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Abstract
Most studies relating to bug reports aim to automatically identify necessary information from bug reports for 
software bug fixing. Unfortunately, the study of bug reports focuses only on one issue, but more complete 
and comprehensive software bug fixing would be facilitated by assessing multiple issues concurrently. This 
becomes a challenge in this study, where it aims to present a method of identifying bug report at a severe 
level from a bug report repository, together with assembling their related bug reports to visualize the overall 
picture of a software problem domain. The proposed method is called “mining bug report repositories”. Two  
techniques of text mining are applied as the main mechanisms in this method. First, classification is applied for 
identifying severe bug reports, called “bug severity classification”, while “threshold-based similarity analysis” 
is then applied to assemble bug reports that are related to a bug report at a severe level. Our datasets are obtained 
from three opensource namely SeaMonkey, Firefox, and Core:Layout downloaded from the Bugzilla. Finally, 
the best model from the proposed method is selected and compared with two baseline methods. For identifying 
severe bug reports using classification technique, the results show that our method improved accuracy, F1, and 
AUC scores over the baseline by 11.39, 11.63, and 19% respectively. Meanwhile, for assembling related bug 
reports using threshold-based similarity technique, the results show that our method improved precision, and 
likelihood scores over the other baseline by 15.76, and 9.14% respectively. This demonstrate that our proposed 
method may help to increase the chance to fix bugs completely.
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1 Introduction

Bug reports contain all significant information for 
helping a development team to find and fix problems 
occurred in software. To gather bug reports on a global 
scale, bug tracking systems (BTSs) have been developed  
and proposed, where BTSs are able to gather bug 
reports from people from around the world. After  
gathering bug reports from end-users worldwide, 
software experts, so called bug triagers, are required 
to analyze the bug reports, which includes classifying 
bug and non-bug reports, checking for duplicated bug 
reports, prioritizing bug reports, and assigning suitable 
developers. These tasks are time-consuming and costly 
[1]–[3]. As a result, there are subsequently a large 

number of bug report studies, and generally they can 
be divided into three main areas.
 The first area of bug report studies concerns bug  
report optimization which aims to enhance report quality  
and reduce the amount of incorrect information in 
reports. Bug report optimization can be classified into 
three tasks: Content optimization [4], [5]; bug report 
misclassification [6]–[10]; and severity prediction  
[11]–[15]. Yet, the most important task in bug report 
optimization is the bug report misclassification. This 
is because analysis time in the following stage can 
increase if outlier bug reports are not removed from 
the bug reports. The second study in the bug report 
area is the report triage which concerns duplicated  
bug detection [1], [16]–[19], prioritization [20]–[23],  
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and suitable developer assignment tasks [24], 
[25]. Duplicated bug reports are detected and  
removed from the bug report repository where further  
processing is not required [1], [17], [18]. Bug report 
prioritization serves to predict the priority of bug  
reports and assigning suitable developers for fixing the 
bug is the last task of the bug report triage. The third 
study in the bug report area is bug fixing, which can 
also be divided into three main tasks: bug localization 
[26]–[28]; recovering links between bug reports and 
change files [29], [30]; and bug fixing time prediction  
[31], [32]. Bug localization aims to identify the  
location of bugs in software code or in a program. 
Recovering links between bug reports serves to  
connect bug reports and change files, where the change 
files are the logs of the software correction history. 
In this case, when software is corrected according to 
a specific bug report, the report must be linked to its 
related log. However, some links may be missing, so 
this task also seeks to recover the links between the 
bug reports and the change files. Finally, predicting the 
bug fixing time seeks to identify how long it will take 
between identifying a bug and resolving it.
 In fact, most studies mentioned above aims to 
automatically identify necessary information from bug 
reports for software bug fixing. Bug severity analysis 
is an important process that involves estimating the 
impact of the bug on software according to a ranking 
scale. Severity is a measure of the seriousness of a 
software issue and how it terribly affects functionality. 
Consequently, bug triagers often look for bug reports 
that contain the most severity, especially severity 
information at “blocker” and “critical” levels [12]–
[15]. Software bugs involved in blockers can impact 
further testing in a specific environment, while bugs 
at a critical level result in software crashing, data loss,  
or other serious damage. Bug reports at blocker or 
critical levels are defined as “severe bug reports”. 
Many studies have proposed automatic bug severity 
analysis, mostly driven by text classification, called 
“bug severity classification” [13]–[15].
 However, bug severity analysis alone cannot help 
to obtain sufficient information for completely fixing 
software bugs because the development team may not 
see the overall picture of a software problem domain. 
A solution to see the overall picture of a software  
problem domain is to find all related bug reports 
that are called “related bug reports” or “bug report  

