does not contribute much to escalate

the system’s decentralization, forcing all the OSNs to be

ulcerated by a single entity. In contrast to Kafka, a Raft-based

ordering service is more decentralized, more scalable and it

can achieve a greater throughput [12]. For reasons as such,

the Kafka and the Solo consensus protocols are deprecated

in Fabric’s version 2.0. Despite Kafka’s deprecation though,

a reconstruction of the Fabric’s transaction flow managed to

increase Kafka’s throughput from 3.5 to 20 thousand TPS [17].

On the other hand, BFT-SMaRt can not only achieve a

remarkable transaction performance of 10 thousand TPS but it

also can withstand tolerance against possible malicious behav-

ior by the OSNs. In BFT-SMaRt, the invalid transactions are

not included in the blocks, since the transactions’ validation

occurs prior to the block’s creation and dissemination to the

peers. Although BFT-SMaRt seems to outperform Raft, both in

terms of security and performance; it is a Java-based library

that it does not provide a very stable ordering service and

therefore it is not being currently adopted by the Hyperledgr

Project. BFT-SMaRt’s drawback though is that it necessitates

two processes to operate; the first built in Java and the second

3



from GO, using a network socket bound among them, which

can act as bottleneck in the system’s operation.

C. Consensus’ challenges and open issues

The consensus protocol is the most critical component of a

distributed ledger. CFT protocols are consider to be contradict-

ing to the platform’s security, since any malicious action can

affect the network’s security. The BFT protocols are adopted

to permissioned blockchain solutions for targeted use cases,

in which the requirements to provide a secure implementation

is more evident. The fact that each peer in a permissioned

network is accountable for its behavior, provides an incentive

to the nodes to adhere to the protocol. In spite of the tolerance

that the consensus protocol provides (i.e. CFT or BFT), Fabric

can mitigate the most familiar and sophisticated consensus-

oriented attacks, such as the double spending, by its design.

Therefore, the consolidation of Fabric and a CFT consensus

protocol can be considered as an ideal implementation in a

confidential network, such as an enterprise environment.

III. SMART CONTRACTS’ SECURITY

The execution of the smart contracts defines operations that

have been acknowledged by all the participating entities; with

each one to execute the contract locally, propose the result to

the network and then collaborate with it to select which result

is going to be inserted into the ledger. The development of

smart contracts can incorporate several programming errors

that can ultimately lead to exploitable bugs and malicious

behavior. Consequently, the smart contracts are prone to code

errors and inconspicuous vulnerabilities, while their accuracy

and security can be violated by malicious programmers by

means of exploits.

A. Chaincode’ vulnerabilities and Fabric’s specification

The programs’ defects, such as coding flaws and designing

errors, are the main reasons that cause the smart contracts’

vulnerabilities. In [18], a large variety of Ethereum smart

contracts vulnerabilities have been identified and showed that

programming flaws lead to faulty behavior, a series of attacks

and possible exploits. As we are focused on Hyperledger

Fabric and particularly to the Fabric’s chaincode, our following

discussion is focused on risks that might ascend from the

programming languages, the Fabric’s features and the mis-

understanding of the common practices.

Fabric’s smart contracts were not built with the vision of

being strained to a domain-specific programming language
(DSL), such as the Ethereum’s Solidity, but rather to be

authored in high-level languages (such as Go, Java and

Node.js) to reduce the developers’ learning cost. Formally,

the smart contracts that have been authored in DSLs are

ruled by particular features and restrains for blockchains.

Since this is not the case of Fabric, the known risks and

vulnerabilities might differ with the risks associated with

general-purpose programming languages. Therefore, based on

[19], [20], [21] and [22], we outline in the following table the

most prominent security vulnerabilities in Fabric’s chaincode.
The programming language Go is the most widely used during

the chaincode’s development and thus, most of these security

vulnerabilities derive from its non-deterministic behavior. Nev-

ertheless, Fabric has no native cryptocurrency built in and thus,

it is not easy to define how severe each vulnerability is and

how easy or difficult it is for an attacker to exploit possible

bugs and execute double spending attacks.

In the execution phase, the peers do not execute the

chaincode at the same time andin the same environment. If

a transaction is valid and the results that derive from the

chaincode’s execution are not deterministic, in the validation

phase these results might be rejected or allow double spent

transactions to be included to the ledger. The risks that

derive from the Go language, from the platform’s features or

from mis-understanding of the common practices can lead to

inconsistencies to the peers’ ledger:

1) Random key generation: Since, the simulation of the

chaincode occurs in each endorsing peer, the random seed for

the keys is different. In Go, the random seed is set as 1 and

therefore can be easily predicted by a client.

