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Abstract

Objective: To develop a population-based biophysical model of motor-
evoked potentials (MEPs) following transcranial magnetic stimulation (TMS).

Methods: We combined an existing MEP model with population-based
cortical modeling. Layer 2/3 excitatory and inhibitory neural populations,
modeled with neural-field theory, are stimulated with TMS and feed layer
5 corticospinal neurons, which also couple directly but weakly to the TMS
pulse. The layer 5 output controls mean motoneuron responses, which gener-
ate a series of single motor-unit action potentials that are summed to estimate
a MEP.

Results: A MEP waveform was generated comparable to those observed
experimentally. The model captured TMS phenomena including a sigmoidal
input-output curve, common paired pulse effects (short interval intracorti-
cal inhibition, intracortical facilitation, long interval intracortical inhibition)
including responses to pharmacological interventions, and a cortical silent
period. Changes in MEP amplitude following theta burst paradigms were
observed including variability in outcome direction.

Conclusions: The model reproduces effects seen in common TMS paradigms.
Significance: The model allows population-based modeling of changes in
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cortical dynamics due to TMS protocols to be assessed in terms of changes in
MEPs, thus allowing a clear comparison between population-based modeling
predictions and typical experimental outcome measures.

Keywords: Motor Evoked Potential, MEP, Transcranial Magnetic
Stimulation, TMS, corticomotor system, cortical plasticity, modeling,
neural field theory, paired-pulse, rTMS, calcium dependent plasticity,
iTBS, cTBS, theta burst stimulation

1. Introduction

Transcranial Magnetic Stimulation (TMS) is a non-invasive form of brain
stimulation used for the study of brain function and for clinical treatments
of brain disorders such as depression (Hallett, 2007; Ziemann et al., 2008;
Pascual-Leone et al., 2000; Lefaucheur et al., 2014). Applying a single TMS
pulse at sufficient intensity over the primary motor cortex results in firing
of layer 5 corticospinal neurons due mainly to transsynaptic activation from
layer 2/3 interneurons and horizontal fibres, but also direct activation of the
neurons by the pulse at high enough intensities (Hallett, 2007; Di Lazzaro
et al., 2012). The descending volley of activity gives a measurable motor
response in peripheral muscles targeted by the stimulated region, known as a
motor-evoked potential (MEP) (Hallett, 2000). MEPs have been widely used
as a measure of the excitability of the corticomotor system in TMS studies,
and have revealed several well known neural phenomena related to TMS, such
as periods of net inhibition and excitation using paired pulse protocols (i.e.
short and long interval intracortical inhibition [SICI; LICI], and intracortical
facilitation [ICF]) (Valls-Solé et al., 1992; Kujirai et al., 1993), and a cortical
silent period observed when TMS is given during a voluntary contraction.
Furthermore, MEPs are used to assess changes in cortical excitability result-
ing from repetitive TMS (rTMS) protocols (Di Lazzaro et al., 2008), which
are thought to induce plasticity in cortical circuits through mechanisms sim-
ilar to long-term potentiation and depression (LTP/D) (Cooke and Bliss,
2006). However, despite nearly 30 years of research, it remains unclear how
microscale mechanisms underlying plasticity occurring at synaptic level (e.g.
LTP/D) manifest when large populations of neurons are activated as with
TMS (Parkin et al., 2015; Matheson et al., 2016).

Biophysically-informed models provide a mathematical description of TMS
and other neurostimulation effects that can be used to better understand
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TMS phenomena (Seo and Jun, 2017; Wilson et al., 2018). Models typically
describe biophysical processes with equations. Existing models include de-
scriptions of the shape and timecourse of the magnetic and induced electric
fields due to TMS, including realistic human head geometries (Thielscher
et al., 2011; Deng et al., 2013; Opitz et al., 2013; Tang et al., 2016; Bungert
et al., 2016), large networks of spiking neurons (Esser et al., 2005), detailed
descriptions of spiking of single neurons and small networks of neurons (Traub
et al., 2003; Rusu et al., 2014; Moezzi et al., 2017), population-based de-
scriptions of neural firing rates (Deco et al., 2008; Pinotsis et al., 2014) and
plasticity effects (Fung et al., 2013; Wilson et al., 2016).

Modeling of the processes underlying TMS-induced effects has been un-
dertaken through several stategies (Seo and Jun, 2017; Wilson et al., 2018).
Esser et al. (2005) have constructed a low-level model of 33 thousand neu-
rons in the cortex and thalamus with five million synaptic connections. The
model demonstrates biologically-plausible spontaneous activity and evoked
responses, notably I-waves. More detailed multicompartment models for sin-
gle neurons or small groups of neurons have also been used, to study bursting
phenomena in more detail (Traub et al., 2003). Rusu et al. (2014) used a
detailed model of a layer 5 neuron, fed by a small population of layer 2/3
single-compartment cells. The hypothesis is that interactions between layer
2/3 and layer 5 cells are purely feed-forward (no resonance loops or chains of
excitatory and inhibitory cells), and a spike generated in the layer 2/3 cells
affects the layer 5 cell after a certain time (Triesch et al., 2015). Under this
hypothesis, I-waves could be reproduced. However, the mechanism for gen-
eration of the I-waves in this model differs from the more conventional view
that I-waves are a result of repetitive input to layer 5 cells from a resonanting
circuit.

While models of individual neurons have proven useful in capturing TMS-
related phenomena, there are several notable limitations. First, the high
number of parameters (e.g. values determining receptor conductances, synapse
weights, conduction delays etc. for each neuron/synapse) can pose problems
in constraining the model, thereby increasing the risk of over-fitting. Second,
the complexity of these models often comes with a high computational cost,
which greatly increases the time required for simulations. Finally, the mod-
els have largely focused on generating corticospinal output which is suitable
for capturing I-wave activity, but does not generalise to MEPs measured at
peripheral muscles, which is by far the most common experimental method
for assessing TMS-evoked activity of the motor system.
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While the dynamics of evoked responses in the brain involves highly non-
linear processes, modeling these need not be complicated. Population-based
modeling (Deco et al., 2008; Pinotsis et al., 2014), including neural mass or
neural field approaches, considers firing rates of populations of cells, rather
than detailed dynamics of many individual cells. As such, population-based
models have far fewer parameters, and are less computationally expensive
than models of individual neurons. Neural field modeling is well suited to
TMS because a TMS pulse excites many thousands of neurons over an area of
several centimeters-squared. Neural field approaches have been used to model
cortical plasticity following repetitive TMS, a lasting change in strengths of
connections between neurons (Huang et al., 2011; Fung et al., 2013; Fung
and Robinson, 2014; Wilson et al., 2016). In these works, plasticity has been
included using rules which capture either phenomenological descriptions of
plasticity (e.g. spike timing dependent plasticity), or physiological theories
(e.g. calcium dependent plasticity) (Shouval et al., 2002).

Population-based cortical modeling of TMS has been hard to interpret in
relation to human experiments. For example, most models have evaluated
changes in synaptic weights between excitatory neural populations following
rTMS but it remains unclear how these changes would impact the amplitude
of MEPs. To address this failing in the existing literature, population based
models must be combined with models of the motor system.

Li et al. (2012) have described MEP amplitude and shape in terms of a
sum of individual motor unit responses, with thresholds for the motor units
distributed exponentially. Such an approach has the benefit of simplicity,
with few parameters. However, it describes only the motoneuron response,
not the processes that feed it, and misses biophysical detail such as motor
unit synchrony. Moezzi et al. (2017) have developed this further; they have
used the hypothesis and I-wave model of Rusu et al. (2014) to simulate MEP
formation following TMS using a population of layer 2/3 excitatory and in-
hibitory neurons, feeding layer 5 cortical cells and motoneurons. They repro-
duced MEP responses that matched closely those measured experimentally;
however, this was under similar limitations to other individual neuron models
in terms of a large parameter space and high computational cost. In con-
trast, Goetz et al. (2019) have used a statistical model based on experimental
data to compile a MEP model, although this model was not biophysical in
the sense that it only modeled the distribution of MEPs, not the biological
processes underlying MEP generation.

The aim of this study was to develop an MEP model that can be used
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alongside a general population-based neural field model of single-pulse, paired-
pulse and repetitive TMS, thereby linking population-based model predic-
tions of the effects of TMS with commonly-used experimental outcomes for
the first time. To achieve this aim, we have combined the approach of Moezzi
et al. (2017) with neural field modeling. Specifically, we model the layer 2/3
and layer 5 populations with population-based dynamics. Firing rates of mo-
toneurons are described as functions of the layer 5 firing rate, and a train of
motoneuron firings is reconstructed. Each motounit contributes a motounit
action potential (MUAP). Thus MEP activity is determined. This approach
provides a much-needed link between population-based models of cortical dy-
namics, and models of MEP activity, thereby allowing a direct comparison
between model outputs and human experiments. To test the generalizability
of our MEP model, we first assess whether we can capture well known single
and paired-pulse MEP phenomena. We then evaluate how sensitive our MEP
model is to changes in synaptic weights predicted by population-based rTMS
models of plasticity.

2. Methods

We have combined a neural field approach (Fung and Robinson, 2014;
Wilson et al., 2016) with existing models of MEP formation (Li et al., 2012;
Moezzi et al., 2017). The scheme is shown schematically in Fig. 1.

2.1. Neural Field components (Cortical model)

Neural Field Theory (NFT) provides a nonlinear, statistical model for the
dynamics of populations of neuronal cells and their interactions via dendrites
and axons (Deco et al., 2008; Pinotsis et al., 2014; Wright and Liley, 1996;
Robinson et al., 1997; Breakspear, 2017). Population-averaged properties
such as mean firing rate and axonal pulse rate are modeled as a function
of time t. We have used the NFTsim model (Sanz-Leon et al., 2017). The
mathematical description and parameter values are summarized in Appendix
A.