dependency”. Related bug reports can be described by 
a situation in which an unfixed bug ‘a’ affects bug ‘b’. 
That is, bug ‘b’ continues to occur despite it being fixed 
if bug ‘a’ is not yet completely fixed. Unfortunately,  
this issue has not yet been earnestly studied. It was 
just mentioned in [2], [32]. This may be because 
performance improvements are still required for 
bug report misclassification, severity and priority  
prediction, bug duplicated detection, bug localization, 
and bug fixing tasks [3]. Therefore, finding a solution 
to see the overall picture of a software problem domain 
is a challenge in this study.
 This study aims to present a method of identifying  
severe bug reports from a bug report repository,  
together with assembling their related bug reports to 
visualize the overall picture of a software problem 
domain. The proposed method is called “mining bug 
report repositories”. Two techniques of text mining are 
applied as the main mechanisms. First, classification is 
applied for bug severity analysis, called “bug severity 
classification”, while text similarity is then applied to 
assemble related bug reports, called “threshold-based 
similarity analysis”. In classification tasks, machine 
learning and deep learning algorithms are compared 
to obtain the most appropriate models. We selected  
multinomial naïve bayes (MNB), support vector  
machines (SVM), random forest (RF), and convolutional  
neural networks (CNN). Furthermore, to increase the 
class distinguishing power, a supervised term weighting  
(STW) scheme, called term frequency - inverse gravity  
moment (tf-igm), is applied because this weighting 
scheme can determine the importance of a word in a 
document of a specific class.
 Finally, the best model from our “bug severity 
classification” method is compared with the baseline 
method proposed by Ramay et al. [15], while the best 
model of the “threshold-based similarity analysis”  
method is compared with the baseline method  
proposed by Rocha et al. [33].
 The paper is organized as follows. In section 2, 
we present the datasets used for this study. Meanwhile, 
the proposed method is presented in section 3 and the 
experimental results are presented in section 4. Finally, 
the conclusion is in section 5.

2 Dataset

The dataset used here was gathered from Bugzilla, 
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while bug reports relating to Mozilla were downloaded 
between 1 September 2019 and 30 October 2020. Our 
dataset is from three opensource namely SeaMonkey, 
Firefox, and Core:Layout. The dataset consists of 
66,989 bug reports. Here, the bug report statuses used 
in this study are ‘verified’ and ‘closed’ because bug 
reports with these statuses were confirmed by bug 
triagers, software developers, and software testers that 
might be “real” bug reports [3], [21].
 In general, a bug report contains three major 
parts, i.e. summary, description, and discussion. 
The summary is the title of the bug report, while the 
description contains details of each particular bug  
report. The discussion contains information concerning 
mentions or comments on that particular bug report 
submitted by other end users. However, many bug  
report studies deploy only the summary because this 
part contains less noise [17], [34], [35]. Therefore, 
here, we also investigated only the summary part.
 Bug reports labeled as “blocker”, “critical” and 
“major” are re-assigned as severe bug reports, while 
bug reports labeled as “normal”, “minor” or “trivial” 
are re-assigned as non-severe bug reports. However, 
when we downloaded bug reports from Bugzilla, none 
were labeled as “major”. Therefore, major bug reports 
were not utilized in our study.
 Each bug report is also assigned information to 
indicate its associated bug reports, labeled as “depends 
on” (Figure 1). This dataset was used in both the  
proposed and compared methods, and these were set 

in the same environment. The summary of our dataset 
is presented Table 1.

Table 1: Summary of dataset

Dataset Total of Bug 
Reports

Number of Bug Reports
Severe Non-severe

Core:Layout 9,840 1,067 8,773
Firefox 36,324 1,762 34,562
SeaMonkey 20,825 2,643 18,182

 It notices that 70% of the available data in the 
severe class is allocated for training. The remaining 
30% of data are referred to test datasets. To prevent a 
problem of imbalance class, the number of non-severe 
bug reports at the test set should be equal to the number 
of severe bug reports at the training set.

3 The Proposed Method

An overview of the proposed method, called “mining  
bug report repositories”, is shown as Figure 2. It 
consists of two main stages. The first stage is to select 
bug reports that are deemed to a severe level utilizing 
text classification technique, called “identifying severe-
bug report” stage. The second stage is to assemblage  
bug reports related to those severe bug reports  
using threshold-based text similarity analysis, called  
“assembling related bug reports”. Each stage can be 
detailed as follows.

Figure 1: An example of bug report and its severe level and related bug reports.
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3.1  Identifying severe bug reports using severity 
classification

This stage is to apply the text classification technique 
to identify bug reports that are deemed to the severe 
level. It consists of three main processing steps. They 
are pre-processing, bug report representation, and term 
weighting, and severe bug classifier modeling. An 
overview of the proposed methodology for identifying  
severe bug reports can be shown in Figure 3. Each 
processing step can be described as follows.

