
A Novel Approach to Detect Phishing Attacks using
Binary Visualisation and Machine Learning

Luke Barlow∗, Gueltoum Bendiab†, Stavros Shiaeles†, Nick Savage†
∗CSCAN, University of Plymouth, PL4 8AA, Plymouth, UK

luke.barlow@students.plymouth.ac.uk
†Cyber Security Research Group, University of Portsmouth, PO1 2UP, Portsmouth, UK

gueltoum.bendiab@port.ac.uk, sshiaeles@ieee.org, nick.savage@port.ac.uk

Abstract—Protecting and preventing sensitive data from being
used inappropriately has become a challenging task. Even a small
mistake in securing data can be exploited by phishing attacks
to release private information such as passwords or financial
information to a malicious actor. Phishing has now proven so
successful, it is the number one attack vector. Many approaches
have been proposed to protect against this type of cyber-attack,
from additional staff training, enriched spam filters to large
collaborative databases of known threats such as PhishTank and
OpenPhish. However, they mostly rely upon a user falling victim
to an attack and manually adding this new threat to the shared
pool, which presents a constant disadvantage in the fight back
against phishing. In this paper, we propose a novel approach
to protect against phishing attacks using binary visualisation
and machine learning. Unlike previous work in this field, our
approach uses an automated detection process and requires no
further user interaction, which allows faster and more accurate
detection process. The experiment results show that our approach
has high detection rate.

Index Terms—Phishing, machine learning, security, Spam,
binary visualisation

I. INTRODUCTION

The Internet has become an integral part of our daily
activities; from communicating through social networking sites
and emails to banking, studying and shopping, the Internet
has touched every aspect of our life [1]. According to [2],
easier access to computers, higher availability of 3G and 4G
networks and the increased use of smartphones has given
people the opportunity to use the internet more frequently
and with more convenience. However, the increasing use
of the internet has created varied opportunities to spread
social engineered attacks that are designed to compromise
personal information for criminal purposes [3]. Phishing has
been purported as one of the greatest attack vectors that
is causing great harm to online services and data security
[3, 4]. This cyber-security threat attempts to trick internet users
into revealing their private information such as passwords or
financial account credentials, usually for the purpose of theft
[3, 5].

Social engineering is the core of all phishing attacks,
whether targeted or random [5]. This mechanism leads the
victim to perform certain actions, such as submitting personal
data directly to a malicious actor or executing malicious
software that indirectly submits the data to the malicious actor
without the victim knowing [4, 5]. Social engineering can

manifest in the form of an email (spoofed email) or a clone
of a legitimate website, so that the victim will not be able
to differentiate between phishing and legitimate webpages. In
addition, the attacker can use key phrases to emphasize the
sense of urgency for the victim, for example, ”You MUST
complete this account check NOW”. This fear tactic leads the
victim to click on a malicious link or fill out a form on the
phishing site. According to the PhishLabs report [6], 255,065
unique phishing attacks were found worldwide in the third
quarter of 2018, where 83.9 % of attacks targeted creden-
tials for financial, email, cloud, payment, and SaaS services.
PhishLabs affirm that this global impact of phishing attacks
will continue to increase and therefore requires more efficient
anti-phishing techniques to handle new and emerging phishing
patterns [6]. In recent years, great effort has been directed to
curb the effectiveness of phishing. A variety of approaches
has been proposed including additional staff training, enriched
spam filters, and large collaborative databases of known threats
such as PhishTank and OpenPhish. Whilst these methods have
proved effective in raising the awareness of this common cyber
threat, they only have the ability to handle known phishing
patterns, when a user falls victim to an attack, they manually
added this new threat to the shared pool and thus leave internet
users prone to new phishing attacks. However, phishers are not
static in their activities; they change their mode of operation
frequently to stay undetected and bypass existing techniques.
When paired with the fact that cyber security is known as a
reactive industry, this presents a constant disadvantage in the
fight back against changing phishing patterns.

