FREE SEQUENCES AND THE TIGHTNESS OF PSEUDORADIAL SPACES

SANTI SPADARO

ABSTRACT. Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelöf Hausdorff almost radial space X and the set-tightness of every Lindelöf Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhász, Soukup, Szentmiklóssy and Weiss by proving that if X is a Lindelöf Hausdorff space, and X_{δ} denotes the G_{δ} topology on X then $t(X_{\delta}) \leq 2^{t(X)}$. Finally, we exploit this to prove that if X is a Lindelöf Hausdorff pseudoradial space then $F(X_{\delta}) \leq 2^{F(X)}$.

1. INTRODUCTION

Free sequences were one of the key tools in Arhangel'skii's celebrated solution of the Alexandroff-Urysohn problem on the cardinality of firstcountable compacta. Later, they were discovered to have a definitive impact in various other aspects of the theory of cardinal invariants in topology. Recall that a sequence $\{x_{\alpha} : \alpha < \kappa\}$ in a topological space X is said to be *free* if $\{x_{\alpha} : \alpha < \beta\} \cap \{x_{\alpha} : \beta \le \alpha < \kappa\} = \emptyset$, for every $\beta < \kappa$.

Let F(X) be the supremum of the cardinalities of free sequences in X and let t(X) be the tightness of X. Arhangel'skii proved that F(X) = t(X) for every compact Hausdorff space X. For Lindelöf spaces this is not true anymore, as first noted by Okunev [13]. Indeed, let $\sigma(2^{\kappa}) = \{x \in 2^{\kappa} : |x^{-1}(1)| < \aleph_0\}$ and let $\mathbf{1} \in 2^{\kappa}$ be the function that is constantly equal to 1. Then $X = \sigma(2^{\kappa}) \cup \{\mathbf{1}\}$ with the topology induced from 2^{κ} is a space of tightness κ where free sequences are countable (the last assertion follows easily from the fact that $\sigma(2^{\kappa})$ is a σ -compact space of countable tightness). However, the inequality $F(X) \leq t(X)$ is still true for every Lindelöf space X. More generally, if L(X) denotes the Lindelöf degree of X, then $F(X) \leq L(X) \cdot t(X)$.

²⁰¹⁰ Mathematics Subject Classification. 54A25, 54D20, 54D55.

 $Key\ words\ and\ phrases.$ Free sequence, tightness, Lindelöf degree, pseudoradial, radial character.

S. SPADARO

There is at least another class of spaces for which we can prove the equality F(X) = t(X). A topological space X is called *pseudoradial* if for every non-closed set $A \subset X$ there is a point $x \in \overline{A} \setminus A$ and a transfinite sequence $\{x_{\alpha} : \alpha < \kappa\} \subset A$ which converges to x. If for every non-closed set $A \subset X$ and every point $x \in \overline{A} \setminus A$ there is a transfinite sequence inside A which converges to x, then the space X is called *radial*. In [3], Bella proved that $t(X) \leq F(X)$ for every pseudoradial regular space X and hence t(X) = F(X) for every Lindelöf pseudoradial regular space X.

Given a pseudoradial space X the radial character of X, $\sigma_C(X)$ is defined as the minimum cardinal κ such that every non-closed set contains a transfinite sequence of length at most κ converging outside. For radial spaces obviously $\sigma_C(X) = t(X)$, but this is true for an even larger class of spaces, that of almost radial spaces. A space X is said to be almost radial if, for every non-closed set $A \subset X$ there is a point $x \in \overline{A \setminus A}$ and a sequence $\{x_\alpha : \alpha < \kappa\}$ converging to x such that $x \notin \{\overline{x_\alpha : \alpha < \beta}\}$, for every $\beta < \kappa$ (we will call such a sequence a thin sequence). Bella's result implies that $t(X) = \sigma_C(X) \leq F(X)$ for every regular almost radial space X.

Since regularity was essential in the proof of his results, Bella [3] asked the following question:

Question 1. Let X be a Hausdorff pseudoradial space. Is it true that $t(X) \leq F(X)$? Is it at least true that $\sigma_C(X) \leq F(X)$ for every Hausdorff almost radial space X?

