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Abstract. A fractional – fuzzy optimal control problem is an optimal control problem in which it is governed 

by a fuzzy system of fractional differential equation. The aim of this paper is to introduce an analytically solution for 

such Bolza problems when the initial state is also fuzzy. For this purpose, first the problem is turned to two fractional 

optimal control problems by concept of 𝛼-cut and complex numbers. Then, we apply a new method to solve these 

fractional optimal control problems, analytically by applying a new Riccati differential equation determined from PMP. 

Indeed this Riccati equation transfer each mentioned fractional optimal control problem to a fractional differential 

system. We show that if the new system has close solution, one is able to obtain the analytical solution  of the fractional 

– fuzzy optimal control problems. A numerical simulation based on the new method is presented for  different values  of 

𝛼 and fractional order and the results are compered. In the last section, a numerical example of fractional-fuzzy optimal 

control problem is solved by the new method for different 𝛼 and 𝛽; and compared with the exact state; also, they are 

shown in figures for each cases. 
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Introduction. Many real events and dynamical systems have uncertainty in their inputs, outputs and manners; 

we know that fuzziness is a very adequate tool to present the suitable kind of uncertainly phenomena in the real world. 

In this regard, by involving fuzziness in the optimal control theory, problems can be demonstrated better with control 

parameters in real world as physical models and dynamical systems. In the last years, fractional calculus plays very 

important roles in mathematics, mechanics, and other subject. Many dynamical systems and events have much better 

efficiency when they planned by using fractional differential equations. 

We know that in optimal control theory, if a fuzzy differential equation in fractional order contains a control 

variable, then we have a fractional fuzzy optimal control problem (FFOCP). Zhu [20] applied Bellman’s optimal 

principle to make optimality conditions for fuzzy optimal control problems; Diamond and Kloeden [16] discussed on 

existence the solution of such control systems. Then, Park et.al [9] obtained the sufficient conditions for fuzzy control 
systems. Filev and Angelove [4] had solved fuzzy optimal control problems of nonlinear system with fuzzy 

mathematical programing. Z. Qin [22] solved the time-homogeneous fuzzy optimal control problems, discounted 

objective function. In [3] by considering the generalized differentiability, authors used new solutions for fuzzy two  

point boundary value problems for Hukuhara differentiability. Georgiou et.al [5] discussed nth-order fuzzy differential 

equations with initial value conditions. Nieto et.al [10] found numerical methods for solving fuzzy differential 

equations. Agrawal [1], used the Lagrange multipliers technique, to obtain necessary conditions for optimality of fuzzy 

optimal control problems. To continue, in this paper, we consider a fractional fuzzy control problem and turn it to two 

fractional control problems and then using fractional Pontryagin Maximum Principle to solve it. 

Consider the fractional-fuzzy control problem as following: 
𝑏 

Min: ∫ 𝑓0 (𝑡, �̃�(𝑡), �̃�(𝑡))𝑑𝑡 

𝑎 
(𝐷𝛽  �̃�)(𝑡) = 𝑓(𝑡, �̃�(𝑡), �̃�(𝑡)); 

S. to: { 𝑎+ 

�̃�(𝑎) = �̃�0 
(1) 

, 
 

where 𝑡 ∈ (𝑎, 𝑏) ⊆ ℝ, �̃� is a fuzzy bounded trajectory, �̃�0 is a fuzzy initial condition, �̃� is fuzzy control variable, 

𝑓 𝑎𝑛𝑑 𝑓0  are two given continues functions respect to 𝑡, �̃� and �̃�; here (𝐷𝛽  �̃�)(𝑡) denotes the left Riemann-Liouville 

derivative at order 𝛽 ∈ (0,1). We remind that Problem (1), that is fuzziness respect to 𝑥 and 𝑢 and also governed by a 

differential equation with fractional order, is a fractional – fuzzy optimal control problem. The aim of this paper, is to 

find a fuzzy solution for these kind of problems. This paper is organize as in section 2. 
Preliminaries and notations 

In this section, first, we remind some necessary definitions and theorems, which are required for fuzzy and fractional 

calculations. 

Definition 2.1: Signify 𝐸1 as the set of all functions 𝑥(𝑡) that satisfy in the following conditions: 

(i) 𝑥 is normal, i.e. there exist 𝑡 ∈ ℝ , such that 𝑥(𝑡) = 1; 

(ii) 𝑥 is fuzzy convex, i.e. ∀ 𝑠, 𝑡 ∈ ℝ and 𝜆 ∈ [0,1] , 𝑥(𝜆𝑠 + (1 − 𝜆)𝑡) ≥ min{𝑥(𝑠), 𝑥(𝑡)}; 

(iii) 𝑥 is upper semi-continuous; 

(iv) 𝑐𝑙 {𝑠 ∈ ℝ|𝑥(𝑠) > 0} , is compact in ℝ. 

Definition 2.2: The 𝛼-level set of a fuzzy number 𝑥 ∈ 𝐸1 where 0 ≤ 𝛼 ≤ 1, is denoted by 𝑥𝛼 and is defined as: 
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𝛼 

𝑗=1 

{𝑠 ∈ ℝ|𝑥(𝑠) ≥ 𝛼}, 0 < 𝛼 ≤ 1; 
𝑥𝛼  = { 

𝑐𝑙 {𝑠  ∈ ℝ|𝑥(𝑠)  > 0},    𝛼 = 0. 
(2)

 

If 𝑥 ∈ 𝐸1 , then 𝑥 is fuzzy convex, so 𝑥𝛼 is closed and bounded in ℝ, i.e. 𝑥𝛼 ≡ [ 𝑥𝛼, 𝑥𝛼], where 𝑥𝛼 = inf {𝑠 ∈ 
ℝ|𝑥(𝑠) ≥ 𝛼} > −∞ and 𝑥𝛼 = sup{𝑠 ∈ ℝ|𝑥(𝑠) ≥ 𝛼} < ∞. 