Specifically, a population of layer 2/3 excitatory neurons (labeled ‘e’), a
population of layer 2/3 inhibitory neurons (i), and a population of layer 5
excitatory corticospinal output neurons (v) are modeled with NFTsim. These
populations couple together as indicated by the arrows in Fig. 1. They are
also coupled to an external driving population (labeled x) describing the
TMS application. Coupling strengths to population a from population b
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Figure 1: A schematic of the modeling approach. Transcranial magnetic stimulation
(TMS) stimulates populations of layer 2/3 excitatory and inhibitory neurons. The layer
2/3 populations stimulate each other. They have multiple projections to a population
of layer 5 excitatory corticospinal output neurons which also receive low-intensity direct
stimulation from the TMS pulses. These three are modeled with NFTsim (Sanz-Leon
et al., 2017). The axonal flux from the layer 5 corticospinal output neurons stimulates
a population of motoneurons within the spinal cord; each motoneuron firing produces a
response from the muscle fibres. The sum of these fibre responses produces a motor-evoked
potential (MEP). The latter components are modeled with the approach of Li et al. (2017).
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are denoted in this paper by νab, where a and b can take the labels e, i, x
or v. Synaptic responses include excitatory receptors and both fast-acting
γ-aminobutyric acid A (GABAA) and slower-acting γ-aminobutyric acid B
(GABAB) receptor effects (Wilson et al., 2016, 2018).

The layer 2/3 populations project to a population of layer 5 excitatory
corticospinal output neurons (v). There are multiple projections to different
parts of the dendritic tree (Moezzi et al., 2017). Excitatory connections are
made with short and long propagation delays (specifically 1 ms and 5 ms
respectively), to model connections to basal and apical dendrites of the cor-
tiospinal neurons (Petreanu et al., 2009). Inhibitory connections are made
with a medium time delay (specifically 3 ms), to align with the hypothesis
of Rusu et al. (2014).

The layer 2/3 excitatory, layer 2/3 inhibitory and layer 5 populations plus
the external stimulation are modeled with NFTsim (Sanz-Leon et al., 2017).
Although there are many parameters, many have physical constraints placed
on them (Robinson et al., 2004). Parameters for the layer 2 and 3 cells have
been chosen to be consistent with previous modeling (Wilson et al., 2016,
2014); for the layer 5 cells the firing response to synaptic input has been
tuned to give plausible responses to stimulation, broadly consistent with
Moezzi et al. (2017), including maximum population firing rate of 300 s−1

and a rapid climb in output once threshold has been reached at a mid-range
stimulation intensity.

The NFT modeling gives the mean axonal flux rate of the layer 5 neural
population as a function of time. This firing rate is then used as an input
(dotted arrow in Fig. 1) to the next stage of modeling, summarized by the
lower gray box in the figure.

TMS stimulation of the cortex can lead to both direct (D-) and indirect
(I-) waves of descending activity, recorded in the epidural space (Hallett,
2007; Di Lazzaro et al., 2012). Often several indirect waves are recorded, at
several hundred hertz frequency. While their origin has not been precisely
established, they are likely to be a result of TMS-induced activity within the
cortex propagating down nerve pathways. Rusu et al. (2014) presented a
simple model of I-wave formation by projecting populations of layer 2 and 3
cells onto a compartmentalized layer 5 neuron. Averaged responses of many
cases showed synchrony in layer 5 firings, resulting in I-waves of activity.
Moezzi et al. (2017) have demonstrated similar synchrony by modeling ex-
plicitly many layer 5 cells simultaneously. In our model it is not possible
to capture I-waves in a similar way, since neural synchrony is not explicitly
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captured when only population-averaged rates are considered because exact
timings of firings are not explicitly modeled (Wilson et al., 2018, 2012). That
is, a mean firing rate of a population does not tell us about the synchrony
of firings within the population. While the population approach is not well-
suited to capturing firing events such as those generating I-waves, it is well
suited for capturing the slower shifts in net excitation and inhibition which
are thought to underlie paired-pulse phenomena such as SICI and ICF.

2.2. Modeling TMS inputs

A particularly challenging aspect of developing this model was deciding
how to model TMS inputs to the cortical populations. There is little direct
evidence on how TMS interacts with specific neuronal populations within
the cortex in humans. Indirect evidence from surface electromyography and
spinal epidural recordings suggest that layer 5 corticospinal output neurons
(CSNs) are not directly activated by TMS at subthreshold and low/moderate
suprathreshold intensities. Instead, CSNs are likely activated transynapti-
cally by interneuron populations presumably located in layers 2/3, as well
as long-range horizontal connections from other cortical regions which are
preferentially activated by the TMS pulse (Di Lazzaro and Rothwell, 2014).
Transynaptic activation of CSNs is further supported by invasive recordings
in rodents, showing preferential activation of neurons in superficial layers by
TMS without activation of layer 5 neurons at moderate intensities (Murphy
et al., 2016). At subthreshold intensities, paired pulse studies in humans show
a lower threshold for MEP inhibition than facilitation (Ziemann et al., 1996),
suggesting that inhibitory interneurons have the lowest activation threshold
by TMS, although this may result from stimulation of upstream excitatory
interneurons which synapse onto the inhibitory interneurons (Di Lazzaro and
Rothwell, 2014). Direct activation of CSNs can occur at higher suprathresh-
old intensities (e.g. >150% RMT), particularly for latero-medial coil orien-
tations (Di Lazzaro et al., 1998), although this appears more difficult us-
ing posterior-anterior orientations which are more typically used in TMS
studies. Aside from stimulation intensity and coil orientation, TMS activa-
tion patterns are also altered by different coil types, pulse widths and pulse
shapes (Di Lazzaro and Rothwell, 2014), demonstrating the complexity of
TMS-cortical interactions.

Most modeling approaches to date have focused on estimating the spa-
tial distribution of the electric field generated by TMS in the gray and white
matter (Laakso et al., 2018; Bungert et al., 2016; Opitz et al., 2011), however
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several studies have attempted to further refine this approach by modeling
how these fields interact with morphologically-realistic neurons within the
cortex (Pashut et al., 2014; Seo and Jun, 2017; Aberra et al., 2020). The
most detailed of these models found the lowest activation thresholds in layer
2-5 neurons with pyramidal neurons and inhibitory interneurons showing sim-
ilar activation thresholds (Aberra et al., 2020), although this model did not
include CSNs. Furthermore, it remains unclear from these static anatomical
models how activation by TMS would alter ongoing firing rates within these
different neuronal populations across different stimulation intensities.

Given the complex nature of estimating how TMS interacts with cortical
circuits, we have adopted a pragmatic approach. In NFTsim, stimulation is
applied with an ‘external’ rate φx(t) (Fung et al., 2013), which can be inter-
preted as average number of action potentials per second that are introduced
along each axon in the cortical populations. For example, a stimulus inten-
sity of 1000 s−1 for 0.5 ms introduces on average 0.5 action potential onto
each axon (e.g. 50% of neurons activated). Invasive studies recording indi-
vidual cortical neurons following TMS in primates found that 28% of neurons
changed firing rate following stimulation at 120% of RMT, giving a stimu-
lus intensity of order 600 s−1 for 0.5 ms as a broad estimate for generating
moderate size MEPs. We assume increasing external rate φx corresponds to
an increasing TMS machine output, though the linearity of this relationship
has not been established.

Based on experimental findings in humans (Ziemann et al., 1996; Ilic
et al., 2002), we make the assumption that the strength of this drive to
different neural populations depends upon the TMS intensity, with low in-
tensities preferentially stimulating the inhibitory neurons over the excitatory
neurons in layer 2/3, but higher intensities strongly stimulating the excita-
tory neurons, possibly due to the geometry of the axonal connections (Silva
et al., 2008). While plausible, we acknowledge there is little direct evidence
for this. Furthermore, we assume layer 5 CSNs receive lower direct inputs
from TMS than layer 2/3 neurons. Hence, the external TMS to layer 2/3
excitatory coupling νex is modeled as a function of stimulus intensity φx with
a sigmoid relationship:

νex =
νmax
ex

e(A−φx)/B + 1
(1)

where νmax
ex = 1.92×10−4 V s is the maximum external to layer 2/3 excitatory

coupling, with A = 500 s−1 and B = 100 s−1 describing the threshold and
width of the curve respectively. The external TMS to inhibitory cell coupling
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νix is modeled as a constant:

νix = −1.15× 10−4 V s. (2)

We use a low strength for the layer 5 external coupling compared to the layer
2/3 external coupling; specifically we set νvx = 0.1νex:

νvx =
0.1 νmax

ex

e(A−φx)/B + 1
, (3)

where νmax
ex , A and B are as defined above. Changes in external coupling to

TMS across intensities within the different populations are plotted in Fig. 2.
We emphasize that such preferential stimulation is an assumption in our
modeling with only indirect experimental evidence, but we show the effects
of varying the νix and Eq. (1) parameters in Section 3.

2.3. MEP model components

Population-averaged cortical responses are often linear or nearly-linear,
making NFT appropriate (Deco et al., 2008; Wilson et al., 2012). However,
motor responses are challenging to describe in a linear way; for example 20
motoneurons firing at 100 s−1 produces a very different MEP to 10 motoneu-
rons firing at 200 s−1.

Instead, we use a model of Li et al. (2012) to describe MEP formation.
Here, the layer 5 axonal pulse rate φv is used to determine the rate of firing
of N = 100 motoneurons. Each motoneuron, indexed by k, has an instanta-
neous firing rate Qk (k = 1 · · ·N) that is a function of the axonal flux rate
from the layer 5 cells (Li et al., 2012), that is Qk = fk(φv).