The above question is still open. We will prove that $t(X) \leq L(X) \cdot F(X)$ for every Hausdorff pseudoradial space and this will allow us to prove that t(X) = F(X) for every Lindelöf pseudoradial Hausdorff space, thus removing the regularity assumption from one of Bella's results. Using the notion of *set-tightness* we will be able to extend our results outside of the pseudoradial realm.

In the second part of the paper we will prove a bound for the tightness of the G_{δ} -modification of a Lindelöf Hausdorff space. The G_{δ} modification of X (or G_{δ} topology) is the topology on X generated by the G_{δ} -subsets of X. Studying which properties of X are preserved by this operation is a natural question that has been extensively studied in the literature. Of course the G_{δ} -topology is compact if and only if the space is finite, but there are already some interesting preservation results for the Lindelöf property. For example, Arhangel'skii proved that if X is a Lindelöf scattered space then X_{δ} is Lindelöf. More generally, one can ask whether the cardinal functions of X_{δ} can be bounded in terms of their value on X. Sometimes a neat ZFC bound is available. For example, Juhász [10] proved that $c(X_{\delta}) \leq 2^{c(X)}$ for every compact Hausdorff space X, where c(X) denotes the *cellularity* of X, Bella and the author [4] proved that $s(X_{\delta}) \leq 2^{s(X)}$ for every Hausdorff space X, where s(X) is the *spread* of X and Carlson, Porter and Ridderbos [6] showed that $L(X_{\delta}) \leq 2^{F(X) \cdot L(X)}$ for every Hausdorff space X (the F(X) in the exponent cannot be removed in the last result as there is even a compact space X such that $wL(X_{\delta}) > 2^{\aleph_0}$, see [15]). In other cases the existence of a bound may strongly depend on your set theory. For example, the authors of [12] proved that if Nt(X) denotes the Noetherian type of X then $Nt(X_{\delta}) \leq 2^{Nt(X)}$ for every compact X if GCH is assumed and Nt(X) has uncountable cofinality and showed, modulo very large cardinals, that both of their assumptions where essential.

The behavior of the tightness of the G_{δ} topology changes drastically depending on whether the space is Lindelöf or not. Dow, Juhász, Soukup, Szentmiklóssy and Weiss proved that, consistently, there can be countably tight regular spaces whose G_{δ} topology has arbitrarily large tightness, but for every Lindelöf regular space X we have $t(X_{\delta}) \leq 2^{t(X)}$.

Regularity was essential in their argument, but we will show how to remove it, and as a byproduct we will obtain that the natural bound $F(X_{\delta}) \leq 2^{F(X)}$ holds for a Lindelöf pseudoradial Hausdorff space X.

For undefined notions we refer to [9] and [11]. Background material on elementary submodels, which are used in the proof of Theorem 9, can be found in Dow's survey [7]. For general information about pseudoradial spaces we recommend Tironi's survey [16].

2. On the tightness of a pseudoradial space

Theorem 2. Let X be a Hausdorff pseudoradial space. Then $t(X) \leq L(X) \cdot F(X)$.

Proof. Let $\kappa = L(X) \cdot F(X)$ and suppose by contradiction that $t(X) > \kappa$. Then there is a κ -closed non-closed subset A of X. Since X is pseudoradial and A is not closed we can find a transfinite sequence $S \subset A$ and a point $p \in \overline{A} \setminus A$ such that S converges to p.

For every $x \in A$, let U_x and V_x be disjoint open sets such that $x \in U_x$ and $p \in V_x$. Let $\mathcal{U} = \{U_x : x \in A\}$.

Claim. There is a family $\mathcal{W} \in [\mathcal{U}]^{\leq \kappa}$ such that $S \subset \bigcup \mathcal{W}$.

Proof of Claim. Assume this is not the case. Then we will construct by recursion a free sequence $F \subset S$ such that $|F| = \kappa^+$.