Lemma 2.3: Let 𝐼 = [0,1] and assume that 𝑎: 𝐼 → ℝ and 𝑏: 𝐼 → ℝ satisfy the following conditions: 

(i) 𝑎 and 𝑏 are bounded non-decreasing functions; 

(ii) 𝑎(1) ≤ 𝑏(1); 

(iii) For 0 < 𝑘 ≤ 1 , lim𝛼→𝑘− 𝑎(𝛼) = 𝑎(𝑘) and  lim𝛼→𝑘−  𝑏(𝛼) = 𝑏(𝑘).  

(iv) lim𝛼→0+ 𝑎(𝛼) = 𝑎(0) and lim𝛼→0+ 𝑏(𝛼) = 𝑏(0). 

Then,  𝜂: 𝐼  → ℝ   defined  by  𝜂(𝑥) = sup{𝛼|𝑎(𝛼) ≤ 𝑥  ≤ 𝑏(𝛼)}   is  a  fuzzy  number   with   parameterization  given by 
{(𝑎(𝛼), 𝑏(𝛼), 𝛼)|0 ≤ 𝛼  ≤ 1};  moreover,  if 𝜂 : 𝐼  → ℝ    is   any   fuzzy   number   with   parameterization   given by 

{(𝑎 (𝛼), 𝑏 (𝛼), 𝛼)|0 ≤ 𝛼 ≤ 1}, then, functions 𝑎 (𝛼) and 𝑏 (𝛼) satisfy the above conditions (i) - (iv). 

Proof: see [16]. 

 
Lemma 2.4: Assume each entry of the vector 𝑥 be a fuzzy number at the time instant t where [8, 14]: 
𝑥𝑘 = [ 𝑥 𝑘 , 𝑥 

𝑘
], 𝑘 = 1,2, … , 𝑛. (3) 

𝛼 𝛼 𝛼 

Then, the evaluation of the system: 

{  �̇̃�
(𝑡) = 𝐴⨀�̃�(𝑡); 

�̃�(𝑡0) = �̃�0 , 

 
(4) 

where �̃� is a fuzzy function, �̃� is a fuzzy initial condition, 𝐴 = [𝑎 ] , 𝑎 ∈ ℝ and �̇̃�  = 𝑑�̃� = [𝑑�̃�1 , 𝑑�̃�2 , … , 𝑑�̃�𝑛]𝑇, can 
    

0 𝑖𝑗  𝑚×𝑛 𝑖𝑗 𝑑𝑡 𝑑𝑡 𝑑𝑡 𝑑𝑡 

be described by 2𝑛 differential equations for the endpoints of the intervals (3). The equations of the intervals are as 
follows: 

  �̇�𝑘 (𝑡) = 𝑚𝑖𝑛 {(𝐴𝑦)𝑘: 𝑦𝑗 ∈ [𝑥𝛼 
 

𝑗(𝑡), 𝑥𝛼 
𝑗
(𝑡)]} ; 

 
�̇� 𝑘(𝑡) = 𝑚𝑎𝑥 {(𝐴𝑦)𝑘: 𝑦𝑗 ∈ [𝑥 𝑗(𝑡), 𝑥 

𝑗(𝑡)]} ; 
𝛼   𝑥𝛼(𝑡0) = 𝑥𝛼0 ; 

𝛼 𝛼 

    
{𝑥𝛼(𝑡0) 

 
 

= 𝑥𝛼0 , 
(5) 

where (𝐴𝑦)𝑘 ≔ ∑𝑛 𝑎𝑘𝑗 𝑦𝑗 is the kth row of 𝐴𝑢. 

Proof: [14]. 
Since the vector field in (1) is linear, the following rule applies in (5): 

𝑛 

 �̇�𝑘 (𝑡) = ∑ 𝑎  𝑤𝑗  , 

 
where 

𝛼 𝑘𝑗 

𝑗=1 

 

 
and 

 𝑥𝛼𝑗(𝑡) , 𝑎𝑘𝑗 ≥ 0 ; 
𝑤𝑗 = { 𝑗 

𝑥𝛼  (𝑡) , 𝑎𝑘𝑗 < 0 

𝑛 

�̇� 𝑘(𝑡) = ∑ 𝑎 𝑧𝑗 , 

 
where 

𝛼 𝑘𝑗 

𝑗=1 

 𝑥𝛼𝑗(𝑡), 𝑎𝑘𝑗  < 0 ; 
𝑧𝑗  = {    𝑗 

𝑥𝛼  (𝑡) , 𝑎𝑘𝑗  ≥ 0 . 
Here, we have a characterization for an important class of fuzzy controlled system. Consider the following fuzzy linear 

controlled system with fuzzy boundary condition: 

{
�̇̃�(𝑡) = 𝐴⨀�̃�(𝑡)⨁𝐶⨀�̃�(𝑡); 
�̃�(𝑡0) = �̃�0, 

As indicated in [13], it is possible to represent a fuzzy number in a more compact form by moving to the field of 

complex number by defining new complex variables as follows; 
𝑥𝑘 = 𝑥  𝑘(𝑡) + 𝑖𝑥 

𝑘
(𝑡), 𝑘 = 1,2, … , 𝑛. (6) 