All motoneurons have a threshold input below which they do not fire.
Thresholds are distributed exponentially:

Tk = Tmine
αk (4)

where Tk is the threshold of the k-th unit and Tmin is a minimum threshold
(set to 14 s−1 (Li et al., 2012)). The parameter α is set through

α =
1

N
log

(
Qmax
v

Tmin

)
, (5)

where Qmax
v is the maximum layer 5 firing rate, so that the final (N -th)

motor unit has a threshold corresponding to the maximum layer 5 firing
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Figure 2: The external TMS to excitatory and inhibitory couplings as a function of external
rate φx (assumed to be proportional to TMS amplitude). The TMS-to-excitatory coupling
νex, given by Eq. (1), is shown by the solid black line; the TMS-to-inhibitory coupling νix is
shown by the dashed blue line. The TMS-to-layer 5 corticospinal output neuron coupling
is shown by the solid red line.
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rate. When the axonal flux rate φv from the layer 5 neurons exceeds a
unit’s threshold Tk, the unit fires with a rate given by the following function
of axonal flux:

Qk(t) = fk(φv(t)) = q + κk(φv(t)− Tk) (6)

where q is the minimum firing rate (which we set at 8 Hz for all units) and
κk is a constant for each k. The gradient κk is chosen separately for each k
so that all motoneurons reach the same Qk, equal to Qmax

m when φv is equal
to Qmax

v , the maximum firing rate of the layer 5 neurons. We set Qmax
m to

300 s−1 and Qmax
v , to 900 s−1, to broadly align with previous simulations at

high (150% resting motor threshold, RMT) pulse intensity (Moezzi et al.,
2017).

We next determine the times at which the motoneurons fire. We denote by
τ jk , where j and k are both positive integers, the j-th firing event of the k-th
unit. To identify these events we time-integrate the firing rates Qk(t) (Wilson
et al., 2012). When the time-integral of the firing rates between two times is
equal to 1, we can say that on average each neuron in the population has a
single firing event between these two times. Thus, we identify the j-th firing
event when the time-integral of the firing rate reaches j. That is, the τ jk are
the times such that: ∫ τ jk

t=t0

Qk(t)dt = j, (7)

where t0 is the time that the firing rate of the neuron crosses its threshold
value.

We produce a MEP by summing individual motounit action potentials
(MUAPs). Each motoneuron leads to a MUAP whose size Mk is proportional
to its threshold — that is, the units recruited latest fire the strongest. Thus
Mk = M0e

αk, where M0 is a constant set to be 42 mV s−1 so that the MEP’s
amplitude is around 2 mV for pulses at 150% RMT at a low background
activation rate (Ziemann et al., 1996; Hallett, 2007; Devanne et al., 1997).
The shape of the MUAP is described by a first order Hermite-Rodriguez
function H(t) (Li et al., 2012; Moezzi et al., 2017; Olmo et al., 2000):

H(t) = −te−( tλ)
2

, (8)

where λ is a constant timescale which we set at 2.0 ms (Li et al., 2012).
Thus, an electromyogram (EMG) response, M(t), is given by the sum of the
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contributions from the various MUAPs:

M(t) =
∑
jk

MkH(t− τ jk) (9)

We define a MEP as the maximum positive deflection plus the maximum
negative deflection.

We mostly used standard parameter values to match Li et al. (2012), but
have adjusted slightly the MUAP amplitude M0 and the minimum thresh-
old Tmin to give very limited EMG activity with no voluntary contraction.
To investigate sensitivity of the model to its parameters, we change model
parameters by 15% upwards and downwards and analyse the effects on the
motor responses.

2.4. Underlying assumptions

Before discussing the specific applications of the model, we briefly high-
light the most significant underlying assumptions. First, the model is con-
structed using the I-wave hypothesis of Rusu et al. (2014) for the topology
of the connections between layer 2/3 neuronal populations and layer 5 cor-
ticospinal output neurons. Secondly, we have used a neural-field approach
with the NFTsim model Sanz-Leon et al. (2017), and assume that this is
appropriate for modeling TMS. Its applicability to many scenarios has been
well discussed in Deco et al. (2008) and Pinotsis et al. (2014), for example
for modeling EEG and fMRI responses. Third, we assume a reduced exter-
nal activation of the layer 5 cells compared with the layer 2/3 cells. Finally,
we assume that inhibitory layer 2/3 cells are preferentially stimulated at
lower TMS intensities, while the excitatory layer 2/3 cells are more excited
at higher intensities. We assess the impact of the final two assumptions by
changing the parameter values. In principle, we can also change the topology
of the connections, although we do not do this in this work.

2.5. Application to single- and paired-pulse protocols

To evaluate how well our model captures TMS-evoked activation of the
corticomotor system, we assessed the model’s capacity to generate TMS-
related phenomena. First we assessed how the modeled MEP changed with
increasing TMS intensities (i.e. an input-output curve). Typically, MEPs
increase in sigmoid shape, reaching a plateau above ∼180% resting motor
threshold (RMT). From the response curve, we identify RMT as the inten-
sity φx requried to produce a MEP of 0.1 mV in size. While RMT is typically
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identified as the minimum intensity required to evoke at least 5 of 10 MEPs
>0.05 mV in amplitude, our model does not include variability, meaning
MEPs are identical in amplitude across simulations provided the parameters
are kept constant. Our decision to use 0.1 mV as RMT comes from studies
assessing input-output curves which typically observe a mean MEP ampli-
tude of this size at 100%RMT [for an example see Rogasch et al. (2009)]. We
also assessed the capacity of the model to predict unseen experimental data
using input-output curves from Goldsworthy et al. (2016) (mean MEP ampli-
tudes between 90% RMT to 180% RMT in 10% increments). Specifically, we
adjusted the excitatory-to-excitatory and excitatory-to-inhibitory coupling
strengths, νee and νie respectively, in order to best fit the experimental data
over the range 90% RMT to 130% RMT, using the sum of squares of the de-
viation of the model from the experimental data (with each point weighted
by the inverse square of the standard error in the experimental data) as our
measure of goodness of fit. That is, we found νee and νie that minimized

S(νee, νie) =
5∑
i=1

(mi(νee, νie)− m̃i)
2

σ2
i

, (10)

where mi(νee, νie) is the modeled MEP for the i-th intensity (70%, 80%, 90%,
100%, 110% RMT) for couplings νee and νie, m̃i is the mean measured MEP
at the i-th intensity, and σi is the standard error in the mean measured MEP
at the i-th intensity. To find the approximate position of the minimum of
S, the parameters νee and νie were varied between 0.75 and 1.05 times their
standard values of Appendix A in steps of 0.05 times their standard value,
then to refine the position, the parameters were varied in finer steps of 0.01
times their standard value in the vicinity of the minimum. We then used the
fitted νee and νie to model MEP amplitudes between 140% RMT and 180%
RMT and compared to experimental data. That is, we have predicted data
at high intensities that is unseen by the model.

Second, we assessed how the MEP was modulated following paired pulse
paradigms. In the paired pulse approach, a sub- or suprathreshold condi-
tioning TMS pulse was delivered followed by a test TMS pulse after a given
inter-stimulus interval. The peak-to-peak amplitude of the conditioned MEP
is then compared against a MEP following a test TMS pulse alone (i.e. an
unconditioned MEP). Experimentally, subthreshold conditioning pulses are
followed by a period of inhibition lasting 1-6 ms (short-interval intracortical
inhibition, SICI) and then a period of facilitation lasting 10–15 ms (intra-

14



cortical facilitation, ICF) (Kujirai et al., 1993). Suprathreshold condition-
ing pulses are followed by strong facilitation which peaks at ∼20 ms, and
then a long period of inhibition lasting 50–200 ms (long-interval intracorti-
cal inhibition, LICI) (Valls-Solé et al., 1992). SICI and ICF are increased
and decreased respectively by drugs which are agonists of GABAAreceptors
(i.e. increase inhibitory neurotransmission) such as benzodiazepines (Zie-
mann et al., 1996), and antagonists of N -Methyl-D-aspartic acid (NMDA)
receptors (i.e. decrease excitatory neurotransmission) such as dextromethor-
phan (Ziemann et al., 1998). In contrast, LICI is increased by drugs which
are agonists of GABAB receptors, such as baclofen (McDonnell et al., 2006).

To test SICI and ICF, we used a conditioning subthreshold pulse at 70%
RMT by setting φx to 70% of its threshold value identified from the response
curve, followed by a second, test pulse, at 120% RMT, at a variety of intervals.
The MEP due to the second pulse was then plotted against the interstimulus
interval. To model the impact of NMDA-modulating drugs on SICI and ICF,
we reduced the coupling constant νee by 30% and analysed the changes in
MEP against ISI. To assess the effect of GABAAmodulation, we increased the
coupling constant νAei by 30% and assessed the change in MEP. To quantify
the effect on SICI, we looked at the reduction in amplitude at 3 ms ISI; for
ICF we looked at the change in amplitude at 15 ms ISI.

LICI was analysed in a similar manner. In this case we used a 120%RMT
conditioning pulse and a 120% test pulse. The MEP was plotted against
ISI. To look at the effect of modulating GABAB, we increased the coupling
constant νBei by 30% and simulated the MEP against ISI plot again. We
then used the change in amplitude at 100 ms ISI as a measure of the effect
on LICI. We note the choice to alter parameters by 30% was not intended
to specifically model the effect of these drugs at any specific dose based on
biophysical grounds, but was instead selected to generally assess the effect
of increasing or decreasing parameters related to the primary mechanism of
action for each drug.