3.1.1 Pre-processing

The first stage of bug report pre-processing is text 
tokenization. This process separates text to tokens, 
called “words” in this study. Bug report features (or 
words) used in this study are unigram and CamelCase. 
Unigram means a single word, while CamelCase 
[6], [26]–[28], [36] (also referred to as Snakecase or 
Compound words) refers to words that combine many 
single words or abbreviations with no intervening  
spaces or punctuation. Some examples are “browser_
views” and “AutoComplete”. Unigram and CamelCase 
are popularly used in bug report studies because a 
unigram is simple to extract from a bug report, while 
CamelCase can indicate the specificity of the software. 
However, when using CamelCase words, these words 
are split into single words before use. This expands the 
bug report features. Therefore, examples of CamelCase 
words such as “browser_views” and “AutoComplete” 
can be split as “browser”, “views”, “Auto”, and 
“Complete”, respectively. It is noted that both original 
CamelCase words and words that are split from those 
CamelCase words are used in this study.

 After tokenizing text to words, the stop-words are 
removed. This is followed by the stemming process. In 
this case, the Snowball stemmer is utilized to reduce 
inflection in words to their common base, stem, or 
root form. It is noted that we performed bug report 
pre-processing using the Natural Language Tool Kit 
(NLTK) library in Python.
 Suppose there is an example of the summary part 
of a bug report. It is “AutoComplete for URLs isn't 
working (urlbar)”. An example of pre-processing bug 
report can be illustrated in Table 2.

Table 2: An example of pre-processing bug report
Processing Tasks Result of each Step

Tokenized AutoComplete/ for/  URLs/ is/ n't/ working/ 
./  (/ urlbar/ )

Stop-words removal AutoComplete/ URLs/ working/ urlbar
CamelCase words 
splitting

AutoComplete/ Auto/ Complete/ URLs/ 
working/ urlbar

Stemming autocomplet/ auto/ complet/ url/ work/ 
urlbar

3.1.2 Bug report representation and term weighting

After obtaining features of bug reports, they are  
represented as vector space model (VSM) format. 

Figure 2: Overview of the mining bug report repositories method.

Figure 3: Overview of the proposed methodology for 
identifying severe bug reports.
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Later, term frequency - inverse gravity moment (tf-igm)  
which is one of supervised term weighting (STW) 
schemes is used to assign weight score for each bug 
report feature [37]. The specific character of STW 
is to consider term distribution in the classes of  
interest. Consequently, this may help to improve its  
discriminating power for text classification tasks [37], 
[38]. The tf-igm is to combine term frequency (tf) with 
the igm measure. The equation of tf-igm is represented 
in Equation (1).

 (1)

The igm is indicated in Equation (2), where fir (r = 
1,2,...,M) is the number of bug reports containing the 
word ti in the r-th class, which are sorted in descending 
order. Thus, fi1 represents the frequency of word ti in 
the class in which it occurs most often. The equation 
of igm is represented in Equation (2).

 (2)

In Equation (1), λ is an adjustable coefficient used to 
relatively balance between the global and local factors 
in the weight of a term. To the best of our knowledge, 
the λ coefficient should have a default value of 7.0. 
However, it and can be set as a value between 5.0 and 
9.0 [37].

3.1.3 Severe bug classifier modeling

To build the severe bug report classifiers, suppose  
BR is bug reports allocated as training set and br is a 
bug report. This can be denoted as BR = {br1,br2,...,bri}. 
A fixed set of classes can be denoted as C = {severe,  
non-severe}. In this study, four classification algorithms  
are applied. These algorithms can be briefly described.

•  Multinomial Naïve Bayes (MNB)

The Naïve Bayes (NB) is a classification algorithm 
which refers to conditional independence of each of the 
bug report features in the classifier model. However, 
this algorithm was improved by adding Laplacian or 
add-one smoothing to prevent the zero probability 
for an unseen word and this NB version is called 
multinomial naïve bayes (MNB). The MNB classifier 

is a specific instance of an NB classifier that uses a 
multinomial distribution for each of the features [39]. 
From the training set, we can calculate as follows 
[Equation (3)].

 (3)

While the equation of  is:

 (4)

where count(wi, c) is the total count of word i in 
all documents of class c of the training set, and |V|  
represents the entire words found in the document.  
It can be seen that Equation (4) uses Laplacian or 
add-one smoothing to prevent the zero probability for 
an unseen word.