𝛼 𝛼 𝛼 

Now, we have the following theorem in which its proof can be find in [14]. 
Theorem 2.5: Let A and C be 𝑛 × 𝑛 and 𝑛 × 𝑚 matrices respectively. Then for a given �̃�0, the fuzzy controlled system 

 

 
has the following solution: 

{�̇̃�
(𝑡) = 𝐴⨀�̃�(𝑡)⨁𝐶⨀�̃�(𝑡); 

�̃�(𝑡0) = �̃�0 , 
(7) 
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𝑏− 

𝑎+ 

𝑏− 

�̇�𝛼 (𝑡) + 𝑖�̇� 𝛼  (𝑡) = 𝐵 (𝑥   𝛼   (𝑡) + 𝑖𝑥𝛼   (𝑡)) + 𝐷 ( 𝑢𝛼   (𝑡) + 𝑖𝑢𝛼   (𝑡)) ; (8) 
 

{ 

 𝑥𝛼 (𝑡0) + 𝑖𝑥𝛼 (𝑡0) = 𝑥𝛼0 + 𝑖𝑥𝛼0 , 
where the elements of matrices B and D are determined from those of A and C as: 

𝑏𝑖𝑗 = {
𝑒𝑎𝑖𝑗 , 𝑎𝑖𝑗  ≥ 0; 

𝑔𝑎𝑖𝑗 , 𝑎𝑖𝑗  < 0; 
𝑑𝑖𝑗 = {

𝑒𝑐𝑖𝑗 , 𝑐𝑖𝑗  ≥ 0; 

𝑔𝑐𝑖𝑗 , 𝑐𝑖𝑗  < 0, 
(9) 

that for every 𝑎 + 𝑏𝑖 ∈ ℂ (the complex numbers field), the function 𝑒 and 𝑔 are defined as: 

𝑒: 𝑎 + 𝑏𝑖   →  𝑎 + 𝑏𝑖, 𝑔: 𝑎 + 𝑏𝑖   →  𝑏 + 𝑎𝑖. (10) 

Definition 2.6: For a given 𝛼 ∈ [0,1] and arbitrary �̃� = ( 𝑥𝛼 , 𝑥𝛼), 𝑦 ̃ = (𝑦𝛼 , 𝑦
𝛼
)  if  𝑘  be  a  real  number,  we  define 

addition �̃� + 𝑦 ̃, subtraction �̃� − 𝑦 ̃and scalar multiplication by 𝑘 as [8, 13]: 

�̃� + �̃� = (𝑥   𝛼 + 𝑦𝛼 , 𝑥𝛼 + 𝑦
𝛼

) ; �̃� − �̃� = ( 𝑥𝛼 − 𝑦𝛼 , 𝑥𝛼 − 𝑦
𝛼

) ; 

𝑘 ⊙ �̃�         = {
(𝑘𝑥𝛼, 𝑘𝑥𝛼) , 𝑘 ≥ 0; 

 

(𝑘𝑥𝛼, 𝑘𝑥𝛼) , 𝑘  < 0. 
Note that as mentioned in many references like [7, 13] we can rewrite any fuzzy number by an interval using 𝛼-level 

parameterization. Assume that �̃� = (𝑝, 𝑞, 𝑟) be a triangular fuzzy number; one can show this number by 𝛼-level 

parameterization, as follow [14]: 

�̃�                =  [𝑞𝛼 + 𝑝(1 − 𝛼), 𝑞𝛼 + 𝑟(1 − 𝛼)], 𝛼 ∈ [0,1]. (11) 
 

Fuzzy Riemann-Liouville differential 
Regarding the governing system of our optimal control problem (1), this section, is devoted to present the definition of 

fuzzy Riemann-Liouville integrals and derivatives by Hukuhara difference. Memorize that 𝐶𝐹[𝑎, 𝑏] is the space of all 

continuous fuzzy-valued functions on [𝑎, 𝑏] and 𝐿𝐹[𝑎, 𝑏] is the space of all Lebesque integrable fuzzy-valued functions 

on the bounded interval [𝑎, 𝑏] ⊂ ℝ. 

Definition 3.1: Let 𝑓 ∈ 𝐶𝐹[𝑎, 𝑏] ∩ 𝐿𝐹[𝑎, 𝑏]. Then fuzzy Riemann-Liouville integral of fuzzy-valued function 𝑓 is 
defined as following [2, 19]: 

 

(𝐼𝛽 𝑓)(𝑥) = 1 ∫
𝑥 𝑓(𝑡)𝑑𝑡 ,  0 < 𝛽  ≤ 1; (12) 

𝑎+ 
 

Γ(𝛽) 
 

𝑎 (𝑥−𝑡)1−𝛽  
 

(𝐼𝛽 𝑓)(𝑥) = 1 ∫
𝑏 𝑓(𝑡)𝑑𝑡 ,  0 < 𝛽  ≤ 1; (13) 

𝑏− 
 

Γ(𝛽) 
 

𝑥 (𝑥−𝑡)1−𝛽  
 

where (𝐼𝛽 𝑓)(𝑥) and (𝐼𝛽 𝑓)(𝑥) are called respectively the left-sided and the right-sided Riemann-Liouville integral of 
𝑎+ 𝑏− 

the function 𝑓 of order 𝛽. 

Remark that the 𝛼-cut representation of fuzzy-valued function 𝑓 ∈ 𝐶𝐹[𝑎, 𝑏] ∩ 𝐿𝐹[𝑎, 𝑏] is shown by 𝑓(𝑥; 𝛼) = 

[𝑓(𝑥; 𝛼), 𝑓(𝑥; 𝛼)] for 0 ≤ 𝛼 ≤ 1, where 𝑓(𝑥; 𝛼) and 𝑓(𝑥; 𝛼) are defined as lower and upper bounds of 𝛼-level set of 𝑓, 

respectivly. 

