

Software Usability: A Comparison Between Two Tree-
Structured Data Transformation Languages

Nikita Schmidt Corina Sas
Department of Computer Science

University College Dublin
Belfield, Dublin 4, Ireland

cetus@cnds.ucd.ie

Computing Department
Lancaster University

Lancaster, LA1 4YR, UK
c.sas@lancaster.ac.uk

ABSTRACT
This paper presents the results of a software usability study,
involving both subjective and objective evaluation. It com-
pares a popular XML data transformation language (XSLT)
and a general purpose rule-based tree manipulation language
which addresses some of the XML and XSLT limitations. The
benefits of the evaluation study are discussed.

Author Keywords
Data transformation language, metadata, tree-structured
data, software metrics, software usability.

ACM Classification Keywords
H1.2. User/Machine Systems: Software psychology.

INTRODUCTION
Hierarchical (tree-structured) formats have long been used
for data and metadata representation. The explosive growth
of the Internet, and then of the World Wide Web, has em-
phasised the need to exchange heterogeneous data structures
between diverse networked systems, and hierarchical for-
mats came to the rescue. Tasks such as extraction of rele-
vant fragments from tree-structured records, or conversion
from one structure to another, became very common. Speci-
fying such tasks is labour-intensive, as it requires human
understanding of the semantics of data formats involved.
The usability of systems that do this conversion and, in par-
ticular, of their specification languages has effect on human
productivity and quality of data and metadata processing.
Unfortunately, despite the large amount of theoretical work
in this field, fewer studies focused on implementing these
theoretical results and even fewer on evaluating them [5,6].

The Extensible Stylesheet Language Transformations
(XSLT) [14] language is commonly used for transforming
tree-structured data. It owes its popularity to the widespread

adoption of XML (Extensible Markup Language), which is
an explicitly hierarchical format. By design, XML is a
document markup language. Its use for other types of data is
beyond the domain for which is was originally intended.
Similarly, XSLT’s design goal is to aid in presentation of
XML documents. Despite that, and primarily because of the
existing gap between theory and practice of tree-structured
data manipulation, XSLT is often used for general purpose
manipulation of XML-encoded data.

In order to cover this gap, an abstract architecture for tree-
structured data manipulation has been developed. Its aim is
to provide a common theoretical foundation for a variety of
practical tasks that involve processing of tree-structured
documents. The architecture was implemented through the
Tree Processing Machine (TPM) which is a general pur-
pose tree manipulation tool that has at its core a Turing-
complete computational model based on pointed string
trees [10,11].

This paper presents an experimental evaluation which has
been carried out by comparing the TPM language with
XSLT. Both subjective and objective studies have been
conducted in order to evaluate the usability of the TPM
system and its language.

Subjective methods consist of users’ attitude measurement
regarding their interaction with the system, focusing pri-
marily on user’s satisfaction. A common approach to objec-
tively measuring software complexity is through computing
software metrics. These metrics arose in a research attempt
to find relationships between the characteristics of pro-
grams and difficulty of performing programming tasks [2].
Different types of complexity metrics exist, such as [1,7]:
number of lines of code; number of lexical entities (token
count); functions of the number of operators and operands
in the program; number of linearly independent execution
paths through the program; logical complexity metrics;
amount of information that flows in and out of a procedure.

Of these metrics, the last one is not usable due to the very
low number (1–3) of procedures (i.e., functions in TPM and
templates in XSLT) and their inputs and outputs used in the
solutions to the sample tasks. The previous three metrics
are oriented towards conventional procedural languages
and are hard to apply to the specialised languages of TPM

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

NordiCHI '04, October 23-27, 2004 Tampere, Finland
Copyright 2004 ACM 1-58113-857-1/04/10... $5.00

145

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/389882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and XSLT. Thus, the lines of code and token count metrics
have been employed for this evaluation. The lines of code
metric has long been noted for its stability across different
programming languages and thus often used for program-
ming language productivity comparisons. This makes it
especially suitable for this study. In addition, to accommo-
date the similar “finger typing” metric [12], the “raw” pro-
gram size (the number of characters without indentation)
was also included in this evaluation.