•  Support Vector Machine (SVM)

The SVM is a popular algorithm for text classification.  
It determines a decision boundary together with a 
maximal margin to separate almost all the documents 
into two classes. The SVM has returned good results 
in many studies. In SVM learning, the classification 
problem involves finding a separating hyperplane that 
maximizes “the margin” [40]. This technique allows 
for errors in classification using “slack-variables”, and 
also, operates as a “dual problem” that only depends on 
inner products between feature vectors which can be 
replaced with kernels [40]. In SVM learning, a kernel 
function uses an infinite number of features for pattern 
analysis [41], [42].

•  Random Forest (RF)

RF is also a popular classification method. This 
comprises an ensemble of a set of trees as a learning 
classification method [43]. RF performs by building 
a lot of decision trees at training time. Each node 
in the decision tree conducts on a random subset of  
features to generate the output. Finally, the random  
forest aggregates the output of individual decision 
trees to a summary as the final output. One of the most 
popular forest construction procedures proposed by 
[43]. In this study, 100 trees were constructed.
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•  Convolutional Neural Network (CNN)

CNN is a class of deep neural networks (DNN) that is 
most commonly applied to image analytics. CNN has 
also been applied to text classification. It has proved 
useful for this task. The architecture of CNN for text 
classification consists of four connected layers as word 
embedding layer, convolutional layer, pooling layer, 
and softmax layer, as shown in Figure 4.
 Each layer of CNN for text classification can be 
described as follows.
 Word Embedding Layer: Word embedding is the 
first layer in CNN. This process is performed to map 
vocabulary word indices to low dimensional vectors 
by transforming natural language into a meaningful 
numerical form. Word embeddings are represented 
as vectors, and each vector depicts the features of a 
word. The closeness of two words embedding vectors 
in the vector space indicates the degree to which they 
are semantically related. A word embedding vector is 
learned for every word in all of the texts included in 
the text corpus.
 Convolutional Layer: This layer converts the 
texts to sequences of word embeddings as input, and 
then creates feature vectors by analyzing the word 
embeddings for each text using a mechanism called 
“convolution filters”. A convolution filter is a matrix 
filled with weights that analyzes multiple consecutive 
words in a text concurrently. This process continues 
throughout the whole text to create a feature map. The 
same operation is performed for every text to detect  
different relationships between the words using multiple  
convolution filters. These convolution filters also differ 
from each other in height, which indicates how many 
consecutive words a filter considers concurrently in 

each step. To obtain the feature vectors, the feature 
maps generated by the convolution operation are added 
with a bias term, and an activation function is also  
applied to add non-linearity. 
 Pooling Layer: This layer used the variable-
length feature vectors obtained from the convolutional 
layer as input and produces fixed-length vectors. By 
doing this, the less relevant local information should 
be removed.
 Softmax Layer: It is the final layer of CNN used 
to convert the fixed length feature vectors to be the 
input to a fully-connected layer as an efficient way 
of learning non-linear feature combinations. Outputs 
of this fully connected layer are numerical values for 
each class. To assign a straightforward interpretation 
to these numbers, the softmax function is applied to 
force the output of the CNN to represent predicted 
probabilities for each of the classes. Finally, the class 
achieving the highest predicted probability is the  
predicted class generated from the CNN.
 During the training of the CNN, the weights in 
the embedding, convolutional, and softmax layers are  
updated in each epoch using the categorical cross-entropy  
loss function. This process of updating the weights is 
called “back-propagation”, and is the essence of neural 
network training. Back-propagation is used to fine-tune 
the weights of a neural network based on the error rate 
resulting from the previous epoch. Minimizing the 
error rates through proper tuning can increase model 
reliability and generalization.
 In this study, we used three layers of CNN with 
the following settings. The filter was defined as 128 
to represent the number of neurons, with each neuron 
performing a different convolution to the input of the 
layer. The kernel size was defined as 1, representing 
the size of the filter, and the tanh activation function 
represented the final value of a neuron. Finally, the 
dense output layer fully connected the 128 neurons to 
every activation units of the next layer and contained 
2 neurons.

3.2  Assembling related bug reports using threshold-
based similarity analysis

After recognition, severe bug reports, identified by 
the process described in Section 3.1, are used as the 
center point to find their related bug reports. This 
solution helps the software development team can see 

Figure 4: Overview of general CNN architecture for 
text classification.
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an overall picture of the software issue. Consequently, 
this may increase the chances of to completely fixing 
the software.
 All bug reports used in this study are pre- 
processed in the previous stage and formatted as VSM. 
Therefore, these bug reports do not require further pre-
processing. However, when using BM25 as the main 
algorithm, each bug report feature should be given 
weight by term frequency (tf).