2.6. Muscle contraction

Finally, we assessed how the modeled MEP was altered with a tonic
muscle contraction. MEPs increase in amplitude with increasing voluntary
muscle activation, and are followed by a cessation in muscle activity which
last for 200–300 ms and is known as the cortical silent period (CSP). The
firing rate of the Layer 2/3 cells is directly related to the level of voluntary
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muscle contraction (Evarts, 1968), and this influences the rates of the Layer 5
cells. Moezzi et al. (2017) used a Poisson process to provide excitatory input
to layer 2/3 cells with a mean rate of 5 s−1 to model 10 percent maximum
voluntary contraction (%MVC). This rate gave similar motoneuron activity
to that observed experimientally (Zhou and Rymer, 2004). In our neural
field implementation, we have applied an additional external excitatory input
rate to the layer 2/3 populations of a constant 0.5 s−1 for each %MVC,
coupled to the e and i populations with strengths νee and νie respectively.
For example, for 5% MVC, we apply, in addition to the rate provided by the
TMS stimulation, a constant rate of 2.5 s−1; for 10% MVC the additional
rate is 5.0 s−1.

2.7. Application to repetitive TMS protocols

A central motivation for developing a MEP model of TMS was to provide
a more realistic output measure for neural field models of plasticity induced
by repetitive TMS (rTMS) protocols. As a proof-of-concept, we assessed how
modeled MEPs were altered following either intermittent or continuous theta
burst stimulation (iTBS, cTBS). We included features of calcium-dependent
plasticity with a Bienenstock-Cooper-Munro (BCM) rule for metaplastic-
ity (Fung and Robinson, 2014; Wilson et al., 2016, 2018), see Appendix B.
We and others have previously demonstrated that this plasticity model cap-
tures several key features of TBS-induced plasticity by assessing changes in
synaptic weights following stimulation (e.g. synaptic weights are increased
following iTBS and decreased following cTBS). However, it remains unclear
how these changes in synaptic weights would impact MEP amplitude.

We simulated canonical cTBS and iTBS protocols (Huang et al., 2005)
with three pulses per burst at 50 Hz intraburst rate, five bursts per second,
for a total of 600 pulses. For cTBS pulses were applied continuously; for
iTBS pulses were applied for 2 s then were absent for 8 s, before repeat-
ing. Specifically, we first measured the ‘pre-TMS’ response of the model to
a single test pulse at 120% RMT, that is, a single pulse of φx with an ampli-
tude of 120% of the value identified from the modeled motor response. We
then applied TBS by pulsing the external stimulation rate φx in a cTBS or
iTBS pattern with an amplitude of 80% of the threshold value, that is 80%
RMT. Plasticity induced by TBS was modeled using the approach outlined
in Wilson et al. (2016), where changes in νee are governed by intracellular
calcium concentrations following stimulation (see Appendix B for details).
We then identified from NFTsim the final value of ν̃ee, the ultimate synaptic
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weight for the excitatory-to-excitatory coupling arising as a result of the TBS
application. We then used this value as a new value for νee, and simulated
again the MEP response to a single pulse at intensity of 120% RMT. The
test responses before and after TBS were then compared.

Although initial experimental studies suggested that iTBS increased, whereas
cTBS decreased, MEP amplitude, more recent studies have suggested that
response to TBS is variable across individuals. The variability likely arises
from both methodological and biological factors. For instance, Hamada et al.
(2013) found that the manner of interaction of TMS with cortical circuits was
associated with the direction of change in MEPs following iTBS and cTBS.
In contrast, Mori et al. (2011) found that single nucleotide polymorphisms
in genes associated with glutamatergic NMDA receptors impacted iTBS out-
comes. To assess the impact of methodological and biological variability on
TBS-induced changes in MEPs, we altered the synaptic coupling of TMS to
the layer 2/3 excitatory population, νex, to mimic variability in how TMS in-
teracts with cortical circuits during TBS, and the initial value of the coupling
between layer 2/3 excitatory populations, νee, to mimic variability in gluta-
matergic receptors. The change in MEP following TBS was then assessed as
a function of these two coupling parameters.

2.8. Code availability

The NFTsim model for the neural field equations is available at https://
github.com/BrainDynamicsUSYD/nftsim (version 1.1.0) (Sanz-Leon et al.,
2017). The motor model is implemented in Matlab and is available at
https://github.com/mtwilson1970/MEP_modeling_2020.

3. Results

3.1. Motor evoked potential at rest

A simulated EMG at rest is shown in Fig. 3 by the black lines. A stimu-
lation intensity of 780 s−1 (120% RMT) has been used with a pulse length of
0.5 ms (Wilson et al., 2016). Broadly, these parameters result in activation
of around 39% of neurons, of similar magnitude to the fraction of neurons
reported to respond to single TMS in non-human primates (Romero et al.,
2019). Part (a) gives a plot of the EMG as a function of time (stimulation is
at 0 s); the MEP is indicated. The corresponding layer 5 pulse rate is shown
in part (b), and the firings of motoneurons are shown in part (c). Each dot
corresponds to a firing of a unit arranged such that the lowest threshold
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firings correspond to the lowest-indexed units. The MEP demonstrates a
realistic shape, with a rapid positive rise about 25 ms after the TMS pulse,
followed by rapid fall to a maximum negative deflection about 10 ms later.
Small amplitude (∼0.05 mV) activity follows the MEP, from about 50 to
75 ms after the TMS pulse. In this case the MEP shows a double positive
peak, with the main peak at about 1.05 mV and the secondary peak about
0.50 mV in size. While MEPs are typically biphasic in shape, more complex
triphasic waveforms are often recorded [for example see Day et al. (1989)].

Figure 3(b) shows the mean pulse rate, relative to the baseline of 17.8 s−1.
Initially, around 2 ms after the initial TMS pulse, there is a small (relative
change 2.5) peak in the response. This time delay for layer 5 response com-
pares reasonably with the 2 to 3 ms of Moezzi et al. (2017) and is similar to
experiment (1.5–2 ms) (Hallett, 2007). There are further peaks of activity.
A peak of 4.5 occurs in relative activity at 5 ms after stimulation, and a peak
of nearly 17 at 15 ms. Examination of the modeled cortical responses shows
that these peaks are a result of indirect stimulation of the layer 5 cells, via
the excitatory layer 2/3 cells. Their size is influenced by the magnitude of
the direct stimulation to the layer 5 neurons. There is a strong dip before the
final peak, at ∼8 ms, due to build-up of GABAA inhibitory effects after the
initial rise, but it is short-lived. After about 15 ms, the layer 5 neurons reach
a maximum firing rate. Beyond this time, there is a drop-off in activity as the
longer timescale GABAB inhibitory receptor effects become prevalent. Since
Fig. 3(b) shows mean activity across a population, the peaks and troughs
of the plot should not be considered as the I-waves per se; rather we may
expect such waves to be possible during the times where the activity is large.
Changes in layer 5 firing rate are consistent with recent invasive recordings
in rodents (Li et al., 2017) and non-human primates (Romero et al., 2019).

The firings of the motoneurons are shown in Fig. 3(c). Note that the
motoneurons fire in approximate synchrony at the MEP, although the higher-
threshold neurons (higher motounit number) fire slightly later, since they
need to integrate more input before they reach their thresholds. This is the
reason for the ‘double peak’ in the MEP in Fig. 3(a); the later firing neurons
contribute larger MUAPs and so the net summation of the MUAP train has
a second peak at later times.

Fig. 3 also shows a result for the case of a subthreshold pulse at 80%RMT
(red dashed line). In this case we see that the layer 5 firing rate increases by
about 50% for the first 6 ms and then decreases by about 50% from baseline
for the next 4 ms, panel (b). However, it is insufficient to substantial firing
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Figure 3: (a) A typical electromyogram (EMG) produced by the model as a function of
time, for the suprathreshold case of 120% resting motor threshold (RMT), black line, and
the subthreshold case of 80%RMT, red dashed line, displaced by −1 mV. The motor-
evoked potential (MEP) is indicated. The transcranial magnetic stimulation (TMS) pulse
occurs at 0 s. (b) The mean rate of firing of the layer 5 population as a function of
time, plotted relative to the baseline rate, for the cases of 120%RMT (black curve) and
80%RMT (red dashed curve). The blue line shows the baseline rate. The inset shows an
enlarged version at early times. (c) Motoneuron firings as a function of time, for the cases
of 120%RMT (black dots) and 80%RMT (open red circles).
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of motoneurons (c) and thus no MEP is produced (a).
The effect of TMS intensity on MEP amplitude is shown in Fig. 4(a). In

this plots we show the MEP amplitude against external stimulation rate φx
for a variety of parameter sets. To prevent a single plot becoming exception-
ally crowded, we shown just a small subset of the parameter sets. The full
analysis is shown in Appendix C. The standard parameter set (see Appendix
A) produces a response curve shown by the thick black line. From this curve
we identify a resting motothreshold of about 650 s−1 input intensity, as being
the amplitude that gives a MEP of around 0.1 mV. We show with vertical
dashed lines this value and 120% of this value.

The colored curves show the response curves when changes are made to
the parameter set. Except for the propagation delays τ fastve , τ slowve , τAvi and
τBvi , we have changed one parameter at a time, either increasing it by 15% or
decreasing it by 15%. With the propagation delays we have changed them by
setting (i) all equal to 3 ms and (ii) decreasing τ fastve to 0 ms and increasing
τ slowve to 6 ms (i.e. (i) equalizing them and (ii) stretching them). We also
show the effect of increasing νvx, the TMS-to-corticospinal output neuron
coupling, by a factor 3. The black dashed line shows the mean over the
responsee curves for all parameter sets. A more complete analysis is given in
Appendix C.