Theorem 3.1: Let 𝑓 ∈ 𝐶𝐹[𝑎, 𝑏] ∩ 𝐿𝐹[𝑎, 𝑏] is a fuzzy-valued function. The fuzzy Riemann-Liouville integral of a fuzzy- 
valued function f can be expressed as follow: 

(𝐼𝛽  𝑓)(𝑥; 𝛼)  = [(𝐼𝛽  𝑓) (𝑥; 𝛼), (𝐼𝛽  𝑓)(𝑥; 𝛼)] , 0 ≤ 𝛼  ≤ 1, 0 < 𝛽 ≤ 1; (14) 

where 

𝑎+ 𝑎+   𝑎+ 

(𝐼𝛽 𝑓) (𝑥; 𝛼) = 1 ∫
𝑥  𝑓(𝑡;𝛼)𝑑𝑡  

; (𝐼
𝛽 
𝑓)(𝑥; 𝛼) = 

1
 

 

 
 

∫
𝑥 𝑓(𝑡;𝛼)𝑑𝑡 

.
 

 

𝑎+   

Proof: See [2]. 

 

Γ(𝛽) 𝑎 (𝑥−𝑡)1−𝛽  𝑎+ 
 

Γ(𝛽) 𝑎 (𝑥−𝑡)1−𝛽  

 

We remind that (𝐼𝛽 𝑓)(𝑥; 𝛼) can be defined like (14) as well. 

Now, we are going to define the fuzzy Riemann-Liouvelle derivation of order 0 < 𝛽 ≤ 1 for fuzzy-valued function 𝑓. 
Definition  3.2:  Let  ∈ 𝐶𝐹[𝑎, 𝑏] ∩ 𝐿𝐹[𝑎, 𝑏]  ,  𝑥   ∈ (𝑎, 𝑏) ⊆ ℝ  and  denote: Φ(𝑥) ≡ 1 ∫

𝑥 𝑓(𝑡) . Then 𝑓 is called 
0 Γ(1−𝛽) 

 

𝑎 (𝑥−𝑡)𝛽 

Riemann-Liouville H-differentiable of order 0 < 𝛽 ≤ 1 at 𝑥0, if there exist an element (𝐷𝛽 𝑓)(𝑥0) ∈ 𝐸, such that for 

sufficiently small ℎ > 0, we have [19]: 

(𝐷
𝛽 
𝑓)(𝑥 ) = lim 

Φ(𝑥0 + ℎ) ⊖ Φ(𝑥0) 
= lim 

Φ(𝑥0) ⊖ Φ(𝑥0 − ℎ) 
  

𝑎+ 0 
ℎ→0+ ℎ ℎ→0+ ℎ 

Theorem 3.2: Let 𝑓 ∈ 𝐶𝐹[𝑎, 𝑏] ∩ 𝐿𝐹[𝑎, 𝑏] , 𝑥0 ∈ (𝑎, 𝑏) and 0 < 𝛽 ≤ 1, then: 
(𝐷𝛽    𝑓)(𝑥; 𝛼) = [(𝐷𝛽   𝑓) (𝑥; 𝛼), (𝐷𝛽    𝑓)(𝑥; 𝛼)] , 0 ≤ 𝛼  ≤ 1; 

𝑎+ 𝑎+     𝑎+ 

also, we have the similar results for (𝐷𝛽 𝑓)(𝑥; 𝛼). 

Proof: See [2]. 
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𝑎+ 

𝑎+ 

𝑎+ 

𝑎+ 

Due to our main goal about fractional – fuzzy optimal control problems, in the sequence we discuss about the fractional 
Pontryagin’s systems. Consider the following fractional optimal control problem: 

Min: S(𝑥(𝑡 ), 𝑡 ) + ∫𝑡1 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 (15_A) 
1 1 𝑡0     

0 

S. to: { 
(𝐷𝛽 𝑥)(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)); 

𝑥(𝑡0) = 𝐴, 
 

where 𝐴 is a given real number. A necessary condition for (𝑥∗, 𝑢∗) to be a solution of (15_A) is that there exist a 
function 𝜆 such that the following fractional Pontryagin’s system holds [12, 17, 18]: 
𝐷𝛽 𝑥 = 𝜕𝐻 (𝑥, 𝑢, 𝜆 , 𝑡); 

 

𝑎+ 𝜕𝜆 
  𝐷𝛽 𝑤 = 𝜕𝐻 (𝑥, 𝑢, 𝜆 , 𝑡); 

 

𝑏− 𝜕𝑥 (15_B) 
𝜕𝐻 

(𝑥, 𝑢, 𝜆 , 𝑡) = 0; 
𝜕𝑢 

{(𝑥(𝑡0), 𝜆 (𝑡1)) = (𝐴, 0), 
where 𝐻(𝑥, 𝑢, 𝜆 , 𝑡) = 𝑓0(𝑡, 𝑥, 𝑢) + 𝜆 𝑓(𝑥, 𝑢, 𝑡) is the Hamiltonian function of (15). The states problem for fixed final 
point and free final point are 𝛿𝑥(𝑡 ) = 0 and (𝜕𝑠 − 𝜆 ) (𝑡 ) = 0, respectivly. 