3.2.1 Cosine similarity (CS)

CS is applied to assemblage related bug reports because 
it has been widely used for bug report studies [26],  
[27], [33], [44]. The CS equation is [Equation (5)]:

 (5)

where V1 and V2 are the term vectors of a pairwise 
between a severe bug report and related bug reports 
in the dataset. The similarity result should be close to 
1 if both bug reports are similar. Also, thresholds are 
provided to determine the similarity score. Thresholds 
used in this study are from 0 to 1 with step 0.1. When 
the similarity score of the severe bug report and a 
bug report is greater than or equal to the threshold, it 
means that those bug reports should be grouped into 
the same cluster because they may be relevant. Yet, 
when the similarity score of a severe bug report and 
a bug report is below the threshold, those bug reports 
may be irrelevant.

3.2.2 BM25

When using BM25, each term should be given its 
weight by tf. The BM25 is applied for assembling 
related bug reports because this algorithm has been 
proved that it could return satisfactory for bug reports 
analysis, especially in real-bug report identification 
and duplicate bug report analysis [18].
 BM25 is a ranking function which was developed  
in the Okapi information retrieval system [45]. For 
BM25, it does not require giving term weights by  
tf-igm, where it requires only document frequency (df). 
The df is the number of documents where the term t 
appears. Instead of regarding the inter-relationship 
between the query terms with in a document (or bug 

report), the BM25 equation is [Equation (6)]:

 (6)

Let SB be a severe bug report and br be a bug report 
that may be related to that SB. Therefore, tf(qi,br) is 
the term frequency, where it is defined as the number 
of occurrences that the terms q-th of SB appear in br. 
Indeed, |br| is the length of br in words, while brlavg  
is the average bug report length for all the bug reports 
in the corpus. For, k and b, they are free parameters. 
They are used to control the weighting between tf(qi,br) 
and the normalized bug report length. Generally, the 
values of k and b should be in the range of 1.2 < k < 2.0  
and 0.5 < b < 0.8 [45], [46]. This study uses the values 
of k and b at 2.0 and 0.8 respectively. They are the same 
values used in [45].
 For idf(qi), it is the inverse document frequency of 
the term q-th of SB. It can be calculated by Equation (7).

 (7)

where N is the entire number of bug reports in the 
corpus, while df(qi) is the number of bug reports  
containing the term q-th of SB.
 In general, the similarity score should be between 
0 and 1. However, when using the BM25 technique 
to estimate the similarity score, it is possible that this 
technique can return a score greater than 1.0. Similarity  
scores should be normalized to allow a comparison 
of different similarity values using a single scale.  
Normalizing similarity scores helps to remove the 
mean and scale to the similarity score variance. To 
normalize the BM25 similarity scores in the range 
[0,1], the function was shown as Equation (8) also 
applies in this case.

 (8)

where x is the similarity score generated by BM25.
 In this study, threshold-based text similarity analysis  
is also applied, where thresholds are also provided to 
determine the similarity score. The thresholds used 
in this study are from 0 to 1 with step 0.1. When the 
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similarity score of the severe bug report and its related 
bug reports is greater than, or equal to the threshold, it 
appears that those bug reports should be grouped into 
the same cluster because they may be relevant. Yet, 
when the similarity score of the severe bug report and 
its related bug reports is below the threshold, those bug 
reports may be irrelevant. This process is iteratively 
performed until that bug report is able to identify its 
suitable clusters. It is noted that a bug report can be 
in many clusters. 
 An example of the expected results of identifying 
severe bug reports using the severity classification, and 
assembling related bug reports in suitable clusters with 
center points as severe bug reports obtained from the 
previous task is shown in Figure 5.
 After performing bug report severity classification,  
S1 and S2 were identified as severe bug reports (Figure 5).  
Then, using S1 and S2 were used to find other related 
bug reports by CS or BM25. Results determined that 
bug reports a, b, e and f were related to S1, while bug 
reports c, d, and g were related to S2 and bug report a 
was related to both S1 and S2.
 Consequently, the best model of assembling  
related bug reports to a specific bug report with 
blocking severe based on our proposal is selected and 
compared with the baseline model proposed by [33].

4 The Experimental Results

4.1  Evaluation measures 

True Positive Rate (TPR) is also called Sensitivity or 
Recall. It is used to measure the proportion of actual 
positives that are correctly identified. True Negative 
Rate (TNR) is also called Specificity. It is used to 
measure the proportion of actual negatives that are  
correctly identified. F1 is the harmonic mean of the 