EXPERIMENTAL DESIGN

Procedure
This usability study is organised as a within subjects ex-
periment where the independent variable is the type of the
system: TPM or XSLT. Subjects were randomly assigned
to two groups where the order of exposure to the two con-
ditions of the independent variable varied. Before solving
the tasks, participants are invited to read the documentation
for the system under evaluation. Then, they go through six
programming tasks: three examples, and three exercises
designed to be done by the subjects themselves. These
tasks are programmed in the language of the first system
evaluated by each subject. They were chosen to cover dif-
ferent classes of problems related to data transformation:

• tag extraction – extraction of all elements names that are
children of <link> elements directly under the root of the
input document;
• ‘identity’ transformation – passing any input document to
the output without changes;
• name splitting 1 – splitting of people’s names represented
in the form of ‘[Given-Name] Family-name’ into individual
elements for each Given-Name and Family-Name;
• name splitting 2 – splitting of people’s names represented
as ‘Family-Name [, Given-Name]’ into individual elements
for each Given-Name and Family-Name;
• character mapping – conversion of strings while substi-
tuting characters according to a mapping table;
• country code mapping – conversion of text elements ac-
cording to a string mapping table.

A printed copy of the evaluation scenario with task descrip-
tions was given to each participant at the beginning of the
experiment. After the completion of the tasks, participants
are asked to fill out a questionnaire regarding the perceived
usability of the system they used. After a break, the users
follow the same route for the second system. To assist the
subjects in performing evaluation tasks, a web interface to
both systems (TPM and XSLT) is provided. The interface
allows the subjects to type in and edit their solutions (trans-
formation programs) and input data, and to compute and
see the processing results. This interface is organised as a
set of six pages, one page per task. Figure 1 presents the
web interface for the character mapping task.

Pages with examples are pre-filled with solutions, whereas
pages with exercises contain just program templates which
the subjects can use as a starting point. Navigation links to

the next and previous tasks are provided. The web inter-
face is implemented as a 167-line Python [3] script, running
under Apache web server1 as a CGI (Common Gateway
Interface)2 application.

Documentation for the TPM system was given to the par-
ticipants in the form of a printed copy of the TPM User’s
Manual [10]. For XSLT, links to the W3C XSLT and
XPath Recommendations [13,14] (serving as user manuals)
were provided on each page of the Web interface.

Participants
The sample consisted of 13 students and staff from Univer-
sity College Dublin, with different levels of education and
computing experience, and mixed gender. From this sam-
ple, only 6 returned completed questionnaires for both sys-
tems, and 2 more returned one questionnaire each (one on
TPM, one on XSLT). The other 5 subjects did not consider
themselves familiar enough with the area. Study partici-
pants (those who have successfully evaluated at least one
system) are all men, within the age range 21–36. None of
them have been previously exposed to the TPM system and
a few have had some experience of working with XSLT.

1 URL: http://www.apache.org/
2 URL: http://hoohoo.ncsa.uiuc.edu/cgi/

Example: Character mapping

Another frequent task is to convert one string of characters to another, substituting certain characters. This
often happens in so-called coded fields of MARC records when they are converted from one MARC format to
another. The program for this task must perform the following translation for each character:

Input file: The root element is named ������� and contains one child, the string to translate.

Output file: The root element must be named ������� and contain one child, the translated string of the same
length as the original.

XSLT manual XPath manual

From To

d a

i b

j c

everything else z

XSLT program

Transformation programs

	
���
�������������
�

	��������������
�������������
����������

������������������ � ����!��"""�#$%�&����������

	������������
�����������	���������
�����������

	������
������'����

	����(������

	���� ���
������������) ���*'��+
,�,-���	����� ����

	���� ���
������������) ���*'��+
,�,-��.	����� ����

	���� ���
������������) ���*'��+
,/,-��(����� ����

	��������� ����0	���������� ����

	�����(������

	����(���)��������
�����������

	���� ���)�����
���������
����(����1.�����!*'��+
�-���

	�����(���)���������

	��������

� � �

Input file

	
���
�������������
�

	������������/	���������

XSLT output

	
���
�������������
�

	���������.0�(���������

Output results

Compute Previous Next Reset

Figure 1. Example of web interface for evaluation.

146

RESULTS

Subjective Evaluation: Perceived Usability
The perceived usability questionnaire contains 21 items
measured on a 5-point Likert scale from 1 (disagree) to 5
(agree). These items are loosely based on published instru-
ments for measuring usability [4,9]. The Cronbach’s alpha
coefficient of 0.89 indicates its high reliability.

Table 1 presents the mean, median, and standard deviation
of scores along four usability dimensions, and a summary
across all questionnaire items (overall usability). The ques-
tionnaire and its mapping onto these dimensions is pre-
sented in [10]. For each dimension, the scores of all its con-
stituent items for the same participant were averaged, and
these average values were analysed across the respondents.
As Table 1 shows, all dimensions imply a medium to good
level of satisfaction (rank 5 means completely satisfied, and
1 means completely unsatisfied) for the TPM system, and a
rather poor level of satisfaction for XSLT system.