2) Object reification: The value of the variables are handled

through a pointer, which is an address of memory. Therefore,

using reified object addresses might cause non-determinism.

3) System Timestamp: It is difficult to ensure that the

timestamps are run concurrently in each peer.

4) The global state variables: Global state variables that

are not stored to the ledger, might change innately and cause

inconsistencies to the endorsing results.

5) Concurrency: If multiple transactions are executed con-

currently and under high load, a possible change at the keys’

versions might lead to key collisions and double spending. For

example, if a transaction has passed from the endorsing phase

and its version key has changed before it reaches the validation

phase not only a program error will occur but this action might

also allow another (possible double spent) transaction to be

included to the ledger.

6) The non-determinism that ascends from peripheral re-
sources: Some accessing resources, such as web services, ex-

ternal libraries, external files and system command executions;

can corrupt the code and return different endorsing results

among the endorsing peers.

7) Range query risks: Queries methods to access the Fab-

ric’s state databases and obtain private data, (e.g. the history

or the state of a key); are not executed again in the validation

phase and can lead to phantom reads, in which the dirty data

cannot be detected.

8) Chaincode sandboxing: Although, Fabric’s chaincode is

executed in an isolated docker container and provides sufficient

privileges, it can be exploited in a malicious way, such as to

execute port scanning, identify and exploit vulnerable peers,

install malicious software and execute attacks.

9) Log injection: Any corruption of the log messages can

possible avert them from being executed automatically and

allow the attacker to view the processed logs.
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10) Map structure iteration: Due to the hidden implemen-

tation details of the Go programming language, when an

iteration with map structure is used, non-determinism may

arise and the order of key values might be different.

B. Chaincode’s challenges and open issues
A docker container, by its design, is significantly secure,

particularly when the processes are executed with no privi-

leged users in the container. Albeit, developers should be fa-

miliar with the dockers’ security issues to fully take advantage

of the security and the efficiency that the dockers provide.

Thus, in this section we discuss the proactive measures that

can be reserved to increase the smart contracts’ security:

• Timeline limitations of the chaincode’s execution can be

employed;

• The chaincode’s execution can be performed with privi-

leges other than root;

• GO’s crypto/rand package can be used to produce a

crytographically secure random seed for the keys and

minimize the risk of double spending;

• Any changes at the keys’ versions can increase the pos-

sibility of double spending and thus, should be avoided;

• Only trusted services peripheral of the platform should

be accessed;

• Chaincode’s input arguments should be checked for es-

cape characters;

The aforementioned counter-measures can be easily taken

into account during the chaincode’s implementation. Nonethe-

less, a number of other techniques [20] are relied upon formal

verification approaches to mitigate risks in smart contracts:
1) Theorem proving: One of the most ordinary methods

to formalize smart contracts. Symbolic logic (with axioms or

premises) is used in theorem proving to prove the necessary

security properties that enhance the contracts’ accuracy.
2) Symbolic execution tools: This technique uses testing

tools, such as the Chaincode Scanner, to perform static anal-

ysis and find bugs, vulnerabilities and bad practices in the

chaincode, as well as, to provide a detailed description of a

possible problem.
3) Formal modeling: This method formalizes the smart

contracts’ risks, by using precise statements that define the

relationship between the smart contracts’ components re-

sulting in a) unambiguous communication, and b) replica-

ble/reproducible results. These risks are classified into seven

categories [23], that analyze the platform’s properties; specif-

ically: “privacy, security, bug bounty, trustworthiness of data,

scalability and correctness of the consensus protocol.
Although, these techniques are not the most common for

verification of the smart contracts (according to [23]), they

seems to be a quite promising field of research, especially in

the Fabric’s case [24].

IV. NETWORK’S SECURITY

With the increase of interest in permissioned blockchains;

networks that possess the qualifications to handle adminis-

trative permissions, the possibility of an anonymous attacker

feigning to behave correctly is almost minimized. Attacks

and strategies such as the 51%, the Sybil attack, the block

withholding and the selfish strategy are lesser risks to the

network’s security [25], [26], due to the trust and the restricted

permissions to those given access to the network.