 

1 𝜕𝑥 1 

 
Fractional Fuzzy Optimal Control Problem 

Based on the above discussions, we are going to propose a solution method for FFOCPs. Consider the following 

fractional-fuzzy optimal control problem: 
 

Min ∫𝑏 𝑓 (𝑡, �̃�(𝑡), �̃�(𝑡))𝑑𝑡 (16) 
𝑎 

S. to: { 

0 

(𝐷𝛽  �̃�)(𝑡) = 𝑓(𝑡, �̃�(𝑡), �̃�(𝑡)); 

�̃�(𝑎) = �̃�0 = (𝑝, 𝑞, 𝑟), 
where the initial condition, �̃�0 = (𝑝, 𝑞, 𝑟) is a triangular fuzzy number and 0 < 𝛽 ≤ 1 . 
By using the concept of 𝛼-cut, Theorem 3.2 and parameterization of a fuzzy number, for each 0 ≤ 𝛼 ≤ 1 we can write 

problem (16) in complex space as follows: 
Min: ∫𝑏 𝑓 (𝑡, 𝑥(𝑡; 𝛼), 𝑢(𝑡; 𝛼)) + 𝑖𝑓 (𝑡, 𝑥(𝑡; 𝛼), 𝑢(𝑡; 𝛼))𝑑𝑡 

𝑎    0 0 

S.to: (17) 
(𝐷𝛽 𝑥 )(𝑡; 𝛼) + 𝑖(𝐷𝛽 𝑥)(𝑡; 𝛼) = 𝑓 (𝑡, 𝑥 (𝑡; 𝛼), 𝑢 (𝑡; 𝛼)) + 𝑖𝑓(𝑡, 𝑥(𝑡; 𝛼), 𝑢(𝑡; 𝛼)); 

𝑎+ 𝑎+ 
 

 𝑥(𝑎; 𝛼) + 𝑖𝑥(𝑎; 𝛼) = (𝑞𝛼 + 𝑝(1 − 𝛼)) + 𝑖(𝑞𝛼 + 𝑟(1 − 𝛼)); 
{ 

Based on concept of complex number, the new description of the problem (17) can be turned in to two problems (18) 

and (19): 
Min: ∫𝑏 𝑓 (𝑡, 𝑥(𝑡; 𝛼), 𝑢(𝑡; 𝛼)) 𝑑𝑡 (18) 

𝑎    0 

 
 

and 

S. to: { 
(𝐷𝛽 𝑥 )(𝑡; 𝛼) = 𝑓 (𝑡, 𝑥(𝑡; 𝛼), 𝑢(𝑡; 𝛼)) ; 

 𝑥(𝑎; 𝛼) = (𝑞𝛼 + 𝑝(1 − 𝛼)), 

Min: ∫𝑏 𝑓 (𝑡, 𝑥(𝑡; 𝛼), 𝑢(𝑡; 𝛼))𝑑𝑡 (19) 
𝑎    0 

(𝐷𝛽 𝑥)(𝑡; 𝛼) = 𝑓(𝑡, 𝑥(𝑡; 𝛼), 𝑢(𝑡; 𝛼)); 
S. to: { 𝑎+ 

𝑥(𝑎; 𝛼) = (𝑞𝛼 + 𝑟(1 − 𝛼)). 
By using these two problems and solving them, for any given 𝛼 we generate the optimal pairs (𝑥∗(𝑡; 𝛼), 𝑢∗(𝑡; 𝛼)) and 

(𝑥∗(𝑡; 𝛼), 𝑢∗(𝑡; 𝛼)) for (18) and (19) respectively; therefore, a solution for (16) can be produced in 𝛼-cut form as 

follows: 

�̃�∗ (𝑡, 𝛼) = [  𝑥∗(𝑡; 𝛼), 𝑥∗(𝑡; 𝛼)]; �̃�∗(𝑡, 𝛼) = [  𝑢∗(𝑡; 𝛼), 𝑢∗(𝑡; 𝛼)]. 
Note 4.1: Consider the Cauchy type problem: 

(𝐷𝛽 𝑦)(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 0 < 𝛽 ≤ 1 
{ 𝑎+ 

(𝐼1−𝛽𝑦)(𝑎) = 𝑏, 𝑏 ∈ 𝑅, 
(20) 

that 𝑓(𝑥, 𝑦(𝑥)) is a real-valued continuous function in domain 𝐺 ⊂ 𝑅 × 𝑅 such that 𝑠𝑢𝑝(𝑥,𝑦)∈𝐺|𝑓(𝑥, 𝑦)| ≤ ∞ and it 

satisfies the Lipschitz condition. The solution of fractional system (20) is given in [2] as: 

𝑏(𝑥 − 𝑎)𝛽−1
 

𝑥 
1 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡 

𝑦(𝑥) = Γ(𝛽) 
+ 
Γ(𝛽) 

∫ 
(𝑥 − 𝑡)1−𝛽 

𝑎 

, 𝑥  > 𝑎 , 0 < 𝛽 ≤ 1. (21) 

Also, consider the following Cauchy type problem for linear differential equation: 
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𝑎+ 

𝑡0 

𝑡0 

𝑡1 

{(𝐷𝛽 𝑦)(𝑥) − 𝜆𝑦(𝑥) = 𝑓(𝑥); 

𝑦(𝑎) = 𝑏; 

 
(22) 

then the solution of this system is: 
𝑦(𝑥) = 𝑏𝑥𝛽−1𝐸 (𝜆(𝑥 − 𝑎)𝛽) + ∫𝑥(𝑥 − 𝑡)𝛽−1 𝐸 

 
(𝜆(𝑥 − 𝑡)𝛽)𝑓(𝑡)𝑑𝑡 (23) 

𝛽,𝛽 𝑎 𝛽,𝛽 

where 𝐸𝛽,𝛽 is Mittag-Leffler function, that in general form it is defined by [2]: 

𝐸 (𝑧) ≔ ∑∞
 𝑧𝑘 , 𝑧 ∈ ℂ; (24) 

𝛼,𝛽 
 

𝑘=0 Γ(𝛼𝑘+𝛽) 

Theorem 4.2: Let f(x) and g(x) be analytic on [a, b]. Then 
∞ 

Dα (fg) = ∑ 
α

 α−kf)g(k) , α ∈ ℝ1
 

 
𝛼 

where   (
𝑘

) = 

Proof: see [2]. 