There is considerable variation in maximum output intensity, from about
1 – 7 mV. However, there is more consistency in threshold; all responses are
very low at 600 /s and then climb rapidly with stimulation intensity. By
1200 s−1 stimulation (approx 180% RMT) most responses have flattened.
For clarity, Fig 4(b) shows the MEP response for the standard parameter
values and mean of the responses for the ±15% changes in parameters, that
is the thick black and dashed lines of part (a), on a log-log scale.

Appendix C shows a more complete sensitivity analysis for changes in
model parameters. Response curves are shown in Fig. C.9. In Table C.3,
we document the percentage changes in 1. resting motor threshold (RMT),
2. MEP amplitude at 200% threshold and 3. maximum gradient of the
response curve for the various changes in parameters. The RMTs are not
greatly affected by changes in parameters, with θv, the ‘threshold’ of the
layer 5 activation curve being the most significant contributer. The MEP
amplitude at 200% RMT, (towards the ‘plateau’), shows greater variation.
In particular, parameters associate with the balance between excitatory and
inhibitory coupling in layer 2 and 3 affect the MEP amplitude, a set of param-
eters favouring excitation gives a strong increase in MEP, and the opposite
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Figure 4: (a) The size of the modeled motor-evoked potential (MEP) as a function of
the stimulation intensity at rest, for various parameter sets. The black solid line denotes
the response for the standard parameter set. Shown by the colored lines are the response
curves due to: a +15% change in maximum external to excitatory coupling νmax

ex , blue
solid, labeled νmax

e +; a −15% change in νmax
ex , blue dashed, labeled νmax

e −; a +15% change
in external to inhibitory coupling νix, orange solid, labeled νix+; a −15% change in νix,
orange dashed νix−; setting layer 2/3 to layer 5 axonal delays τ fastve , τ slowve , τAvi and τBvi all to
3 ms, purple solid, labeled τ+; setting τ fastve to 1 ms, τ slowve to 6 ms, and leaving τAvi and τBvi
at 3 ms, purple dashed, labeled τ−; multiplying external to layer 5 coupling νvx by three,
green solid, labeled νvx × 3. The black dashed line denotes the mean response across
all parameter sets modeled. The vertical dashed lines indicate resting motor threshold
(RMT) and 120%RMT for the standard parameter set. (b) The same plot as part (a) on
a log-log scale for the standard parameter set (solid line) and the mean across parameter
sets (dashed line). (c) A prediction of high amplitude single-pulse response based on the
low amplitude single-pulse response. The black points show experimental data (mean ±
standard error in the mean) for a single-pulse response curve as measured by Goldsworthy
et al. (2016). The red line shows model output after varying the synaptic couplings νee
and νie to best fit the low amplitude experimental data points (up to 130% RMT), based
on a least-squares measure. The model then reproduces the experimental measurements
at the higher amplitudes (140% RMT and above), shown by the blue dashed line, within
experimental uncertainty.
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with inhibition. Also, the strength of the TMS-to-excitatory coupling, νmax
ex ,

strongly affects MEP size (the greater the field the strength, the greater the
response), as does the threshold of the layer 5 activation curve, θv. The
maximum gradient in response curve can be strongly affected by choice of
parameters, in particular the strength of the TMS-to-layer 2/3 excitatory
coupling νmax

ex , the time delays for the layer 2/3 excitatory to layer 5 cou-
plings and the threshold of the layer 5 activation curve, θv. This manifests
itself on Fig. 4(a) as a change in the rate of rise of MEP with increasing
stimulus above threshold. This would strongly affect the rate of increase of
MEP just above threshold and thus the extent of stimulation at 120% RMT.

Finally, we tested the predictive capacity of our model against experi-
mental input-output curve data taken from Goldsworthy et al. (2016). The
optimal fitting of MEP amplitudes using data obtained between 90% and
130% RMT gave νee and νie as 0.92 and 0.89 times the standard parameter
values of Appendix A respectively. With these values, we are able to predict
the experimental response for the higher stimulation amplitudes, 140% RMT
to 180% RMT, that is, we have predicted the response to the higher inten-
sities based on the response to the lower intensities. Figure 4(c) shows the
results; the black points show the experimental data (mean ± standard error
in the mean), the red curve shows the model output fitted to the lower am-
plitude data (90% RMT to 130% RMT), and the blue dashed continuation of
the red curve gives the prediction for the high amplitude data (140% RMT to
180% RMT). The prediction lies within experimental uncertainty, providing
evidence that the model is capable of predicting unseen data.

3.2. Paired-pulse protocols

To model SICI and ICF we have applied a conditioning stimulus at 70%
RMT and a test stimulus at 120% RMT. The interstimulus interval (ISI) has
been varied up to 20 ms. Results are shown in Fig. 5(a). For short ISI (5 ms or
less) there is substantial inhibition of the pulse; at very short ISI the response
to the test pulse is almost abolished. This broadly agrees with experiment
(shown for comparison) which demonstrates that SICI at subthreshold con-
ditioning intensities persists up to approximately 7 ms ISI (Kujirai et al.,
1993). At longer ISI (7 ms and greater) the model shows facilitation of the
test pulse. This facilitation peaks at about 10 ms, in agreement with exper-
iment (Valls-Solé et al., 1992; Kujirai et al., 1993; Ziemann et al., 1996).

Modeling of LICI is achieved by pairing two suprathreshold pulses at
120% RMT. Results are shown in Fig. 5(b) and an experimental plot (Valls-
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Figure 5: The modeled motor-evoked potential (MEP) changes as a result of paired-pulse
protocols. MEPs are normalized in terms of the amplitude for a single test pulse and are
plotted against the time between the two pulses, that is the interstimulus interval (ISI).
(a) A 70% resting motor threshold (RMT) conditioning pulse with a 120% test pulse
demonstrates short interval intracortical inhibition (SICI) and intracortical facilitation
(ICF). Experimental results (Kujirai et al., 1993) are shown in the right hand panel with
permission. (b) A 120% RMT conditioning pulse with a 120% RMT test pulse shows
long interval intracortical inhibition (LICI). The dashed lines indicate no change in MEP;
a response above the line indicates facilitation, a response below indicated inhibition.
Experimental results (Valls-Solé et al., 1992) are shown in the right hand panel with
permission.
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Solé et al., 1992) is shown for comparison. At ISI less than 50 ms there is
substantial facilitation of the test pulse, but at longer ISI (50 ms to 300 ms)
there is considerable inhibition. While broadly consistent with experiment
there are some differences. First, the extent of the ICF is higher than usually
seen, and the period of LICI lasts to longer ISI (about 300 ms) than is
typically seen experimentally (about 200 ms). Also, the modeled LICI is not
as strong; MEPs are reduced in the model to around 40% of their baseline
whereas in experiment they can be almost eliminated.

Next, we simulated the effect of GABAergic and anti-glutamatergic drugs
on SICI, ICF, and LICI by modulating the coupling strengths between layer
2/3 cortical populations. Fig. 6(a) shows a paired pulse response curve with
and without the presence of a GABAA agonist, modeled by increasing the
coupling strength νAei due to GABAA receptors from the inhibitory to the
excitatory population. The plot shows that increasing neurotransmission of
GABAA receptors on excitatory populations increases SICI (at 3 ms) but
reduces ICF (at 15 ms). This agrees with experiment (Ziemann et al., 2015)
which shows that a GABAA receptor agonist such as Diazepam increased
SICI (Di Lazzaro et al., 2005, 2007; Müller-Dahlhaus et al., 2008) but reduced
ICF (Inghilleri et al., 1996; Mohammadi et al., 2006).

Fig. 6(b) shows the effect of decreasing excitatory to excitatory coupling
strength νee (equivalent to applying an anti-glutamatergic drug) on SICI
and ICF respectively. The plot shows that SICI (at 3 ms) is increased,
whereas ICF (at 15 ms) is reduced by decreasing excitatory coupling, largely
in agreement with studies applying anti-glutamatergic drugs such as Mema-
tine (Schwenkreis et al., 1999) or Riluzole (Schwenkreis et al., 2000; Liepert
et al., 1997), and NMDA-antagonists such as Amantadine (Reis et al., 2006)
or Dextromethorphan.

Finally, we simulated the effect of increasing the inhibitory to excita-
tory coupling νBei due to GABAB receptors (equivalent to applying a GABAB

receptor agonist) on LICI. Figure 6(c) demonstrates a significant increase
in LICI (ISI of 100 ms; two suprathreshold pulses) with increased GABAB

receptor coupling to excitatory populations, again in agreement with exper-
iments using GABAB receptor agonists such as baclofen (McDonnell et al.,
2006). Taken together, these findings demonstrate that our MEP model
is able to capture a large range of paired-pulse TMS phenomena that are
observed experimentally, including the effects of altering excitatory and in-
hibitory neurotransmission using different drugs.
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Figure 6: Paired pulse response curves with and without the presence of modulating
drugs. (a) The relative motor evoked potential (MEP) as a function of interstimulus inter-
val (ISI) for a subthreshold conditioning pulse and suprathreshold test pulse for the case
of the standard parameter set (black solid) and increase of GABAA-modulated inhibitory
to excitatory coupling νAei by 30% (blue dashed). The vertical dashed lines indicate ISI of
3 ms (for short-interval intracortical inhibition, SICI) and 15 ms (for intracortical facili-
tation, ICF). The horizontal dashed line shows a relative MEP size of 1 (no change from
baseline). (b) The paired-pulse response for the standard parameter set (black solid) and
decrease of excitatory to excitatory coupling νee by 30% (blue dashed). (c) The paired-
pulse response for two suprathreshold pulses for the standard parameter set (black) and
increase of GABAB-modulated inhibitory to excitatory coupling νBei by 30% (blue). The
vertical dashed line denotes an ISI of 100 ms (long-interval intracortical inhibition, LICI).
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3.3. Motor evoked potential during contraction

Figure 7(a) show the EMG response following a single pulse at 120%
RMT during a voluntary tonic muscle contraction (10% MVC). Before the
pulse, ongoing muscle activity of around 0.05 mV in amplitude is apparent,
as a result of the excitatory input to the cortex from the voluntary contrac-
tion (modeled as an external input rate of 5 s−1 on the excitatory cortical
population.) The background activity has resulted in a 10% increase in the
amplitude of the MEP during a contraction. Also, a silent period is evident
after the pulse during which there is no EMG, with background EMG return-
ing after 300 ms. Further increasing the strength of the muscle contraction
resulted in increased MEP amplitude, as shown in Fig. 7(b), in line with
experimental findings.