A. Network’s threats and Fabric’s specification

The rise of Fabric, on the other hand, comes with new secu-

rity risks and concerns that can harm the network’s operation

and performance [27]. Therefore, in this section, we present

the most prominent attacks that derive from the network’s

level, if some participating entities are compromised; along

with feasible countermeasures to enhance its security.

1) Compromised membership service provider (MSP): The

most revolutionary aspect of blockchains lies in the decentral-

ized nature of a trustless network and Fabric seems to violate

just that. The centralized aspect of Fabric lies on the MSP

and the following Certificate Authority (CA). The MSP is

a critical component of the platform, since it manages the

registration, the identities and the type of access of all the

nodes in the network; comprising the clients, the peers and the

OSNs. Therefore, if the MSP is compromised, administrative

controls such as adding and removing identities to and from

the network, as well ass, the type and the amount of the given

access to the existing nodes are all managed entirely by the

attacker. With a malicious MSP, the unauthorized access that

is given to the attacker can cause serious damage and possible

lead to further attacks such as: invalid identification attack,

double-spending, attacks on the CA, etc. [27].

2) Identified endorsers: In Fabric’s execution phase, a

transaction needs to be approved by a set of endorsers.

In return, the endorsers, approve the transaction mentioning

their identity along with their signatures so that they can be

verified in the forthcoming phases. However, Fabric has some

drawbacks when the peers are identified [28], [29], namely:

• Creation of conflicts: For some transaction, the endorsing

peers may have different opinion about their validity. By

revealing their identities, possible conflicts can be created

within the consortium [29].

• Majority’s decision: The endorsement policy not only

does not allow the endorsers to approve the transaction

in secret, but also takes into consideration the majority’s

decision.

• DoS attacks: An opening for DoS attacks on selective

endorsers might be created, either to halt specific trans-

actions from being included to the ledger or to degrade

the network’s performance [28].

• Wormhole attacks: An opening for wormhole attacks

might be created, if a peer behaves maliciously and

colludes with an adversary exterior to the channel. This

attack can lead to leakage of private information of all the

peers of a specific channel. This problem is concluded

by defining the fact that the Fabric’s access control

mechanism is depended on trusting each peer inside a

channel [30], [31].
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B. Network’s challenges and open issues
The aforementioned analysis for the MSP and the endorsers

indicates that the appropriate safeguards are not in place to

mitigate network’s risks in the context of Fabric. Although the

platform offers strong accountability in the network to meet

the necessary flavors of security, the research in this field is

still ongoing. Thus, some other possible approaches that could

be appropriately adopted in the (near) future are:
1) Securing the MSP: The possible threats that can derive

from a compromised MSP are tackled in a recent study [32]

with the adoption of Intel Software Guard Extensions (SGX).

The SGX remote attestation techniques and the contained

execution features that this method provides, can register each

entity of the system as a trusted node. The capabilities that the

SGX provides can secure the MSP in all the phases that it is

invoked; including each node’s registration, the transaction’s

signature and its verification. An SGX enabled MSP can

also mitigate various privacy risks in Fabric and enhance

the network’s defense against possible attacks. Therefore, the

attack surface of the membership service is required to be

analyzed completely and rigorous proofs should to be created

to formally quantify all the risks that are aligned with it.
2) Pseudonymizing the endorsers: Motivated by the afore-

mentioned risks regarding the endorsers identification, the

authors in [29], created a ring signature scheme, named

Fabric’s Constant-Sized Linkable Ring Signature (FCsLRS) to

pseudoanonymize the endorsers’ identities. They implemented

this signature scheme in GO and provided experimental anal-

ysis about its security and performance by shifting the Rivest-
Shamir-Adleman (RSA) modulus size. In the anonymized

endorsement system that they have implemented, a threshold

endorsement policy needs a set of endorsers to approve a

transaction without revealing their identity and only by count-

ing and checking individual valid ring signatures. A similar

work of [28], evaluated the outcome of a DoS attack on the

endorsers and proposed two anonymization techniques; the

first by using verifiable random functions (VRFs) and the

second by using pseudonyms. In both cases, there is a trade-off

between the network’s efficiency and its security; with both

the sender and the receiver of a proposed transaction in a

private channel to be anonymized [28]. However, this approach

certified with security proofs of Signature Unforgeability and
Unlinkability in Ciphertext (UN-C) that Fabric can be immune

to DoS and wormhole attacks.