In this paper, we aim to address the aforementioned limita-
tions by proposing a novel approach against phishing attacks
using binary visualisation and machine learning. Combining
the threat of phishing with machine learning and image
recognition allows users to input previously unknown suspect
websites and gain a better understanding of the threat in
a faster time. The main contribution of this paper is an
automated detection of phishing websites. As the system does
not rely on multiple user verification, a faster blacklisting
process can be achieved, which reduces the time for potential
victims to access the link.

The remainder of this paper is organized as follows. Section
2 gives an overview of existing phishing detection techniques,
their advantages and drawbacks. In Section 3, we present the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/390046977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


methodology of the proposed method using binary visuali-
sation and machine learning. Section 4 presents experiment
results and analysis. Finally, Section 5 concludes the paper
and presents future work.

II. RELATED WORK

Over time a wide variety of approaches have been proposed
to counter the ever-persistent threat of phishing in both com-
mercial and public domains. These approaches can be classi-
fied into two main categories; user training approaches and
software classification approaches [7]. Training approaches
aim at raising the ability of end-users to identify phishing
attacks [7, 8], which could reduce their susceptibility to falling
victim to phishing attacks [8]. While classification approaches
are typically designed to classify phishing and legitimate web
pages on behalf of the user in an attempt to tackle issues of
the human error and ignorance [7].

In this section, we focus primarily on the anti-phishing
approaches that contributed to the field of phishing attack
detection. Under this context, many studies based on Blacklists
and Whitelists have been proposed such as Google Safe
Browsing API [9], PhishNet [10], DNS-Based Blacklists and
Whitelists [11], and Automated Individual White-List (AIWL)
[12]. Blacklists are frequently updated lists of previously
detected phishing attacks. Whitelists are lists of addresses
that are considered ”safe”. These approaches generally have
lower false positive rates [13], however, they are not efficient
to protect against new phishing attacks as non-blacklisted
phishing sites are not recognized [7, 13]. A study in [13]
found that blacklists are only able to detect 20% of zero-hour
phishing attacks, where 63% of them were blacklisted after 12
hours. However, phishing attacks are mainly performed over
short periods of time. In order to avoid the blacklist draw-
backs, various heuristics-based solutions have been proposed
[14]. Heuristics-based approaches use the different types of
characteristics that can be found in phishing attacks to define
heuristics tests.

Netcraft [15] is an example of anti-phishing systems that
uses heuristic methods to detect phishing attacks, with 95%
accuracy. However, it is very time-consuming, even for a small
dataset. SpoofGuard [16] examines phishing signatures via a
list of heuristics including seen domains, URL obfuscation,
nonstandard port numbers, etc. Heuristics found in the HTML
content are weighted against a defined threshold value. If the
weighted sum of the heuristics exceeds the defined threshold,
an alarm is raised. This approach has achieved a spoof
detection accuracy rate of 93.5% [17]. EarthLink toolbar [18]
is a hybrid solution based on a blacklist as well as some
heuristics such as the domain registration information, with
90.5% overall accuracy [17]. These solutions are more effec-
tive than blacklisting to differentiate legitimate from phishing
sites. However, they are not 100% accurate since they produce
low false negatives. In fact, heuristics are not guaranteed to
always exist in phishing attacks, which increases the risk of
misclassifying legitimate emails or websites.

Visual similarity techniques are also very useful for effec-
tively detecting phishing websites, since the phishing website
is very similar to the corresponding legitimate website. These
approaches compare the phishing website with the correspond-
ing legitimate website, by using different features such as
text format, HTML tags, Cascading Style Sheets (CSS) and
images. If the resemblance is greater than the predefined
threshold value, then it is declared phishing [19]. Phishzoo
[20] was the first anti-phishing solution that was based on
a visual similarity technique paired with a whitelist. This
technique uses a database as a whitelist to store profiles of
trusted websites. The currently visited website is analysed by
matching their URL, SSL certificates, and webpage contents
against stored profiles, which is an advantage over blacklist
based approaches. If the SSL certificates or addresses do not
MATCH, then PhishZoo will identify the loaded website as
”phishing”. The main drawback of Phishzoo is the presump-
tion that most phishing websites are simply copies of real
websites. Thus, if a phishing website does not look like it is
imitated (by changing the size for example), PhishZoo will
prompt the user to build a new profile for that website in the
whitelist.