Suppose that for some $\beta < \kappa^+$ we have picked points $\{x_\alpha : \alpha < \beta\} \subset S$ and open families $\{\mathcal{U}_\alpha : \alpha < \beta\}$ such that:

- (1) $\overline{\{x_{\alpha} : \alpha < \tau\}} \subset \bigcup \mathcal{U}_{\tau}$, for every $\tau < \beta$. (2) $|\mathcal{U}_{\alpha}| \leq \kappa$, for every $\alpha < \beta$.

The set $\{x_{\alpha} : \alpha < \beta\}$ is contained in A and has Lindelöf degree at most κ , hence we can find a family $\mathcal{U}_{\beta} \subset \mathcal{U}$ such that $|\mathcal{U}| \leq \kappa$ and $\overline{\{x_{\alpha}: \alpha < \beta\}} \subset \bigcup \mathcal{U}_{\beta}$. Note that the family $\bigcup_{\alpha < \beta} \mathcal{U}_{\alpha}$ does not cover S and hence we can choose a point $x_{\beta} \in S \setminus \bigcup_{\alpha \leq \beta} \mathcal{U}_{\alpha}$.

Eventually $\{x_{\alpha} : \alpha < \kappa^+\}$ is a free sequence of cardinality κ^+ . \triangle

Let λ be the length of the sequence S. We can assume that λ is a regular cardinal, and since A is κ -closed we must have $\lambda > \kappa^+$. Therefore there must be $U \in \mathcal{W}$ such that $|S \cap U| = \lambda$. Now $U = U_x$, for some $x \in A$ and V_x contains a final segment of S, because it is an open neighbourhood of p. But this contradicts the fact that U_x and V_x are disjoint.

Bella [3] obtained the following corollary with the additional assumption that X is a regular space.

Corollary 3. Let X be a Lindelöf Hausdorff pseudoradial space. Then t(X) = F(X).

Recalling that $\sigma_C(X) = t(X)$ for every almost radial space, we have the following pair of corollaries.

Corollary 4. Let X be a Lindelöf Hausdorff almost radial space. Then $\sigma_C(X) = F(X).$

Corollary 5. Let X be a Lindelöf Hausdorff almost radial space. Then X is sequential if and only if $F(X) \leq \omega$.

We can do without the pseudoradial assumption if we replace the tightness with a related cardinal invariant known as *set-tightness*. The set-tightness of a topological space X is defined as the minimum cardinal κ such that for every non-closed subset A of X and for every point $p \in \overline{A} \setminus A$, there is a κ -sized family $\{A_{\alpha} : \alpha < \kappa\}$ of subsets of A such that $p \in \bigcup \{A_{\alpha} : \alpha < \kappa\}$, but $p \notin \bigcup \{\overline{A_{\alpha}} : \alpha < \kappa\}$.

The set-tightness was introduced in [2], where it was called *quasi*character. Obviously $t_s(X) < t(X)$. Arhangel'skii and Bella [1] proved that $t(X) = t_s(X)$ for every compact Hausdorff space X.

Bella [3] proved that $t_s(X) \leq F(X)$ for every regular space X. We will prove that $t_s(X) \leq F(X) \cdot L(X)$ for every Hausdorff space X, so in particular, $t_s(X) \leq F(X)$ is true for every Lindelöf Hausdorff space X. Note that there are Hausdorff pseudoradial spaces where $t_s(X) < t(X)$ (see [14]), so the bound $t(X) \leq F(X) \cdot L(X)$ for every pseudoradial Hausdorff space X is not a consequence of $t_s(X) \leq F(X) \cdot L(X)$.

4

Theorem 6. Let X be a Hausdorff space. Then $t_s(X) \leq F(X) \cdot L(X)$.

Proof. Let $\kappa = L(X) \cdot F(X)$ and suppose by contradiction that $t_s(X) > \kappa$. Then there are a set $A \subset X$ and a point $p \in \overline{A} \setminus A$ such that if $\{A_{\alpha} : \alpha < \kappa\}$ is a κ -sized family of subsets of A such that $p \notin \bigcup \{\overline{A_{\alpha}} : \alpha < \kappa\}$ then $p \notin \bigcup \{A_{\alpha} : \alpha < \kappa\}$.