V. PRIVACY PRESERVATION

With the current emerge of the blockchain technology, the

transactional data are being made credible (via consensus) and

shareable (via the distributed ledger). However, the adoption

of this advancement endangers the disclosure of the users’

or the companies’ private data. Actually, no user would want

its private information to be revealed to unauthorized entities

exterior to the network and no company would want its

competitors to know any private information regarding the

costs, the prices or the annual salaries of its employees.

Therefore, the collection of the sensitive information and its

secure storage to the distributed ledger is a crucial issue,

since it has to be complied with the General Data Protection
Regulation (GDPR). Therefore, in this section, we present

Fabric’s privacy preservation mechanisms and the few but

critical advancements that are needed to be made in order

to further enhance the clients (users’ or companies’) privacy.

A. Privacy techniques and Fabric’s specification

Fabric supports significant privacy protection mechanisms.

Starting from its permissioned nature that authorizes the

participating entities of the network to strongly authenticate

their identity several features are provided to accommodate

the necessary flavors of privacy.

1) Channels: A channel is a state partition with its own

access policy rules and transactions’ ordering mechanism.

Each channel is managed by a set of peers and it is associated

with some policies that provide access to the corresponding

resources (such as, the ledger’s state, the transactions included

in it and the corresponding chaincodes). When a peer registers

to a channel, which is characterized by a unique identifier;

then the corresponding ledger is created and run on this

peer allowing it to manage an identical and consistent data

store with the rest of the channel’s peers. Therefore, privacy-

preservation mechanisms such as the channels, are highly

important in cases of providing blockchain solutions into a

consortium environment (where the consortium is comprised

by a number of organizations or parties with common business

goals).

2) Private data collection: While the channels are devoted

to the preservation of the information’s privacy, by allowing

the information to be stored separately; the Private Data Col-
lection (PDC) can preserve the privacy of data from another

perspective [3]. The DPC allows, only a stated set of peers

in a channel to preserve the actual data, while the remaining

peers access only its existence proof. The PDC is created to

provide to the peers the capabilities of endorsing, committing,

or queering private data without being forced to create a new

channel and add additional overhead.

The PDC is actually an accumulation of the following

elements: 1) the actual private data; which are sent from/to

authorized peers by means of a gossip protocol, stored on the

peer’s private state databases and can been seen only by this set

of nodes and not by the OSNs (which are not involved in this

case), and 2) the hash of private data that is executed, ordered,

and stored on each peers ledger as evidence of the existence

of the transaction. In some use cases, where a peer of a PDC

wishes to share private data with other peers – for example, to

transfer any asset to a trusted third party (TTP), the TTP can

produce the hash of the private data and subsequently examine

if the output of the hash value is consistent with the hash that

is stored on the channel’s ledger and thus, prove the existence

of the transaction.

The “right-to-be-forgotten” can be used in the private trans-

actions, since each peer can erase its own private database at

any time, with the data itself to be deleted irreversibly and

the hash pointing to the underlying private information to still
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exist. An additional aspect that is implemented with the private

transactions is the limitation of usage. A “BlockToLive” policy

can be defined for each PDC to determine an amount of time

that has to be elapsed with the concealed private database to

be automatically erased.

Despite the privacy that PDCs provide, they should be used

with caution, since the metadata of the private information, is

much more than metadata and can be used to unlock the real

private data. In this attack scenario, the unauthorized peers of

the same channel can observe the shared ledger and detect if

the private transactions occur periodically.

Concluding in this section, the obtained outcomes are that

some peers will have full access to the ledger and others

may only see what they are allowed to. In the case, where

the transactional data must remain hidden during ordering

from some peers of the same channel and the OSNs, the

implementation of PDCs is the solution.
3) Zero-Knowledge Proofs (ZKPs): ZKPs establish a sig-

nificant cryptographic primitive to preserve and improve pri-

vacy in the blockchain platforms. In Fabric’s case, there are

two privacy preserving mechanisms that are achieved with the

implementation of ZKPs, and are:

• Identity mixer [33] that leverages ZKPs to provide to the

clients anonymous authentication regarding their trans-

actions’ proposals. The implementation of ZKPs might

have a significant impact when a client’s actual identity

and the attributes that it is associated with, must be kept

secret from the network (such as, the peers). For example,

if the peers wish to verify that a transaction is indeed

sent from a correct client, which is either a member of

a specific organization; (referred in [33] as “membership

proof”), or it indeed possesses a specific set of attributes

(also referred as “selective disclosure of attributes”). In

both cases the identity mixer verifies that the the client’s

identity is not disclosed.