Machine learning-based solutions try to analyse the avail-
able information of websites or webpages, by extracting static
or dynamic features, and training a prediction model on a set
of training data of both phishing and legitimate web pages.
There is a rich family of machine learning algorithms in
literature, which can be used for solving phishing detection.
Authors in [21] have proposed a Neuro-Fuzzy approach to
detect phishing websites, which is a combination of Fuzzy
Logic and neural network. The proposed approach uses five
tables of features as input of the neuro-fuzzy system including
legitimate site rules, user-behaviour profile, URL information
from Phishtank, etc. Then, ”if then rules” are generated via
the neuro-fuzzy system to detect phishing. According to the
tests, this approach has achieved 98.5% overall average accu-
racy. CANTINA+ [22] is another machine-learning framework
for detecting phishing websites. This framework exploits the
HTML Document Object Model (DOM), search engines and
third-party services with machine learning for classification of
normal and phishing sites. The classification uses a set of 15
features including IP address, page rank, embedded domain,
number of dots in URL, etc. In this framework, two filters
were used to increase the rate of true positives and decrease
the rate of false positives. CANTINA+ achieved over 92% TP
on unique phishing URLs and over 99% true positive on near-
duplicate phishing URLs, and about 1.4% false positive with
20% training phish with a two-week sliding window. However,
this approach suffers from performance issues due to the delay
in querying from search engine.

PILFER [23] is another machine-learning approach that
is proposed to detect phishing emails. In this approach, the
tenfold cross-validation and random forest techniques were
used for classification, support vector machines (SVM) was
used for training and testing the dataset, and ten features
were used to represent emails including IP-based URLs, non-



Fig. 1. Overview of the proposed approach.

matching URLs, HTML emails, number of domains, number
of dots, etc. PILFER gives about 95% accuracy, but the
false positive and false negative rates show that a substantial
number of emails are not well classified. Moreover, many
of the features cannot be extracted from old emails as the
phishing sites are short-lived. In recent work [? ], the author
proposed a machine learning approach to detect phishing from
URLs. the approach was implemented by using seven different
machine learning algorithms, as Decision Tree, Adaboost,
K-star, kNN(n=3), Random Forest, SMO and Naive Bayes,
and different number/types of features as Natural Language
Processing (NLP) based features, word vectors, and hybrid
features. According to experimental results, it is concluded
that the NLP based features have better performance than word
vectors with an average rate of 10.86%. Additionally, the use
of NLP based features and word vectors together also increases
the performance of the phishing detection system with the rates
of 2.24% and 13.14% according to NLP based features and
the word vectors respectively.

In summary, most of the proposed solutions have two main
issues; the first is the need for a fast access time for real-time
environments and the second is the need for a high detection
rate. Black-list-based solutions have fast access time but they
suffer from low detection rates, while heuristics-based and
machine-learning based solutions have high detection rates
but suffer from the low access time. In this paper, we aim
to tackle these two main issues by combining the phishing
threat with binary visualisation and machine learning. This
combination can lead to faster access time with high accuracy
as shown in [24]. In [24], binary visualisation and machine
learning were used for malware classification with promising
results. To our best knowledge, our work is the first to provide
a scheme based on binary visualisation and machine learning
for phishing detection. The details of the proposed system are
provided in the following sections.

III. APPROACH OVERVIEW

In this section, we will discuss our proposed phishing
detection system. As shown in Figure 1, the proposed system
consists of two stages, the learning stage, and the detection
stage. In the first stage, the samples and the topological
structure of the machine learning TensorFlow is built, while
in the second stage the submitted URLs are tested against the
samples in the database to perform classification. Our approach
relies on visualizing scraped HTML files onto 2D images,
which are then processed by the TensorFlow that analyses
them against its training modules, to distinguish between
legitimate and phishing websites.