Figure 7(c) shows the CSP against the time constant of the decay of
GABAB. As decay constant increases, the silent period also increases. This
agrees with experimental results, but overall the modeled CSP is somewhat
longer than typical measured CSPs (Li et al., 2017). The CSP reflects the
long period in which the layer 5 pulse rate (Fig. 3(b)) drops below its equi-
librium value due to build-up of GABAB and its length is strongly related to
the timescale of GABAB decay (Moezzi et al., 2017).

3.4. Theta-burst stimulation

Having established that our model captures a wide range of single and
paired pulse TMS phenomena, we next assessed whether modeled MEPs at
120% RMT were sensitive to changes in synaptic weights induced following
600 pulses of canonical iTBS and cTBS (Huang et al., 2005) stimulated using
a model of CaDP with metaplasticity. We modeled a range of parameter val-
ues for νex and νee mimicking variability in how TMS interacts with cortical
circuits (TMS-e coupling) and variability in glutamatergic neurotransmission
(e-e coupling) respectively. Figure 8 shows the predicted relative changes
in MEPs following both cTBS and iTBS. There are several notable features
to these outcomes. First, there are several areas within the parameter space
that predict the ‘canonical response pattern to TBS (i.e. cTBS decreases
MEPs, iTBS increases MEPs, e.g. the point ◦). Second, a wide variability
in response profile can also be generated by altering how TMS interacts with
cortical circuits (TMS-e coupling) and how excitatory populations interact
with each other (e-e coupling). For instance, the point ∗ shows an opposite
to canonical response, the point 5 a parameter set where both paradigms
decrease MEP amplitude, and 4 a parameter set where both paradigms
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Figure 7: Modeled motor-evoked potential (MEPs) with muscle contraction. (a) The time-
course of the electromyogram (EMG) at 120% resting motor threshold (RMT) intensity
and 10% maximum voluntary contraction (MVC). The silent period is indicated. (b) The
amplitude of the MEP as a function of %MVC. (c) The duration of the silent period as a
function of γ-aminobutyric acid B (GABAB) decay time constant.
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Figure 8: The modeled MEP changes as a result of (a) continuous theta-burst stimulation
(cTBS) and (b) intermittent theta-burst stimulation (iTBS) protocols against the rela-
tive strength of the transcranial magnetic stimulation (TMS)-to-excitatory coupling and
excitatory-to-excitatory coupling strengths. The dashed lines show no change in synaptic
weight. The weight changes at four points are indicated in the lower panels. A canonical
response is indicated by ©, an opposite-to-canonical response is indicated by ∗, both re-
sponses positive is indicated by 4, and both responses negative by 5. The white space
in panels (a) and (b) denotes regions where the output from the NFTsim simulation locks
into a persistent high-firing state and MEP changes cannot be assessed.
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increase MEPs. Furthermore, there are parameter spaces where neither
paradigm has a strong effect on MEP amplitude (e.g. ‘non-responders’).
However, the maximum predicted increase in MEPs (∼1.15) is smaller in
magnitude than the maximum predicted decrease (∼0.7), and is also smaller
than the maximum often observed in experiment (∼1.8). Third, the response
of NFTsim to TBS becomes unstable (i.e. locks in to a high firing rate similar
to a seizure) at high values of both TMS-e coupling, but particularly e-e cou-
pling, due to the intracortical excitatory-to-excitatory feedback overcoming
the inhibitory-to-excitatory feedback (Roberts and Robinson, 2012; Robin-
son et al., 2004). This stiuation is shown by the white space on Fig. 8 since
for these cases we cannot assess changes in MEPs after TBS. It occurs when
potentiation is strong, and patly explains why the maximum MEP increase
shown in the model (∼1.15) is rather lower than often seen experimentally
(∼1.8). Interestingly, disorders associated with abnormal glutamatergic
receptor function, such as anti-NMDA receptor encephalitis, are often ac-
companied by seizures. Fourth, the predicted changes in MEP amplitude
following TBS across the parameter space are nonlinear — suggesting these
relationships would not be evident with simple correlations often used in
human TMS experiments. Taken together, these findings demonstrate that
our MEP model is sensitive to changes in synaptic weight following TBS
predicted by a model including rules for CaDP and metaplasticity, and is
able to capture a variety of response profiles often observed in human TBS
experiments. However, the model is not able to adequately capture the mag-
nitude of MEP changes observed in experiments following TBS, suggesting
that modeling plasticity only on excitatory-to-excitatory synapses is likely
insufficient to explain experimental observations.

4. Discussion

We have developed a biophysical model of MEPs following TMS to the
motor cortex by combining a population-based model of cortical activity and
an individual neuron model of motor output. The model captures many
common features of MEPs including input-output characteristics, responses
to paired-pulse paradigms, a silent period with voluntary contraction and
changes in MEPs following plasticity-inducing TBS paradigms. It provides
unique insights into how micro/mesoscale mechanisms, such as differences in
synaptic weightings between excitatory/inhibitory neural populations, can
impact TMS-evoked motor output and TMS-induced plasticity.
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There are several limitations of, and assumptions behind, the approach.
First, we have assumed the architecture of connections between layer 2/3
neural populations and layer 5 corticospinal output neurons used in the I-
wave hypothesis of Rusu et al. (2014). We note, however, that varying the
lengths of the propagation delays used for the various layer 2/3 to layer 5
connections did not greatly affect the MEP amplitude or threshold, although
it did affect the gradient of the response (MEP increase per unit increase
in TMS amplitude). Within the neural-field NFTsim model, one could also
vary the architecture of the couplings between layers if required.

Secondly, coupling between the external stimulation provided by the TMS
coil and the layer 2/3 cells, and layer 5 cells, is not completely understood.
This manifests itself in three distinct ways in the model. (a) The interpreta-
tion of the external stimulation strength, φx is moot. In our interpretation
of Fig. 4, we have assumed that it is broadly proportional to the strength of
the TMS machine output. This assumption affects the identification of the
threshold and interpretation of what different percentage RMT might mean
in practice. (b) We have made several assumptions regarding the recruitment
of inhibitory and excitatory neuronal populations with differing stimulation
intensities. Specifically, we have assumed that layer 2/3 inhibitory interneu-
rons are preferentially recruited at lower TMS intensities, whereas layer 2/3
excitatory interneurons become preferentially recruited at higher intensities,
Eq. (1). (c) Furthermore, we assume that layer 5 pyramidal cells are only
weakly activated by the TMS pulse. While there is evidence that the layer
5 cells receive a lower direct stimulation (Di Lazzaro and Rothwell, 2014;
Bungert et al., 2016; Opitz et al., 2013) this is poorly understood. The
assumptions (b) and (c) are largely based on indirect experimental obser-
vations in humans, e.g. (Ziemann et al., 1996; Ilic et al., 2002), as there is
little direct experimental data informing how TMS impacts firing rates of
different neuronal types. Recently, both rodent (Li et al., 2017) and non-
human primate (Romero et al., 2019) models have been developed which
allow recording of individual neurons during TMS. Future research address-
ing how TMS intensity impacts the firing rates of different neuronal subtypes
would greatly inform how best to model these interactions. We have assessed
the impact of the assumptions by changing the parameters in the equation,
as shown in Fig. 4 and Table C.3. While the size of the MEP and its gradient
are sensitive to the maximum external-to-layer 2/3 excitatory coupling size
νmaxex , Eq. (1), the other parameters describing the width and threshold of
the coupling curve, B and A respectively, have little impact. There is also
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moderate impact in the MEP size due to changes in the external-to-layer 2/3
inhibitory coupling, νix. Essentially, the stronger the excitation over inhibi-
tion, the stronger the MEP. We have assessed the impact of the assumption
of low external-to-layer 5 coupling strength by increasing νex by a factor 3;
overall MEP size at 120% RMT increased by 20%.

Thirdly, a limitation of our model is that it does not predict I-wave activ-
ity in layer 5 corticospinal neurons (Rusu et al., 2014; Moezzi et al., 2017).
Population-based models are not well suited for capturing highly synchro-
nized events, such as I-waves, as mean population firing-rates are modeled
instead of individual firing events. However, modeling at the population level
is well suited for TMS (Wilson et al., 2018), which simultaneously activates
large neural populations, and captures the slower excitatory and inhibitory
postsynaptic potentials that are likely involved in paired pulse phenomena.
Indeed, our model is successful at capturing a wide range of single-pulse,
paired-pulse and rTMS phenomena without explicitly modeling I-waves. Fur-
thermore, our model also predicts changes in layer 5 corticospinal neuronal
firing rates following single pulse TMS. While it is not currently possible to
record this data in humans, the pattern of activity described by the model
is remarkably similar to recent in vivo recordings in rodents and non-human
primates (Li et al., 2017; Romero et al., 2019). Such findings highlight the
potential of such models to inform the microscale and mesoscale mechanisms
of TMS from macroscale recordings. We also emphasize that we have used
the structure of layer 2/3 neurons feeding forward to layer 5 neurons, as
hypothesized by Rusu et al. (2014). However, the essence of our approach,
linking neural field theory to MEPs, does not require such a structure, and
other structures of connections can be simulated and assessed in a similar
manner.