• Zero-Knowledge Asset Transfer (ZKAT) [33] is a method

built on top of anonymous authentication mechanisms

provided by the identity mixer that also uses ZKPs in var-

ious applications aiming at asset management along with

audit support (referred as Zero-Knowledge Asset Transfer
(ZKAT)). With this privacy-preserving mechanism, the

clients can issue transactions without disclosing any other

information to the peers regarding the exchange of assets;

but only the evidence that each transfer is complied with

the asset management rules.

B. Privacy-preservation challenges and open issues

The aforementioned analysis indicates that appropriate safe-

guards are in place to mitigate privacy risks in the context

of Fabric. Although Fabric offers strong privacy-preserving

mechanisms to meet the necessary flavors of privacy, the

research in this field is still ongoing. Thus, some other possible

approaches that could be appropriately adopted in the (near)

future are:
1) Non-interactive ZKPs: Although Fabric prevents unau-

thorized peers to access channel resources, the transactional

data is disclosed to all the channel peers. This limitation

can be overcome with FabZK [34]. FabZK is a proposed

extension for Fabric to support auditable privacy-preserving

chaincode by means of verifiable and well-structured crypto-

graphic primitives, pertaining non-interactive Zero-Knowledge
Proofs (NIZKPs) on Pedersen commitments. The proposed

protocol, manages a set of APIs for the client code and

the chaincode to establish automated validation, while it

improves the transactions’ performance with two validation

steps, in which each party executes active and lightweight

auto-validation. FabZK showed significant results in [34], with

its cryptographic primitives to outperform other approaches

(such as the zkLedger [35]) when the NIZKPs are generated

and verified.

2) Post-quantum signatures: To ensure secure communica-

tion, Fabric relies on Public Key Infrastructure (PKI) for the

digital signatures and the digital identities that are perilous

to the operational security of its network. Moreover, the

GDPR demands “consistent” methods to be employed and

protect each user’s personal identifiable information. However,

Fabric’s ecosystem is not post-quantum secure, making all

the information that is disseminated over the network to be

vulnerable to malicious decryption techniques by a large scale

of quantum computers. Therefore, it is left to see, if post-

quantum digital signatures are going to be implemented in the

(near) future [36].

VI. CONCLUSIONS

Appropriate implementations and counter-measures to miti-

gate possible risks in Hyperledger Fabric are discussed in this

paper.

From the consensus protocols security perspective, BFT

consensus protocols, such as BFT-SMaRt are currently being

researched, since they can provide a significant transaction

throughput and tolerance against malicious OSNs. Moreover,

BFT protocols have not yet been deployed in production

environments; it remains to be seen whether and how such

protocols are going to be adopted by the Hyperledger Project.

Regarding the smart contracts, a plethora of techniques have

been discussed to harden the chaincode’s security. However,

a quite-promising trend relies upon formal verification ap-

proaches like theorem proving, formal modeling and sym-

bolic execution to mitigate the chaincode’s risks. With these

approaches, some other aspects of Fabric, such as privacy,

performance, and scalability can be analyzed thoroughly.

From the network’s security perspective, representative at-

tacks were discussed against the network when the MSP is

compromised and proactive solutions having been proposed

as possible mitigation methods. An alternative/complementary

option would be to employ a TEE, such as Intel’s SGX, to

address insider threats and also DDoS attacks resulting from

the manipulation or aversion of the chaincode’s execution.

Techniques to mitigate wormhole attacks vary from those

relying on the anonymization of the senders and recipients

in the transactions inside a channel, to those employing group

signature approaches. Due to the need for accountability in
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Fabric, such solutions need to be further assessed possibly

along with privacy preserving solutions.

Appropriate safeguards to implement the basic privacy

requirements, are discussed to mitigate the privacy risks in the

context of Fabric. The implementation of ZKPs can achieve

anonymous client authentication with identity mixer, privacy-

preserving exchange of assets with ZKAT, and the “right to

be forgotten” can be efficiently implemented with PDCs. As

the research in this area is rapidly evolving, other promising

approaches have been identified that could be adopted in the

(near) future, such as the implementation of NIZKP and post-

quantum digital signatures. These two areas seem to be a

quite promising for research regarding the privacy preservation

mechanisms of Fabric.
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