TPM XSLT
Dimensions

Median Mean (SD) Median Mean (SD)

Learnability 3.14 3.04 (0.96) 2.29 2.37 (0.81)

Effectiveness 4.14 4.04 (0.70) 2.86 2.94 (0.64)

Efficiency 3.33 3.00 (0.58) 2.67 2.71 (0.76)

Satisfaction 3.25 3.28 (0.76) 2.00 2.57 (0.83)

Usability 3.38 3.41 (0.62) 2.43 2.65 (0.48)

Table 1. Subjective evaluation of language usability.

The effectiveness of TPM is significantly higher than that of
XSLT (t(12) = 3.07, p < 0.05). Marginally significant, this
relationship maintains for the other dimensions of usability.
In other words, the perceived usability of the TPM is better
in terms of learning, efficiency, and satisfaction, and signifi-
cantly better with respect to system effectiveness, as com-
pared with the usability of XSLT. The overall perceived us-
ability is significantly higher for the TPM system in com-
parison with the XSLT system (t(12) = 2.60, p < 0.05).

Objective Evaluation: Software Metrics
An objective evaluation of TPM in comparison with XSLT
was done using software complexity measurement tech-
niques. Below are the solutions for the ‘Identity’ transfor-
mation task (passing any input document to the output
without changes).

 XSLT code:
 <?xml version="1.0"?>
 <xsl:stylesheet version="1.0" id="null"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <xsl:copy-of select="/"/>
 </xsl:template>
 </xsl:stylesheet>

 TPM code:
 main(in)in{}

This is an example of the programs whose metrics were
taken for this objective evaluation study and will be
discussed below. The lines of code and character count
metrics were the easiest ones to compute. For the character
count metric, each end of line was counted as one character
and all indentations were removed. The difficulty with the
token count metric was in deciding what counts as a token.
While in the case of the TPM the definition of a token
could be taken directly from the language definition, the
XML-based XSLT was not so straightforward: counting
raw XML tokens would not be an accurate representation
of the XSLT program complexity. For a more accurate
measurement, the following rules were used:

• An opening tag counts as 1 token plus attributes.
• A closing tag counts as 1 token.
• A stretch of character data between two tags counts as 1 token.
• Each attribute of an opening tag counts as at least 2 addi-

tional tokens:
o 1 token for the attribute name;
o if the value of the attribute is an XPath [13] ex-

pression, the number of XPath tokens in it is used;
otherwise, the value counts as 1 token.

• The <?xml version="1.0"?> preamble and the opening and
closing tags of the xsl:stylesheet element are not counted.

Note that the ‘character mapping’ and ‘country code map-
ping’ programs contain repeating fragments, one fragment
per table entry. During token counting, only one such
fragment contributed to the program token count, the ra-
tionale being that the effort required for writing the second
and each of the subsequent fragments is no longer propor-
tional to the number of tokens in the fragment.

The metrics are presented in Table 2. With respect to the
number of lines of code, XSLT programs are significantly
larger than the equivalent TPM programs (t(5) = 3.65, p <
0.05); generally twice as large. In the given set of prob-
lems, the ratio varies from 1.36 to 7. Four tasks out of six
have the XSLT to TPM line count ratio greater than 2.

Lines of code Char. count Token count
Task name

XSLT TPM XSLT TPM XSLT TPM

Tag extraction 12 5 286 93 20 33

Identity transf. 7 1 197 13 8 7

Name splitting 1 30 11 801 213 81 73

Name splitting 2 41 18 1090 341 124 117

Char. mapping 24 18 1090 341 124 117

Country code map. 15 11 523 249 25 38

Total 129 60 3612 1117 321 327

Table 2. Metrics of XSLT and TPM evaluation programs.

147

In the character count metric, XSLT programs are also sig-
nificantly larger (t(5) = 4.27, p < 0.01): about three times
larger than the corresponding TPM solutions. The overall
ratio is 3.2, five tasks out of six having the ratio above 3
and the remaining task showing 2.1. This also indicates
that XSLT program lines are about 1.5 times longer on av-
erage than those of the TPM.

Finally, token counts do not show significant differences
between XSLT and TPM. Four tasks are ‘longer’ in the
XSLT version, while the other two contain more tokens
when implemented in TPM. The overall token counts are
almost the same.