recall and precision. This measure is used to determine 
the test accuracy. The best value for F1 is 1 and the 
worst value is 0. Accuracy is literally how good our 
model is at predicting the correct category (classes or 
labels) for the dataset used [47], [48].
 The ROC (Receiver Operating Characteristic) 
curve is used to measure how well a related bug report 
can be detected from a dataset of bug reports. The ROC 
curve is plotted with TPR against the false positive rate 
(FPR or 1-TNR), with TPR on the y-axis and FPR on 
the x-axis. While AUC (Area Under the Curve) is used 
to presents the degree or measure of separability by 
considering the area under the ROC curve [47], [48]. 
The ROC curve and AUC are two of the most important  
evaluation metrix for checking the performance of 
dependent bug reports assembly. The ROC curve 
and AUC can be used to obtain the most appropriate 
threshold and models based on our proposed method.
 In addition, this study used feedback, precision and 
likelihood measurements [33], [44], [49], which before 
presenting the formulas for these three measurements  
the following sets should be firstly defined. Let BRq be 
the set of related bug reports retrieved by the proposed  
method, while BRq(k) is top-k bug reports in BRq 
ordered by textual similarity (only defined for |BRq| 
≥ k). Rq is the set of related bug reports with their 
answers. Meanwhile, Z is the total number of severe 
bug reports (queries) in total, and Zk is a subset of 
Z that can retrieve the related bug reports at least k. 
These definitions help to define feedback, precision, 
and likelihood.
 Feedback: It involves measuring the number 
of bug reports that are retrieved when using a given  
severe bug report as a query. Formally, the feedback of 
k, denoted as FB(k), is the percentage of queries with  
at least k bug reports retrieved. The feedback equation 
can be defined as [Equation (9)]:

 (9)

 Precision: It is denoted as P(k) and used to measure  
the ratio of related bug reports that are retrieved. The  
formula for precision can be expressed as [Equation (10)]:

 (10)

Figure 5: Example of expected results of the proposed 
method.
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 Moreover, total precision in our dataset is determined  
as the average precision executed for each severe 
bug report (or query). The equation can be defined as 
[Equation (11)]:

 (11)

 Likelihood: It is denoted as L(k). The likelihood is 
a common measure used to estimate the usefulness of  
retrieving related bug reports. The likelihood of the top-k  
related bug reports can be defined as [Equation (12)]:

 (12)

where Lq(k) is a binary measure. If at least one related 
bug report exists among the top-k bug reports that are 
retrieved, the answer is returned one; if not, the return 
is zero. The total likelihood in our dataset is defined 
as the average likelihood measured for each severe 
bug report (or query). The equation can be defined as 
[Equation (13)]:

 (13)

4.2  The experimental results of identifying severe 
bug reports using classification technique

After obtaining the bug reports represented their  
features with weights in the VSM format, the training set 
will be used to model “bug report severity classifier”.  
This classifier is used to identify bug reports with 
blocking severe. This study compared two different 
techniques for modeling bug report severity classifier. 
They are SVM with RBF kernel function and a deep 
learning technique that is called CNN.
 Results in Table 3 show that RF, MNB, and SVM 
with RBF returned better results than CNN when using 
our datasets. However, SVM with RBF returned the 

most satisfactory results. CNN returned the poorest 
results because this algorithm generally requires a lot 
of training data. Unfortunately, all datasets used in this 
study were small, and this was the main reason why CNN  
gave poor results. By contrast, SVM is the best suited 
for extreme case binary classification and outliers have 
less impact. Simply speaking, SVM performs well for 
smaller datasets. The RF and MNB classifier models 
returned poorer results than SVM. The RF classifier 
may overfit some datasets with outlier classification,  
and also consists of many decision trees, whose  
construction may impact irrelevant features. While the 
MNB classifier is a simple and easy algorithm for the 
text classification. Theoretically, naive Bayes classifiers  
have a minimum error rate compared with other  
classifiers. However, practically this is not always 
true because of the assumption of class conditional  
independence.
 In addition, using tf-igm as a term weighting 
reinforces the class distinguishing power of each term. 
Therefore, this may help to increase the performance 
for severity classification, especially when using tf-igm 
along with machine learning algorithms.
 Finally, the severity classifiers modelled by SVM 
with RBF are selected as the best models and they 
are compared with the baseline method proposed by  
[15].

4.3  The experimental results of assembling related 
bug reports using threshold-based similarity analysis

Table 4 shows that the BM25 algorithm outperformed 
CS on the datasets used in this study. One potential 
reason for the effectiveness of BM25 is that it can 
show the degree of importance of terms appearing in 
documents. This allows BM25 to derive the relevance 
of a document more accurately by extracting elaborate  
information of terms, documents, and document  
collection, rather than considering only term appearance  
following the CS similarity scheme. BM25 is better 
for document length normalization and satisfying the  

Table 3: The experimental results of identifying severe bug reports using classification technique