Fourthly, our model is deterministic in the sense that baseline cortical
excitability, captured by the mean population firing rate of a given neural
population, is relatively constant and has little variability (see the blue line
in Fig. 3(b) for example). Thus trial-to-trial variability of MEP amplitude,
which is likely driven in part by fluctuations in cortical excitability, has not
been considered. Importantly, higher levels of baseline MEP variability are
associated with stronger plasticity responses following theta burst stimula-
tion (Hordacre et al., 2017), suggesting neuronal variability plays an impor-
tant role in promoting brain plasticity. MEP variability is likely driven by
fluctuations in both cortical and spinal excitability (Kiers et al., 1993). For
example, Zrenner et al. (2018) have demonstrated that the size of MEP varies
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with the phase of underlying alpha rhythms in the subject, and brain state
may influence other TMS effects (Ziemann et al., 2015). In terms of model-
ing, explicit variations in parameters can be made to investigate the effects of
changes in endogenous cortical excitability on MEPs. We have demonstrated
that variations in some parameters, e.g. maximum TMS-to-excitatory cou-
pling, νmax

ex , and the threshold of the layer 5 activation curve (θv; a key pa-
rameter determining mean population firing rates), strongly affect MEP sizes
and to a lesser extent RMT, suggesting that changes in endogenous cortical
excitability has a large impact on MEPs, and variations of these parame-
ters may be important for simulating MEP variability. Furthermore, we also
modeled the effect of increased cortical excitability resulting from volitional
drive to the motor cortex during voluntary muscle contractions. Increas-
ing the mean population firing rates in the layer 2/3 excitatory population
with increasing contraction strength increased MEP amplitude in the model,
further demonstrating how changes in endogenous cortical excitability (i.e.
brain state) can influence TMS-evoked motor output. Given the importance
of variations in cortical excitability for brain function, a necessary next step
will involve incorporating variability into the current model. Indeed, such
variability may be essential for accurately simulating the brain’s response to
TMS. There are multiple ways in which variability in cortical and spinal ex-
citability could be incorporated, such as adapting existing population-based
models including cortico-thalamic loops (Robinson et al., 2004), which are
able to capture complex fluctuations in brain excitability such as cortical
oscillations. Furthermore, more detailed models of spinal circuits could also
introduce variability (Kiers et al., 1993). Including these approaches will
allow allow further exploration of MEP variability, and modeling of TMS-
evoked EEG activity (Rogasch and Fitzgerald, 2013).

Fifthly, we have assumed that the neural population modeling scheme of
NFTsim is adequate for the purposes of modeling TMS effects. The relevance
of NFTsim to various applications has been well discussed elsewhere (Sanz-
Leon et al., 2017; Robinson et al., 2004; Pinotsis et al., 2014; Deco et al.,
2008); in particular we note that the application of neural field modeling
with calcium dependent plasticity to TMS has been discussed in Fung et al.
(2013), Fung and Robinson (2014), and Wilson et al. (2016). We emphasize
that we have modeled changes only to the excitatory-to-excitatory coupling
νee; in practice other coupling strengths are also likely to change (e.g. changes
in coupling with inhibitory populations).

Finally, most of the comparisons between model predictions and real data
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were qualitative in the current work. Our preliminary analysis on the capac-
ity of the model to predict unseen MEP amplitudes resulting from high in-
tensity stimulation when only constrained on low intensity experimental data
suggests that the model does have some predictive ability. Furthermore, the
model was able to qualitatively capture a wide range of experimental phe-
nomena (input-output curves, paired pulse paradigms at different ISIs and
intensities, cortical silent period) using the same parameter set, providing
additional support that the model has good predictive capacity. However,
a more rigorous and detailed examination of this issue is required. Future
work assessing the capacity to predict a wide range of unseen experimental
data (e.g. following changes to a large range of experimental parameters such
as intensity or inter-stimulus interval) will help further define the predictive
value of such models.

5. Conclusions

We have demonstrated how a biophysically plausible nonlinear model of
MEPs can be combined with the output of a population-based model of corti-
cal neurons in order to produce a description of MEPs due to TMS. The final
MEP activity is realistic in terms of variation with intensity and muscle con-
traction, and demonstrates the known amplitude and interval-dependent ef-
fects in paired-pulse stimulation. The MEP model is also sensitive to changes
in synaptic weight predicted by a model of TBS-induced plasticity including
rules for CaDP and metaplasticity, demonstrating complex relationships be-
tween variability in methodological and biological factors and MEP changes
following TBS. Overall, the approach allows population-based modeling of
cortical plasticity using neural field theory to be better-interpreted, by pro-
viding a route by which the effect on the MEP can be evaluated. Continued
development of such models in combination with human experiments will
enable a unified theoretical understanding of how TMS interacts with and
modifies cortical circuits.
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Appendix A. The NFTsim model

The open source NFTsim model, see Sanz-Leon et al. (2017) for details,
uses a neural field approach to calculate population-averaged descriptions of
neural behavior as a function of time and space. However, in this work we
have excluded explicit spatial variation. Here we present briefly the model
and its parameters.

The mean soma potential Va of a population of neurons of type a (a =
e, i, v) for layer 2/3 excitatory, layer 2/3 inhibitory, and layer 5 excitatory
corticospinal output neurons respectively, is given by the sum of contributions
from postsynaptic potentials (PSPs):

Va(t) =
∑
b

Vab(t), (A.1)

where Vab describes the postsynaptic potential at the population a due to
incoming events from population b (b = e, i, v, or x) where x describes an
external stimulation due to TMS.

The time course of the PSPs is described by the dendritic response through
the following equation:(

1

αab

d

dt
+ 1

)(
1

βab

d

dt
+ 1

)
Vab(t) = νab(t)φab(t− τab), (A.2)

where αab and βab are rate constants for the rise and fall rates of the PSPs
respectively, νab is the strength of coupling, and φab describes the rate of
incoming axonal pulses, from cells of type b to cells of type a. The parameter
τab describes delay in propagation of signals from neurons of type a to type
b; due to, for example, spatially long nerve pathways.
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The mean firing rate of the population a is given by a sigmoidal function
of the mean soma potential:

Qa(Va) =
Qmax
a

1 + e−(Va−θa)/σa
, (A.3)

where Qmax
a is the maximum firing rate, and θa is the threshold of the distri-

bution and σa is proportional to the width of the sigmoid distribution.
Finally, the firing of the population a results in generation of axonal

pulses, which propagate along axons towards synapses. This propagation is
described by (

1

γab

d

dt
+ 1

)2

φab(t) = Qab(t), (A.4)

where the parameters γab represent the axonal propagation rates from neu-
rons of type b to type a. Equations (A.1)–(A.4) describe the time-variation
of quantities Vab, Va, Qa and φab, and are integrated forward in time to give
the behavior of the neural populations.

To simplify, we assume that the dynamics depends only on the presy-
naptic cell, so that the subscript a on the parameters αab, βab and γab is
redundant; we label these parameters as αb, βb and γb respectively.

We include a superscript A or B on the synaptic inhibitory parameters
to denote the GABAA and GABAB responses respectively. Furthermore, the
multiple couplings from the layer 2/3 excitatory cells to the layer 5 cells are
labelled with superscripts ‘fast’ and ‘slow’.

The standard parameters for the description of the layer 2 and 3 ex-
citatory and inhibitory cells have come from previous work (Fung et al.,
2013; Fung and Robinson, 2014; Wilson et al., 2016, 2014), and are listed
in Table A.1. The layer 5 parameters have been chosen to give a plausible
motoneuron output, consistent with Moezzi et al. (2017), including a large
maximum firing rate, but also with a low threshold for activation. The synap-
tic couplings to the layer 5 cells from the layer 2/3 cells have been tuned to
show plausible behavior. The direct coupling from the TMS stimulation to
the layer 5 cells is considerably lower than the indirect couplings from the
layer 2/3 cells, reflecting the low amplitude of direct stimulation due to TMS
deeper in the cortex. Time delays for the propagation to the layer 5 cells
from the layer 2/3 cells are chosen to be consistent with Rusu et al. (2014);
excitations far from the layer 5 soma requiring around 5 ms to travel to the
soma. Others are commensurately quicker.
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Table A.1: The standard parameter values used in the NFTsim model (Sanz-Leon et al.,
2017) for the neural field modeling. The subscripts e, i and v denote layer 2/3 excita-
tory, layer 2/3 inhibitory and layer 5 excitatory corticospinal output neuron populations
respectively. We have used the simplification that γab, αab and βab are dependent on only
the presynaptic cell b; therefore only one subscript is used. The projections to the layer 5
cells are described with time delays τvb rather than axonal rate constants.