URLs passed through the system are recorded in a database,
thus, each URL submitted by the user is tested to check
for duplicates (see Figure 1). This helps in increasing the
system overall performance as it could avoid the binary image
reproduction process, which is a time-consuming process.
If the submitted URL does not exist in the database, the
system would automatically scrape the HTML code from the
corresponding websites and store it in a string format. The
automation of scraping the web page protects users from
having to visit the potential phishing page and removes the risk
of droppers and browser exploits. In addition, it prevents the
user from viewing potentially inappropriate content that may
be found on unknown or hacked websites. Once the website
source code is scraped and stored, the corresponding binary
file is passed to the image creation module, where the image
visualisation method Binvis is used to convert the binary files
into 2D images. Then, created images are analysed using the
neural network TensorFlow to perform classification.

A. Binary visualisation

As aforementioned, once the system scrapes and stores a
target website ’s source code, it then transfers it into BinVis
for the RGB image creation process. Binvis is a binary data
visualization tool that converts the contents of a binary file to



another domain that can be visually represented (typically a
two-dimensional space) [25]. This tool takes individual char-
acters from the created string in the previous step, translates
them to a binary state and then converts them to RGB values
(see Figure 2). Binvis divided the different ASCII characters
into the following classes of colours;

• Printable ASCII characters are assigned a blue colour.
• Control characters are assigned a green colour.
• Extended ASCII characters are assigned a red colour.
• Null and (non-breaking) spaces are respectively repre-

sented by black (0x00) and white (0xFF) colours.

Fig. 2. Image Generation Process.

The final output of Binvis is an image with a pre-set size
of 128 pixels. Figure 3 and Figure 4 show respectively Binvis
images for a legitimate and a Phishing PayPal Login web page.
The images were created using The Hilbert space-filling curve
clustering algorithm [26], which overcomes other curves in
preserving the locality between objects in multi-dimensional
spaces [24, 26]. This helps to create much more appropriate
RGB images for the machine learning classification process.

Positive results can be concluded from Figure 3 and Figure
4 as differences between a legitimate site and its phishing
counterpart were clear and apparent. The legitimate site has a
more detailed RGB value because it would be constructed from
additional characters sourced from licenses, hyperlinks, and
detailed data entry forms. Whereas, the phishing counterpart
would generally contain a single or no CSS reference, multiple
images rather than forms and a single login form with no
security scripts. This would create a smaller data input string
when scraped.

B. Image Recognition Classifier

In order to detect phishing pages, the machine-learning al-
gorithm TensorFlow is used to analyse and classify the Binvis
images against its in-depth training. TensorFlow is flexible
and it has been used for deploying machine learning systems

Fig. 3. Legitimate PayPal Login page.

Fig. 4. Phishing PayPal Login page.

into production across several areas of computer science,
including image recognition, computer vision, robotics, infor-
mation retrieval, natural language processing and geographic
information extraction [27]. Its excellent image recognition
ability makes it more appropriate for this application than
other similar models. In fact, it could easily detect differences
between the images, including differences that the human
eye could not detect. TensorFlow takes as input the images
produced in the previous steps to perform the classification.

For speed of testing, the convolutional neural network
MobileNet [28] is employed for the retraining element. This
can greatly minimize the time and space for phishing websites
classification.

IV. IMPLEMENTATION AND RESULTS

In this section, we will discuss implementation details and
results of the experiments carried out over our approach in
order to demonstrate its effectiveness and reliability. Espe-
cially, accuracy metric (A) was used to analyse the results
and evaluate the overall performance of our approach.

A =
TP + TN

TP + TN + FP + FN
(1)

Where TP is the number of instances correctly classified as
phishing, TN is the number of instances correctly classified as
legitimate web pages, FP is the number of instances incorrectly
classified as phishing, and FN is the number of instances
incorrectly classified as legitimate web pages.

Precision (P), recall (R) and f1 value (F1) metrics were also
used to evaluate the performance of the classifier, where;

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 =
2× P ×R

P +R
(4)



A. Experiment Setup

For the initial web scraping, a python script was created
by using the urllib library [29]. The script would scrape the
target site source code and store it in a string format. The
experiments are based on the MobileNet model on python with
TensorFlow open source library. The TensorFlow framework
is deployed in a virtual machine, running on Intel Core i5
CPU, 3.80 GHz, with 8 GB memory and the Ubuntu 14.04 64
bites OS. An NVIDIA GTX 1060 GPU with 6 GB memory
is used as accelerator. In the training stage, the TensorFlow
algorithm was trained by 250 images per category (Legitimate
and phishing web pages) with a size of 128 pixels, for 4000
training steps. The learning rate was 0.005. Every image is
used multiple times through training process. As shown in
Table I, the phishing websites dataset contained a mixture of
25 samples from the Bank of America PHISH, PayPal Phish,
ABSA Phish, DHL TRACKING Phish and Microsoft Login
Phish.