 
Γ(𝛼+1) 

.
 

Γ(𝛼−𝑘+1)Γ(𝑘+1) 

a+ 

k=0 

(k)(Da+ 

 

Riccati differential equation for fractional optimal control 

In this section, we are going to present a new method for solving a fractional optimal control problem by applying a 

Riccati differential equation based on fractional minimal principle of Pontryagin [17, 18]. To this end, consider the 

fractional optimal control as following: 
𝑡1 

𝑚𝑖𝑛 𝐽 = 
1 
𝑆(𝑡 )𝑥2(𝑡 ) + 

1 
∫{𝑃(𝑡). 𝑥2(𝑡) + 2𝑞(𝑡). 𝑥(𝑡). 𝑢(𝑡) + 𝑟(𝑡). 𝑢2(𝑡)}𝑑𝑡 

  

2 1 1 2 
𝑡0 

S. to: (25) 

(𝐷𝛽 𝑥)(𝑡) = 𝑎(𝑡)𝑥(𝑡) + 𝑏(𝑡)𝑢(𝑡); 

𝑥(𝑡0) = 𝑥0. 

The Hamiltonian of (25) can be shown: 
𝐻  = 1 𝑃(𝑡)𝑥2  + 𝑞(𝑡). 𝑥(𝑡). 𝑢(𝑡) + 1 𝑟(𝑡). 𝑢2(𝑡) + 𝜆(𝑎(𝑡)𝑥(𝑡) + 𝑏(𝑡)𝑢(𝑡)); (26) 

2 2 

Then, based on the fractional Pontryagin system in (15_B), we have: 
(𝐷𝛽 𝜆)(𝑡) = 𝜕𝐻  = 𝑝𝑥 + 𝑞𝑢 +  𝜆𝑎 (27) 

 

𝑡0 𝜕𝑥 

 
(28) gives us: 

𝜕𝐻  
= 𝑞𝑥 + 𝑟𝑢 + 𝜆𝑎 = 0 (28) 

𝜕𝑢 

 

𝑢  = −𝑟−1(𝑞𝑥 − 𝜆𝑏) (29) 
Now, by applying (29) in the differential equation of problem (25), we have: 

𝐷𝛽 𝑥 = (𝑎 − 𝑟−1𝑞)𝑥 − 𝑟−1𝜆𝑏2 (30) 

In the similar way, we obtain:  
𝐷𝛽 𝜆 = (𝑝 − 𝑟−1𝑞2)𝑥 + (−𝑟−1𝑞𝑏 + 𝑎) 𝜆 (31) 

Now, let 𝜆(𝑡1) = 𝑆(𝑡1)𝑥(𝑡1). Since the above system is linear, we can display the solution of it by final solution; it 

means that we can show it as following: 

(
𝑥(𝑡) 𝑥(𝑡1) 

𝜆(𝑡)
) =  𝜙(𝑡, 𝑡1) (

𝜆(𝑡1)
) (32) 

where 𝜙 is a matrix in dimension 2 × 2 and dependent to t; now, assume that: 
 

𝜙(𝑡, 𝑡  ) =  (
𝐹(𝑡, 𝑡1)    𝐺(𝑡, 𝑡1)

); (33) 

 
therefor, from (32) we have: 

1 𝐿(𝑡, 𝑡1) 𝑀(𝑡, 𝑡1) 

𝑥(t)  = F𝑥(𝑡1) + 𝐺𝜆(𝑡1) (34) 

𝜆(𝑡) = L𝑥(𝑡1) + 𝑀𝜆(𝑡1) (35) 

Now by use the assumption 𝜆(𝑡1) = 𝑠(𝑡1)𝑥(𝑡1) we obtain: 

𝑥(t)  = (F − GS)𝑥(𝑡1); (36) 

𝜆(𝑡) = (L − MS)𝑥(𝑡1) (37) 

By assuming 𝑑𝑒𝑡(F − GS) ≠ 0, from (36) and (37) we have: 

𝜆(t)  = (L − MS)(F − GS)−1𝑥(𝑡). (38) 

Now, let 

so 

 

𝑘(𝑡) =  (L − MS)(F − GS)−1; (39) 
 

𝜆(t) = 𝑘(𝑡)𝑥(𝑡) (40) 

According to Theorem (4.2) for 0 < 𝛽 < 1, we have: 

(Dβ +λ)(t) = (
β

) (Dβ +k)(t). 𝑥(t) = (Dβ +k)(t). 𝑥(t) (41) 
𝑡0 0 𝑡0 𝑡0 
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𝑡 

𝑡 

𝑡 

0+ 

0+ 

{ 0+ 

By substituting (31) and (32) in (41) we reach to the following equation: 

(𝑝 − 𝑟−1. 𝑞2). 𝑥(𝑡) + (−𝑟−1. 𝑞. 𝑏 + 𝑎). 𝜆(𝑡)  = (Dβ +k)(t). 𝑥(t); (42) 
0 

then replacing 𝜆 in (42) by (40) gives: 

(𝑝 − 𝑟−1. 𝑞2). 𝑥(𝑡) + (−𝑟−1. 𝑞. 𝑏 + 𝑎). 𝑘(𝑡). 𝑥(𝑡) = (Dβ +k)(t). 𝑥(t) 
0 

Because we are working for a nontrivial solution (𝑥 ≠ 0), we obtain the Riccati differential equation to solve: 