In addition, it should be noted that XSLT-based solutions
make extensive use of the built-in XPath function library
for string processing. The functions employed include con-
tains, substring-before, substring-after, starts-with, sub-
string, and a rather complex normalize-space. At the same
time, owing to the sufficient expressiveness of its core lan-
guage, TPM has no built-in function library. If a similar
utility library was provided to the TPM programmer, it
could further contribute to the reduction of TPM program
sizes, in particular in the number of tokens used.

Because a utility library is domain-specific and is not part
of the data transformation architecture, it is beyond the pur-
pose of TPM language. The above results show that even
without such a library TPM programs are on par with or
significantly less complex than equivalent XSLT programs,
depending on the metric used.

CONCLUSION
TPM underwent subjective and objective comparative us-
ability evaluation alongside XSLT – a widely used system
for tree-structured data transformation. This study was
based on a set of six sample data transformation tasks. The
subjective evaluation analysed the questionnaires filled out
by the participants following their hands-on experience
with both systems in solving sample tasks. The objective
evaluation measured three software metrics of the efficient
solutions of the sample tasks.

This evaluation study comes to validate not only the im-
plementation offered by the TPM, but moreover, the archi-
tecture and the language behind it. The usability of TPM is
perceived by study participants to be generally higher than
that of XSLT, and in certain aspects significantly better.
The significantly higher perceived usability is in particular
due to the TPM’s better language consistency, design, and
efficiency. These language-related traits follow directly
from the properties of the proposed architecture [10,11].
Note however that these results should be taken with cau-
tion, as only 6 participants returned completed question-
naires for both systems, and 2 more returned one question-
naire each.

Software metrics also confirm higher usability of the TPM
language. Therefore, both subjective and objective evalua-

tion results indicate that the architecture behind TPM allows
it to significantly surpass XSLT in terms of usability.

The usability study described here has three major benefits.
Firstly, it suggests that the limitations of XML and XSLT
can be effectively addressed. Secondly, it shows that the
metrics for software usability can be successfully employed
to compare data transformation languages. Thirdly, the
current practice of using XSLT beyond the area it was in-
tended for comes at a cost in terms of reduced usability.
This justifies the efforts put into developing specialised
languages for metadata processing, such as TPM which are
both easy to learn and use.

ACKNOWLEDGEMENTS
The support of Enterprise Ireland for the ADSA project and
Science Foundation Ireland for funding under the NTSRC
development grant is gratefully acknowledged.

REFERENCES
1. Andersson, T. A survey on software quality metrics.

Abo Akademi Univ. Unpublished manuscript, (1990).
2. Basili, V.R. Qualitative software complexity models: A

summary. In Tutorial on Models and Methods for Software
Management and Engineering. IEEE, CA, (1980).

3. Beazley, D.M. and van Rossum, G. Python Essential
Reference. Que, (2001).

4. Brooke, J. SUS: A ‘quick and dirty’ usability scale. In
Usability evaluation in industry, pages 189-194. Tay-
lor & Francis, London, (1996).

5. Dushay, N. and Hillmann, D. Analyzing metadata for ef-
fective use and re-use. NSDL Meeting, WA, (2003).

6. Fraser, B. and Gluck, M. Usability of geospatial metadata
or space-time matters. Bulletin of the American Society
for Information Science, 25(6): 24-28. (1999).

7. Kearney, J.K., Sedlmeyer, R.L., Thompson, W.B.,
Gray, M.A. and Adler, M.A. Software complexity
measurement. Communications of the ACM,
29(11):1044-1050, (1986).

8. Nielsen J. Designing Web Usability: the practice of simplic-
ity. Indianapolis, New Riders Publishing, (1999).

9. Perlman, G. Web-based user interface evaluation with ques-
tionnaires. http://www.acm.org/~perlman/question.html.

10. Schmidt, N. A Common Architecture for Manipulating
Tree-Structured Data. PhD thesis. University College
Dublin, Ireland, (2003).

11. Schmidt, N. and Patel, A. Rule-driven processing of
tree-structured data using pointed trees. Computer
Standards and Interfaces, 25(5):463-475, (2003).

12. Venners, B. Programming at Python speed: A conver-
sation with Guido van Rossum, part III. Published
online by Artima Software, http://www.artima.com/
intv/speed.html.

13. World Wide Web Consortium. XML Path Language
(XPath) 1.0, W3C Recommendation, (1999).

14. World Wide Web Consortium. XSL Transformations
(XSLT) Version 1.0, W3C Recommendation, (1999).

148