Dataset
RF MNB SVM with RBF CNN

ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC
Core:Layout 0.89 0.89 0.95 0.92 0.92 0.98 0.94 0.94 0.99 0.73 0.73 0.73
Firefox 0.77 0.77 0.83 0.78 0.78 0.86 0.83 0.83 0.89 0.72 0.72 0.72
SeaMonkey 0.77 0.77 0.84 0.77 0.77 0.85 0.81 0.81 0.87 0.72 0.72 0.72
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concavity constraint of the term frequency. Also, BM25 
performs well with short document collections [50], 
and each bug report used in this study was short. Based 
on these reasons, BM25 achieves better performance  
compared to CS.
 However, it was not possible to specify the best 
threshold for BM25 since the thresholds which had the 
best performance for these techniques may be between 
0.1 and 0.5. To specify the best threshold for BM25, the 
ROC curve and AUC were applied. Figure 6 indicates 
that the best BM25 threshold should be 0.5. Then, it 
returns the best AUC score of assembling related bug 
reports at 0.835. Finally, this model is selected as the 
best model for assembling related bug reports.

4.4  The results of comparing to the baseline methods

4.4.1 Comparing the proposed method of identifying 
severe bug reports to the baseline method

The baseline method used to compare with our 
method is proposed by [15]. They proposed a deep 
neural network-based automatic approach to predict 
the severity of bug reports. Their method consisted 
of four steps. First, NLP techniques were applied for 
text pre-processing of bug reports. Second, an emotion 
score was computed and assigned for each bug report. 
Third, a vector for each pre-processed bug report was 
created and, finally, the constructed vector and emotion 
score of each bug report was passed to a deep neural 
network-based classifier for severity prediction. Three 
layers of CNN were used with the following settings: 

filter = 128, kernel size = 1, and activation = tanh. 
The filter represents the number of neurons, and each  
neuron performs a different convolution on the input 
to the layer (more precisely, the neurons’ input weights 
form convolution kernels). Kernel size represents the 
size of the filter, while the activation function represents  
the final value of a neuron. The output of CNN was 
forwarded to a flattening layer that turned the given 
converted numerical vectors into a one-dimensional 
vector. (Table 5)
 Results in Table 6 show that our proposed method 
improved both the accuracy and F1 over the baseline 
method. There are three reasons for this. First, we  
considered the used features. Ramay et al. used only 
unigram as features, while we used unigram together 

Figure 6: The AUC scores of CS and BM25 for  
assembling related bug reports.
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Table 5: The results of comparing to the baseline method proposed by Ramay et al.

Dataset
Ramay et al. (2019) Proposed Method

ACC R P F1 AUC ACC R P F1 AUC
Core:Layout 0.79 0.79 0.79 0.78 0.79 0.94 0.94 0.94 0.94 0.99
Firefox 0.76 0.76 0.77 0.76 0.76 0.83 0.83 0.83 0.83 0.89
SeaMonkey 0.76 0.76 0.76 0.76 0.76 0.81 0.81 0.81 0.81 0.87

Table 4: The experimental results of assembling related bug reports using threshold-based similarity analysis

Algorithm Evaluation 
Metrics

Threshold Used
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CS
TPR 0.688 0.596 0.36 0.28 0.179 0.058 0.029 0.009 0.001 0.001
TNR 0.918 0.979 0.995 0.998 0.999 1.000 1.000 1.000 1.000 1.000

BM25
TPR 0.710 0.710 0.710 0.710 0.709 0.640 0.560 0.379 0.180 0.000
TNR 0.918 0.918 0.918 0.918 0.922 0.960 0.988 0.998 1.000 1.000
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with CamelCase. Using unigram alone was not  
sufficient because unigram was unable to indicate the 
specificity of the software. Thus, using CamelCase  
together with unigram as features improved this 
problem. 
 Second, we considered the predefined class 
weight of each bug report before the classification 
task. Ramay et al. utilized Senti4SD to assign class 
weight to each bug report and used this to determine 
other attributes in the deep neural network for severity 
prediction of bug reports. Although this application 
is interesting, errors can occur during performance. 
Senti4SD was not developed using bug report datasets. 
Hence, many words in Senti4SD might not relate to 
bug reports and using Senti4SD might be appropriate 
for some datasets but lead to poor results in others.
 By contrast, our proposed method did not use 
Senti4SD to predefine class weight. We used tf-igm, 
as an STW scheme to increase the class distinguishing 
power of each term found in our dataset. This helped 
to competently identify and distinguish between the 
characteristics of each class. For these reasons, our 
method generated better results than Ramay et al.
 Word2Vec was also used by Ramay et al. to 
generate word vectors, however, this technique might 
be ineffective as it was not able to separate some  
opposite word pairs. For example, “good” and “bad” 
are sometimes located very close to each other in the 
vector space and this may limit the performance of 
word vectors when undertaking NLP tasks, such as 
severe bug report analyses.
 In addition, the main mechanism used by Ramay  
et al. for classification was deep learning. In general, this 
technique requires a large dataset. Unfortunately, all our 
datasets were small. Therefore, this technique proved 
to be poor for all datasets used in this study. Moreover, 
deep learning techniques require extra computational  
resources than machine learning algorithms. Therefore, 
our method performs faster than the method proposed 
by Ramay et al.