TABLE I
PHISHING WEBSITES SAMPLES

Category Number of samples

Bank Of America PHISH 5

PayPal Phish 5

ABSA Phish 5

DHL TRACKING Phish 5

Microsoft Login Phish 5

B. Experimental results analysis

Several tests were carried out to determine the accuracy
of the proposed classifier after the addition of more samples;
five tests per trained target site were carried out to evaluate
the success of the detection method. Figure 5 shows the
results of the final test with the most training samples that
were collected being used. It is apparent from the results
that the classifier has achieved high accuracy for almost all
categories, in particular, the ABSA and DHL URLs, where
all submitted URLs were correctly labelled as expected. The
classifier achieved lower accuracy with the PayPal URLs
(85.71%), however, the precision was very high (100%).

Figure 6 shows the overall results of the proposed approach,
which achieved an overall detection accuracy of 94.16%,
which is high and meets the required accuracy rate in practical
use. The precision of the classification is also very high with a
rate of 95.83%, which shows strong overall confidence in the
pattern recognition process. This accuracy rate is interpreted
as an acceptable and good result for phishing detection. The
recall rate was lower than the precision rate (87.50%) because
of the PayPal results that need further investigation in future
works.

Fig. 5. Final test results by category.

Fig. 6. Overall results for the final test

V. CONCLUSION

Phishing has become a serious threat in online space,
largely driven by evolving web, mobile, and social networking
technologies. Due to the rapid spreading of new phishing
websites and distributed phishing attacks, current phishing
detection techniques need to be greatly enhanced to effec-
tively combat emerging phishing attacks. In this paper, we
have proposed a novel phishing detection method, leveraging
multilevel artificial intelligence that uses a combination of
neural network paired with a binary visualization. Using visual
representation techniques allows to obtain an insight into the
structural differences between legitimate and phishing web
pages. From our initial experimental results, the method seems
promising and being able to fast detection of phishing attacker
with high accuracy. Moreover, the method learns from the
misclassifications and improves its efficiency.

In the future, we plan to improve this work by the use of
more samples for training and testing and utilising GPU for
binary visualization and CNN classification, which will with
no doubt enhance the predictive accuracy of the classifier. Fur-
thermore, we intend to apply the proposed solution with more
languages such as Russian, Greek and Chinese languages, and



trained the system on 404-error HTML code.

ACKNOWLEDGMENT

This project has received funding from the Euro-
pean Unions Horizon 2020 research and innovation

programme under grant agreement no. 786698. This work
reflects authors view and Agency is not responsible for any
use that may be made of the information it contains.

REFERENCES

[1] S. J. McMillan and M. Morrison, “Coming of age with
the internet: A qualitative exploration of how the internet
has become an integral part of young peoples lives,” New
media & society, vol. 8, no. 1, pp. 73–95, 2006.

[2] K. Joshi. (2017) Mobile internet usage:the 6 leading rea-
sons that brought growth. [online] Tech Flix. Available:
url = shorturl.at/ntRT4, [Accessed 29 May 2019].

[3] A. K. Jain and B. B. Gupta, “A novel approach to protect
against phishing attacks at client side using auto-updated
white-list,” EURASIP Journal on Information Security,
vol. 2016, no. 1, p. 9, 2016.

[4] A. A. Akinyelu and A. O. Adewumi, “Classification of
phishing email using random forest machine learning
technique,” Journal of Applied Mathematics, vol. 2014,
2014.

[5] K. Krombholz, H. Hobel, M. Huber, and E. Weippl,
“Advanced social engineering attacks,” Journal of Infor-
mation Security and applications, vol. 22, pp. 113–122,
2015.