For every $x \in X \setminus \{p\}$, let U_x and V_x be disjoint open sets such that $x \in U_x$ and $p \in V_x$. Let $\mathcal{U} = \{U_x : x \in X \setminus \{p\}\}.$

Claim. There is a family $\mathcal{W} \in [\mathcal{U}]^{\leq \kappa}$ such that $A \subset \bigcup \mathcal{W}$.

Proof of Claim. Assume this is not the case. Then we will construct a free sequence of cardinality κ^+ in X.

Suppose that for some $\beta < \kappa^+$ we have constructed points $\{x_\alpha : \alpha < \beta\} \subset A$ and open families $\{\mathcal{U}_\alpha : \alpha < \beta\}$ such that:

(1) $\overline{\{x_{\alpha} : \alpha < \tau\}} \subset \bigcup \mathcal{U}_{\tau}$, for every $\tau < \beta$.

(2) $|\mathcal{U}_{\alpha}| \leq \kappa$, for every $\alpha < \beta$.

Note that $p \notin \overline{\{x_{\alpha} : \alpha < \beta\}}$, so \mathcal{U} is a cover of $\overline{\{x_{\alpha} : \alpha < \beta\}}$. Moreover $L(\overline{\{x_{\alpha} : \alpha < \beta\}}) \leq \kappa$ and therefore we can find a subcollection \mathcal{U}_{β} of \mathcal{U} having cardinality $\leq \kappa$ such that $\overline{\{x_{\alpha} : \alpha < \beta\}} \subset \bigcup \mathcal{U}_{\beta}$. By our assumption $\bigcup \{\bigcup \mathcal{U}_{\alpha} : \alpha \leq \beta\}$ does not cover A and hence we can pick a point $x_{\beta} \in A \setminus \bigcup \{\bigcup \mathcal{U}_{\alpha} : \alpha \leq \beta\}$

Eventually, $\{x_{\alpha} : \alpha < \kappa^+\}$ is a free sequence in X having cardinality κ^+ , which is a contradiction.

Let $\{U_{\alpha} : \alpha < \kappa\}$ be an enumeration of \mathcal{W} and set $A_{\alpha} = U_{\alpha} \cap A$, for every $\alpha < \kappa$. Then $\{A_{\alpha} : \alpha < \kappa\}$ is a κ -sized family of subsets of A such that $p \notin \bigcup \{\overline{A_{\alpha}} : \alpha < \kappa\}$ but $p \in \bigcup \{A_{\alpha} : \alpha < \kappa\}$, and that is a contradiction. \Box

Corollary 7. Let X be a Lindelöf Hausdorff space. Then $t_s(X) = F(X)$.

3. The G_{δ} topology

In [8], Dow, Juhász, Soukup, Szentmiklóssy and Weiss proved the following bound for the tightness of the G_{δ} topology of a Lindelöf regular space.

Theorem 8. [8] Let X be a Lindelöf regular space. Then $t(X_{\delta}) \leq 2^{t(X)}$.

In the next theorem we will show how to relax the regularity assumption in their bound.

Theorem 9. Let (X, τ) be a Lindelöf Hausdorff space. Then $t(X_{\delta}) \leq 2^{t(X)}$.

S. SPADARO

Proof. Let $A \subset X_{\delta}$ be a non-closed set and p be a point in the G_{δ} closure of A. Let $\kappa = t(X)$, let θ be a large enough regular cardinal and let M be a κ -closed elementary submodel of $H(\theta)$ such that $X, \tau, A, p \in$ M and $|M| = 2^{\kappa}$. Note that if we call τ_{δ} the collection of all G_{δ} subsets of X we also have $\tau_{\delta} \in M$. We claim that $p \in Cl_{\delta}(A \cap M)$.

Indeed, let G be a G_{δ} set such that $p \in G$ and let $\{U_n : n < \omega\}$ be a sequence of open sets such that $G = \bigcap \{U_n : n < \omega\}$.