Parameter Description Value Unit

Excitatory cells, dendrite responses and propagation rates
αe dendritic rise rate 280 s−1

βe dendritic fall rate 70 s−1

γe axonal rate 110 s−1

θe Mean threshold for excitatory firing 13× 10−3 V
σe description of width of sigmoid distribution 3.8× 10−3 V
Qmax
e Maximum excitatory firing rate 340 s−1

Inhibitory cells, dendrite responses and propagation rates
αA
i dendritic rise rate to GABAA input 400 s−1

βA
i dendritic fall rate to GABAA input 100 s−1

αB
i dendritic rise rate to GABAB input 40 s−1

βB
i dendritic fall rate to GABAB input 10 s−1

γi axonal rate 1000 s−1

θi Mean threshold for inhibitory firing 13× 10−3 V
σi description of width of sigmoid distribution 3.8× 10−3 V
Qmax
i Maximum inhibitory firing rate 340 s−1

Layer 5 cells
θv Mean threshold for excitatory firing 8× 10−3 V
σv description of width of sigmoid distribution 2.5× 10−3 V
Qmax
v Maximum excitatory firing rate 900 s−1

Synaptic couplings
νee e-to-e synaptic coupling 1.92× 10−4 V s
νAei GABAA-modulated i-to-e synaptic coupling −0.72× 10−4 V s
νBei GABAB-modulated i-to-e synaptic coupling −0.72× 10−4 V s
νie e-to-i synaptic coupling 1.92× 10−4 V s
νAii GABAA-modulated i-to-i synaptic coupling −0.72× 10−4 V s
νBii GABAB-modulated i-to-i synaptic coupling −0.72× 10−4 V s
νfastve fast e-to-v synaptic coupling 2.4× 10−4 V s
νslowve slow e-to-v synaptic coupling 2.4× 10−4 V s
νAvi GABAA-modulated i-to-v synaptic coupling −3.0× 10−4 V s
νBvi GABAB-modulated i-to-v synaptic coupling −3.0× 10−4 V s
Propagation delays
τ fastve fast e-to-v axonal delay 1× 10−3 s
τ slowve slow e-to-v axonal delay 5× 10−3 s
τAie GABAA-modulated i-to-v axonal delay 3× 10−3 s
τBie GABAA-modulated i-to-v axonal delay 3× 10−3 s
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Appendix B. Calcium dependent metaplasticity

The equations and parameters for calcium dependent metaplasticity are
presented briefly here; for full details see (Fung and Robinson, 2014).

In the calcium-dependent plasticity (CaDP) scheme, the driver of plas-
ticity is the postsynaptic intracellular calcium concentration [Ca2+]e (where
e represents the excitatory layer 2/3 population in the current work), modu-
lated through NMDA receptors (Shouval et al., 2002). The ultimate excitatory-
to-excitatory synaptic weight ν̃ee(t) is modeled through (Fung and Robinson,
2014)

dν̃ee
dt

= η([Ca2+]e)
(
νmaxΩ([Ca2+]e)− ν̃ee

)
. (B.1)

The ν̃ee gives the value that the weight will ultimately come to when stimu-
lation is stopped, thus it determines whether a protocol gives LTD or LTP.
The parameter νmax gives the maximum possible weight; Ω is dimensionless
parameter that depends on [Ca2+]e (0.5 for concentrations < 0.15 µM, 0 for
concentrations between 0.15–0.5 µM and 1.0 at higher concentrations); η is
a rate parameter that increases with increasing [Ca2+]e

The actual synaptic weight νee responds slower and is modeled through(
z
d

dt
+ 1

)2

νee = ν̃ee. (B.2)

where z is a characteristic response timescale.
The postsynaptic calcium concentration [Ca2+]e itself depends on the glu-

tamate binding and postsynaptic activity through

d[Ca2+]e
dt

= gB([glu])H(V )− [Ca2+]e
τCa

, (B.3)

where g is the NMDA receptor-modulated calcium permeability, B is a sig-
moidal function of the glutamate concentration [glu], H is voltage-dependent
modulation of the dynamics (increasing with voltage V except at very high
depolarizations), and τCa a time-constant for calcium dynamics.

In the BCM approach to metaplasticity, the activity level that demarcates
LTD from LTP is dependent on past activity. This is incorporated into CaDP
by having conductance g dependent upon the history of the weight νee:

dg

dt
=

1

τrec
(g0 − g)− g0

τBCM

(
ν̃ee
νee
− 1

)
(B.4)
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Table B.2: Parameters for the calcium dependent metaplasticity model, taken from Fung
and Robinson (2013, 2014).

Parameter Description Value Unit

νmax Maximum synaptic coupling 10.0× 10−4 V s
λglu Glutamate released per presynaptic excitatory spike 50× 10−6 M s
g0 NMDAR-modulated Ca2+ conductance at equilibrium 2× 10−3 M s−1 V−1

τCa Time-constant for calcium dynamics 50× 10−3 s
τglu Time-constant for glutamate dynamics 30× 10−3 s
τrec Timescale for recovery of calcium conductance 1000 s
τBCM Timescale for metaplasticity 7 s
z Characteristic timescale for synaptic strength induction 100 s

where g0 is the calcium conductance at equilibrium, νee is the actual synaptic
weight, and ν̃ee is the ultimate synaptic weight. The metaplasticity timescale
is τBCM and the longer τrec is the recovery time for calcium conductance.

The glutamate concentration [glu] depends on presynaptic activity:

d[glu]

dt
= λgluφee −

[glu]

τglu
, (B.5)

where λglu is the glutamate concentration released per presynaptic excitatory
spike, φee is the incoming synaptic from the excitatory population, Eq. (A.4),
and τglu is the timescale for glutamate decay.

Equations (B.1) – (B.5), with functions η, Ω, B and H (Fung and Robin-
son, 2013), represent CaDP with metaplasticity. The resulting νee is fed back
into Eq. (A.2). Parameters and functions for these equations are as defined
in Fung and Robinson (2013, 2014); parameters are listed in Table B.2.

Appendix C. Response curves for different parameters

Figure C.9 shows the response curves for a range of different parameter
sets. In each plot, the thick black line denotes the response for the standard
parameter set, and the thin grey lines show the response when one parameter,
indicated by the curve, has been changed by +15% (marked by the ‘+’ sign)
or −15% (marked by the ‘−’ sign). The axonal delays, denoted by τ , are an
exception. In these cases τ+ refers to setting τ fastve , τ slowve , τAvi and τBvi all to
3 ms, whereas τ− refers to setting τ fastve to 1 ms, τ slowve to 6 ms, and leaving
τAvi and τBvi as 3 ms.
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Table C.3 details the percentage changes in RMT, MEP at 200% RMT,
and maximum gradient of the response curve, for the various parameter sets.
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Figure C.9: The motor evoked potential (MEP) as a function of external rate (TMS ampli-
tude) φx, for a variety of different parameter sets. For all plots, the thick black line shows
the response for the standard parameter set of Appendix A. The thin gray lines show the
effect of +15% changes (+) or −15% changes (−) in one (or sometimes more) of the param-
eters, as indicated. (a) and (b) The responses for changes in parameters associated with
the TMS stimulation: maximum TMS-to-excitatory coupling νmax

ex ; TMS-to-inhibitory
coupling νix; TMS-to-excitatory coupling threshold A; width of TMS-to-excitatory cou-
pling curve B. (c) Parameters describing coupling from excitatory cortical populations:
excitatory-to-excitatory coupling νee; excitatory-to-inhibitory coupling νie. (d) Param-
eters describing coupling from inhibitory cortical populations: inhibitory-to-excitatory
coupling νei; inhibitory-to-inhibitory coupling νii. (e) and (f) Parameters describing the
corticospinal output neurons: layer 5 activation threshold θv; maximum layer 5 firing rate
Qmax

v ; layer 5 activation curve width σv; layer 2/3 to layer 5 couplings νva; time delays for
layer 2/3 to layer 5 τ . (g) and (h) Parameters describing the output neurons. exponent of
firing threshold equation α; width of motor unit action potential λ; maximum motoneuron
firing rate Qmax

m ; minimum threshold of motoneurons Tmin.
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Table C.3: The effects of variation in model parameters on the response curve. For each
change in parameters from baseline, percentage changes in resting motor threshold (RMT),
motor-evoked potential (MEP) at 200% RMT (MEP200), and maximum gradient of the
response curve are shown. For the axonal delay parameters τ , the listed cases are (i)
setting τ fastve , τ slowve , τAvi and τBvi all to 3 ms (labeled ‘Equalized’) and (ii) setting τ fastve to
1 ms, τ slowve to 6 ms, and leaving τAvi and τBvi at 3 ms (labeled ‘Stretched’).

Parameter Description Change Changes in:
Threshold MEP200 gradient

TMS stimulation
νmax
ex Maximum TMS-to-e coupling +15% -6% 113% 283%

−15% 18% -77% -87%
A TMS-to-e coupling threshold +15% 11% 4% -29%

−15% -8% -6% 60%
B Width of TMS-to-e coupling curve +15% 4% 1% 34%

−15% -2% -1% 38%
νvx/νex TMS-to-layer 5 : TMS-to-e ratio +15% 0% 0% -2%

−15% 0% 0% 3%
νix TMS-to-i coupling +15% 2% -23% -25%

−15% -2% 30% 45%
Layer 2/3 cells
νee e-to-e coupling +15% -7% 44% 73%

−15% 7% -39% -51%
νie e-to-i coupling +15% 3% -23% -19%

−15% -19% 57% -68%
νei i to e coupling +15% 2% -25% -38%

−15% -2% 31% 22%
νii i to i coupling +15% -23% 37% -106%

−15% 4% -57% -5%
Layer 5 cells
νva layer 2/3 to layer 5 couplings +15% -1% 99% 105%

−15% 0% -60% -43%
τ e-to-layer 5 time delays Equalized 0% -7% -36%

Stretched -1% 19% 151%
Qmax
v Maximum layer 5 rate +15% -9% 43% 63%

−15% 3% -40% -22%
θv Layer 5 activation threshold +15% 10% -75% -93%
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