[6] Fortinet. Q3 Quality Threat Landscape Report, year =
2017, note = [online] Tech Flix. Available: url = short-
url.at/fjD34, [Accessed 29 May 2019],.

[7] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection:
a literature survey,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 4, pp. 2091–2121, 2013.

[8] A. Alnajim and M. Munro, “An anti-phishing approach
that uses training intervention for phishing websites
detection,” in 2009 Sixth International Conference on
Information Technology: New Generations. IEEE, 2009,
pp. 405–410.

[9] J. K. Keane, “Using the google safe browsing api from
php,” Mad Irish, Aug, vol. 7, 2009.

[10] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta,
“Phishnet: predictive blacklisting to detect phishing at-
tacks,” in 2010 Proceedings IEEE INFOCOM. IEEE,
2010, pp. 1–5.

[11] J. Levine, “Dns blacklists and whitelists,” Tech. Rep.,
2010.

[12] Y. Cao, W. Han, and Y. Le, “Anti-phishing based on
automated individual white-list,” in Proceedings of the
4th ACM workshop on Digital identity management.
ACM, 2008, pp. 51–60.

[13] S. Sheng, B. Wardman, G. Warner, L. Cranor, J. Hong,
and C. Zhang, “An empirical analysis of phishing black-
lists,” 2009.

[14] R. Alghamdi and K. Alfalqi, “A survey of topic modeling
in text mining,” Int. J. Adv. Comput. Sci. Appl.(IJACSA),
vol. 6, no. 1, 2015.

[15] N. Toolbar, “Netcraft, ltd,” 2009.
[16] Fortinet. Quarterly threat landscape report. [online]

Fortinet. Available: url = shorturl.at/zRY29, [Accessed
1 Jun 2019].

[17] G. Xiang, B. A. Pendleton, and J. Hong, “Modeling
content from human-verified blacklists for accurate zero-
hour phish detection,” CARNEGIE-MELLON UNIV
PITTSBURGH PA SCHOOL OF COMPUTER SCI-
ENCE, Tech. Rep., 2009.

[18] EarthLimk. Earthlimk toolbar. [online] Fortinet. Avail-
able: url = http://www.earthlink.net/, [Accessed 1 Jun
2019].

[19] A. K. Jain and B. B. Gupta, “Phishing detection: analysis
of visual similarity based approaches,” Security and
Communication Networks, vol. 2017, 2017.

[20] S. Afroz and R. Greenstadt, “Phishzoo: Detecting phish-
ing websites by looking at them,” in 2011 IEEE Fifth In-
ternational Conference on Semantic Computing. IEEE,
2011, pp. 368–375.

[21] P. A. Barraclough, M. A. Hossain, M. Tahir, G. Sexton,
and N. Aslam, “Intelligent phishing detection and pro-
tection scheme for online transactions,” Expert Systems
with Applications, vol. 40, no. 11, pp. 4697–4706, 2013.

[22] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “cantina+:
A feature-rich machine learning framework for detecting
phishing web sites,” ACM Transactions on Information
and System Security (TISSEC), vol. 14, no. 2, p. 21, 2011.

[23] I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect
phishing emails,” in Proceedings of the 16th international
conference on World Wide Web. ACM, 2007, pp. 649–
656.

[24] I. Baptista, S. Shiaeles, and N. Kolokotronis, “A novel
malware detection system based on machine learning and
binary visualization,” arXiv preprint arXiv:1904.00859,
2019.

[25] Binvis. Binvis.io. [online] Binvis. Available: url =
http://binvis.io/, [Accessed 1 Jun 2019].

[26] H. V. Jagadish, “Analysis of the hilbert curve for repre-
senting two-dimensional space,” Information Processing
Letters, vol. 62, no. 1, pp. 17–22, 1997.

[27] S. S. Girija, “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” Software avail-
able from tensorflow. org, 2016.

[28] MobileNet. Mobilenet. [online] Binvis. Available: url
= https://ai.googleblog.com/2017/06/mobilenets-open-
source-models-for.html, [Accessed 5 Jun 2019].

[29] urllib. URL handling modules, note
= [online] Python. Available: url =
https://docs.python.org/3/library/urllib.html, [Accessed 2
July 2019].