4.4.2 Comparing the result of assembling related bug 
reports to the baseline method

Our proposed method was compared with the baseline 
method proposed by [33]. The tool developed by using  
the baseline method is called “NextBug”, which is  
implemented as a plug-in for Bugzilla. Then, Rocha et al.  
used only the summary component of bug reports and 
they also used unigram features with tf-idf. The main 
mechanism for identifying similar bug reports was  
cosine similarity with a threshold set as 0.1. Interestingly,  
Rocha et al. retrieved only the first five recommended 
bug reports and they used feedback, precision, and 
likelihood for their evaluation. Table 6 shows a  
comparison of the results.
 After testing with three tested sets of bug reports –  
namely Core:Layout, Firefox, and SeaMonkey, the 
average score of feedback, precision, and likelihood 
are presented in Table 6. Results in Table 6 show that 
our proposed method returned better results than the 
baseline method proposed by [33], with improved  
average scores of precision and likelihood at 15.76% 
and 9.14%, respectively. There are two points that 
can help to improve the performance of assembling  
dependent bug reports. First, the use of CamelCase as  
features can indicate the specificity of a problem domain 
in software, since different problem domains of a software  
may use different CamelCase terms. Meanwhile,  
BM25 is the appropriate similarity technique for 
this work. A potential reason for the effectiveness of 
BM25 is that it can show the degree of importance of 
terms appearing in documents, and thus to derive the  
relevance of a document to a given more accurately by 
taking more elaborate information of terms, documents,  
and document collection into consideration, rather than  
only term appearance in the traditional similarity scheme 
(e.g. cosine similarity). For example, the weighting  
model of BM25 incorporates document length, the 
average length of all documents in the collection,  
as well as the term frequency normalization effect. 

Table 6: The results of comparing to the baseline method proposed by Rocha et al.

Metrics
Core:Layout Firefox SeaMonkey

Rocha et al. Proposed 
Method Rocha et al. Proposed 

Method Rocha et al. Proposed 
Method

Feedback 0.999 0.999 0.999 0.999 0.999 0.999
Precision 0.393 0.458 0.390 0.450 0.390 0.450
Likelihood 0.607 0.678 0.598 0.645 0.598 0.645
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This technique is subsequently able to return better 
performance than the CS technique.

5 Conclusions

A software bug (or defect) can cause a program to crash,  
or produce invalid, or unexpected results. In general, 
end users can help development teams find bugs in 
software. Feedback or reports related to bugs from 
end-users are called “bug reports”. Bug reports are 
essential for developer teams to improve and maintain 
software quality. However, collecting bug reports from 
users around the world is difficult. A better collection 
method for large bug reports involving an increased 
numbers of users requires bug tracking systems (BTS). 
These systems allow end-users to report, describe, 
track, classify, and comment on bug reports, including  
feature requests. At present, systems like Bugzilla, 
Jira, Mantis, or Trac are widely used for bug reporting.  
In the early BTS usage, when a new bug report 
was submitted to a bug report repository, a special 
person called a bug triager screened and prioritized 
the report before assigning the suitable developers 
to address a particular bug. All processes in BTS 
are time-consuming because they are performed 
manually. Therefore, copious research has investigated  
methods to automatically identify the necessary  
information from bug reports to allow software bug 
fixing. Unfortunately, most studies of bug reports  
focused only on one issue, whereas more complete and 
comprehensive software bug fixing requires assessing 
multiple issues concurrently. This becomes a challenge 
in our study, which presents a method of identifying bug 
reports at a severe level from a bug report repository,  
together with finding their related bug reports to visualize  
the overall picture of a software problem domain. This 
method is called “mining bug report repositories” 
and consists of two main processing steps. The first 
step is the classification process, called “bug severity  
classification”. Classification technique involves  
experimenting with various supervised machine  
learning algorithms to model bug severity classifiers. 
Classifier models are used to automatically identify  
severe bug reports. The second step applies unsupervised  
learning to automatically assemble bug reports related  
to server bug reports with respect to a similarity  
measure. This process is called “threshold-based 
similarity analysis”. Then, these two processing steps 

are investigated using various algorithms to obtain the 
most suitable models of bug severity classification 
and threshold-based similarity analysis. Our study  
experimented on three open data sources as SeaMonkey,  
Firefox, and Core:Layout downloaded from Bugzilla. 
The most suitable models were compared with baseline 
methods. Result in this study showed that our method 
improved the performance of bug severity classification  
and assembly of related bug reports over the baseline 
methods and increased the chances of fixing bugs in 
the software.
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