(𝑝 − 𝑟−1. 𝑞2) + (−𝑟−1. 𝑞. 𝑏 + 𝑎). 𝑘(𝑡) = (Dβ +k)(t). (43) 
0 

Now, regarding the formula (32), in 𝑡 = 𝑡1we must have = 𝐼2×2 ; so we must have 𝐹 = 𝑀 = 1 and 𝐿 = 𝐺  = 0. Hence, 

by using (39) the initial condition 𝑘(𝑡1) = 𝑠(𝑡1) is obtained. Therefore, the function 𝑘(𝑡) can be determined by solving 
the following differential system that was discussed in note 4.1: 

(Dβ +𝑘) (t) = (𝑝 − 𝑟−1. 𝑞2) + (−𝑟−1. 𝑞. 𝑏 + 𝑎). 𝑘(𝑡) 
{ 𝑡0 

𝑘(𝑡1) = 𝑠(𝑡1) 
(44) 

By calculating 𝑘(𝑡) from (44) and substituting it in the (40), one can determine the 𝜆(𝑡) according to 𝑥(𝑡). Next, this 
fact make (30) a fractional differential equation with an initial condition; By solving it we can compute the optimal 
trajectory for problem (25); then, the formula (29) give us the optimal control of it. 

 

Numerical Example 
Consider the fractional-fuzzy optimal control problem: 

1 

Min:   
1 
�̃�2(𝑡  ) + 

1 
∫(�̃�(𝑡)2  + 4�̃�(𝑡). �̃�(𝑡) + �̃�(𝑡)2)𝑑𝑡 

  

2 1 2 
0 

S. to: { (𝐷𝛽  �̃�)(𝑡) = �̃�(𝑡) + �̃�(𝑡); (45) 

�̃�(0)  = (0,1,2), 

where �̃�(𝑡) is fuzzy trajectory variable, �̃�(𝑡) is fuzzy control variable, 𝑡 ∈ [0,1] and 0 < 𝛽 ≤ 1. Based on (17), first we 

demonstrate the problem in complex space by using 𝛼-cut concept. According to the problems (18) and (19), we divide 
problem (45) in to the following sub-problems: 

 

1 

Min: 
1 
𝑥(𝑡 ; 𝛼)2 + 

1 
∫(𝑥(𝑡; 𝛼)2 + 4𝑥(𝑡; 𝛼). 𝑢(𝑡; 𝛼) + 𝑢(𝑡; 𝛼)2)𝑑𝑡 

  

 
     2 1 2 

0 

 

 
and 

S. to: { 
(𝐷𝛽 𝑥)(𝑡; 𝛼) = 𝑥(𝑡; 𝛼) + 𝑢(𝑡; 𝛼); 

 𝑥(0; 𝛼) = 𝛼. 
(46) 

1 

Min: 
1 
𝑥(𝑡 ; 𝛼)2 + 

1 
∫(𝑥(𝑡; 𝛼)2 + 4𝑥(𝑡; 𝛼). 𝑢(𝑡; 𝛼) + 𝑢(𝑡; 𝛼)2)𝑑𝑡 

 

2 1 2 
0 

(𝐷𝛽 𝑥)(𝑡; 𝛼) = 𝑥(𝑡; 𝛼) + 𝑢(𝑡; 𝛼); 
S. to:      

𝑥(0; 𝛼) = 𝛼 + 2(1 − 𝛼). 
(47) 

 

First, for testing the method, let 𝛼 = 𝛽 = 1. Then we have the optimal control problem as below and we solve it by 

Riccati differential equation that is presented by Pinch in [17] for optimal control problem with ordinary differential 
equation: 

 

1 

Min: 
1 
𝑥(𝑡 )2 + 

1 
∫(𝑥(𝑡)2 + 4𝑢(𝑡). 𝑥(𝑡) + 𝑢(𝑡)2)𝑑𝑡 

  

2 1 2 
0 

�̇�(𝑡) = 𝑥(𝑡) + 𝑢(𝑡); 
S. to: {

𝑥(0) = 1. 
(48) 

The optimal trajectory and optimal control are shown in Figure 1: 
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𝑡 

0+ 

+ 

  
Figure 1: The optimal trajectory and optimal control for problem (45) where 𝛼 = 𝛽 = 1 

 
Now, we try to solve (46) by the new method presented in this paper; by applying the method, we reach to (44) in the 
following form: 

(Dβ 𝑘) (t) = −1 − 𝑘(𝑡) 
{ 0 

𝑘(1) = 1 
(49) 

Then, this fractional system can be solved by RUIM method [7] and the following solution is obtained: 

𝑘(𝑡) = −2 + 2𝐸𝛽(−𝑡𝛽), (50) 

that for 𝛽 = 1 we have:  

𝑘(𝑡) = −2 + 3𝑒−𝑡. (51) 

Therefore, from (40) we obtain: 

𝜆(t)  = (−2 + 2𝑒−𝑡)𝑥(𝑡). (52) 

By substituting (52) in (30). We have the initial condition 𝑥(0; 𝛼) = 𝛼. One can obtain the optimal trajectory of this 

problem by solving the following fractional system: 
𝐷𝛽 𝑥(𝑡; 𝛼) = (1 − 2𝑒−𝑡). 𝑥(𝑡; 𝛼) 

{ 0
+ 

 𝑥(0; 𝛼) = 𝛼. 
(53) 

Similarly, we have the same fractional equation for 𝑥(𝑡) which is the same as (53): 

𝐷𝛽 𝑥(𝑡; 𝛼) = (1 − 2𝑒−𝑡). 𝑥(𝑡; 𝛼) 
{   
𝑥(0; 𝛼) = 𝛼 + 2(1 − 𝛼). 

 

(54) 

For 𝛽 = 𝛼 = 1, we have: 

𝑥∗(𝑡) = 𝑥 (𝑡) = 𝑥(𝑡) = 

−(−(1/3) ∗ 𝑒𝑥𝑝(−3/𝑒𝑥𝑝(𝑡))/(−1 + 3/𝑒𝑥𝑝(𝑡)) + (1/6) ∗ (𝑒𝑥𝑝(3) ∗ 𝑒𝑥𝑝(−3) − 3)/𝑒𝑥𝑝(3)) ∗ (𝑒𝑥𝑝(3 ∗ 𝑒𝑥𝑝(−𝑡) + 
𝑡) − 3 ∗ 𝑒𝑥𝑝(3 ∗ 𝑒𝑥𝑝(−𝑡))) + 2. (55) 

 
The solutions of two methods are shown in the figure 2 for comparing with each other. The red curve is the optimal 
trajectory of problem (48) that is solved by Riccati differential equation method in [17] and the blue curve is  the 

formula (55). 
 

Figure 2. Comparing the Optimal trajectories by two methods for 𝛼 = 𝛽 = 1 
 

By using formula (25) and replacing 𝜆(𝑡) from (52) in it, we have: 

𝑢∗  =  (−4 + 2𝑒−𝑡)𝑥∗(𝑡). (56) 
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Now, we apply 𝑥∗(𝑡) from (55) in (56) to determine the optimal control for  𝛼 = 𝛽 = 1, that is shown  in figure 3 by  
blue curve; and the red curve is the optimal control that is shown in figure 1. 

 
 

Figure 3. Comparing the optimal controls by two methods for 𝛼 = 𝛽 = 1 
 

Note that the original problem is free at end point. In this part of our example, we let 𝛽 = 0.5 and obtain optimal 

trajectories for different values of 𝛼 by (53) and (54); also, those are shown in figure 4. 
 

Figure 4. The optimal trajectories for 𝛽 = 0.5 and different values of 𝛼 
 

In the figure 4, the blue cure is optimal trajectory for 𝛼 = 1, the green and red curves are upper and lower optimal 

trajectory for 𝛼 = 0.9 and the orange and yellow curves are upper and lower optimal trajectory for 𝛼 = 0.8. As figure 

shown when the value of 𝛼 comes close to 1, the upper and lower optimal trajectories curves come closer to each other; 

in 𝛼 = 1 the upper and lower curves of optimal trajectories overlap on each other which is adapted with the obtained 

theoretical solution in (55). 

Conclusion. In this paper, we proposed a new analytical method for fractional fuzzy optimal control problem 

with fuzzy initial condition. Also based on α-level concepts in fuzzy mathematics, by applying minimal principle of 
pontriyagin, the method shows how the optimal solution is determined via a Riccati differential equation. Therefore, the 

method is able to characterize the solution analytically while the other methods look for approximation numerical one. 

One can easily obtain the optimal trajectory and optimal control by this method. In the test example, it is shown that 

when the new method is applied for 𝛼 = 𝛽 = 1,  the resulted optimal trajectory and control by the method is very near  

to exact solution. Also, when the values of 𝛼 come close to one, the resulted curves come closer and closer to the exact 

solution, this fact indicates the convergence and exactness of the proposed method. 
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POST-COLONIAL READING OF OTHELLO'S PLAY 
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Abstract. On the horizon of literary criticism today, text just does not have a general meaning, but any text is  

in a state of waiting to read readers and reproduce new meanings. Shakespeare's texts are texts that are repeatedly 

presented with different types of readings from different perspectives, and each time a new reproduction of them is 
obtained. The present research seeks to present a new reading of Shakespeare's Othello drama using post-colonial 

studies. The Othello play has qualities that can be considered postcolonial. Therefore, the present paper, with a post- 

colonial approach, reciprocates Edward Said views with a qualitative, analytical, and descriptive approach to reading 

this play, referring to a large historical and political structure. 

Keywords: Post-Colonial Studies-Edward Said-Othello-William Shakespeare. 

 
Introduction. In the world of literature and art today, no longer has any meaning for any work of any kind. 

Hence, every text can be read by countless approaches. Each reader engages in a different way, depending on the 

approach it has adopted, and reproduces the meanings corresponding to that reading. Basically, the text opens the 

window to the reader to read another text. Shakespeare, with its diverse and multifaceted works, is one of the most 

important literary fields in the world. Shakespeare's texts, including plays or poems, are those works that have been 
repeatedly referred to by the contemporary era and have repeatedly been subject to various types of readings and  

studies. One of the most important of these texts is Othello, which has been repeatedly analyzed by  feminism, 

semiotics, post-colonialism, and so on. Post-colonial studies dating back to the 80's have opened up a new window to 

cultural studies and literary readings. These studies deal with the collision of East and West and colonialism that has 

emerged. Edward Said, one of the most important post-colonial thinkers, still believes that colonialism has not been 

completed and continues in various ways. Hence, a series of post-colonial works to critique and re-read what has 

already been accumulated under the name of literature. The need for this re-reading is to pinpoint and highlight those 

lines that have come from the memory of colonialism into literature. 

With the growth of post-colonial studies, there has been much research on Shakespeare's texts. Unfortunately, 
in the Persian language so far, there has not been much attention to the necessity of using these ideas in the critique of 

literature and theater. Post-colonial studies are so widespread and cover so vast a wide range of subjects as political, 
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