For every point $x \in \overline{A \cap M}$, such that $x \neq p$, let V_x and W_x be disjoint open sets such that $x \in V_x$ and $p \in W_x$. Since $t(X) \leq \kappa$, we can find, for every $x \in \overline{A \cap M}$ a $\leq \kappa$ -sized subset $S_x \subset A \cap M$ such that $x \in \overline{S_x}$. Since M is κ -closed, we have $S_x \in M$ and hence $\overline{S_x} \in M$. Now $\overline{S_x}$ is Lindelöf and $\{V_x : x \in \overline{A \cap M} \setminus \{p\}\}$ is an open cover of $\overline{S_x}$. Therefore we can find a countable subset $C_x \subset \overline{A \cap M} \setminus \{p\}$ such that $\overline{S_x} \subset \bigcup \{V_x : x \in C_x\}$ and $p \in \bigcap \{W_x : x \in C_x\}$. Define $O'_x = \bigcup \{V_x : x \in C_x\}$ and $G'_x = \bigcap \{W_x : x \in C_x\}$. Note that O'_x is an open set, G'_x is a G_δ set and $O'_x \cap G'_x = \emptyset$. So we just showed that:

$$H(\theta) \models (\exists O)(\exists G)(O \in \tau \land G \in \tau_{\delta} \land \overline{S_x} \subset O \land p \in G \land O \cap G = \emptyset)$$

Note that all free variables in the above formula (namely $\overline{S_x}, \tau$ and τ_{δ}) are in M and hence by elementarity we also have:

$$M \models (\exists O)(\exists G)(O \in \tau \land G \in \tau_{\delta} \land \overline{S_x} \subset O \land p \in G \land O \cap G = \emptyset)$$

What this means is that we can find, for every $x \in \overline{A \cap M} \setminus \{p\}$ an open set $O_x \in M$ and a G_{δ} set $G_x \in M$ such that $\overline{S_x} \subset O_x$, $p \in G_x$ and $O_x \cap G_x = \emptyset$.

Note now that $\{O_x : x \in \overline{A \cap M} \setminus \{p\}\}$ is an open cover of the Lindelöf space $\overline{A \cap M} \setminus U_n$, for every $n < \omega$. Therefore we can find a countable subset C_n of $\overline{A \cap M} \setminus U_n$ such that $\overline{A \cap M} \setminus U_n \subset \bigcup \{O_x : x \in C_n\}$. Note that $H_n = \bigcap \{G_x : x \in C_n\}$ is a G_δ set and $H_n \cap \overline{A \cap M} \setminus U_n = \emptyset$. Let now $H = \bigcap \{H_n : n < \omega\} \in M$. Note that H is a G_δ set containing p and therefore $H \cap A \neq \emptyset$. Since $H, A \in M$, by elementarity we also have $H \cap A \cap M \neq \emptyset$. But $H \cap \overline{A \cap M} \setminus G = \emptyset$, that is $H \cap \overline{A \cap M} \subset G$. It follows that $G \cap A \cap M \neq \emptyset$, as we wanted.

Lemma 10. (Carlson, Porter and Ridderbos [6]) Let X be a Lindelöf Hausdorff space. Then $L(X_{\delta}) \leq 2^{F(X)}$,

Corollary 11. Let X be a Lindelöf Hausdorff pseudoradial space. Then $F(X_{\delta}) \leq 2^{F(X)}$.

Proof. Combining Theorem 2 with Theorem 9 we obtain $t(X_{\delta}) \leq 2^{t(X)} = 2^{F(X)}$. Recalling that $F(X_{\delta}) \leq L(X_{\delta}) \cdot t(X_{\delta})$ and using Lemma 10 we obtain $F(X_{\delta}) \leq 2^{F(X)}$, as desired.

The above corollary was proved in [5] with the additional assumption that X is a regular space.

4. Acknowledgements

The author is grateful to the referees for their careful reading of the paper and to INdAM-GNSAGA for partial financial support.

References

- A.V. Arhangel'skii and A. Bella, Cardinal invariants in remainders and variations of tightness, Proc. Amer. Math, Soc. 119 (1993), 947–954.
- [2] A.V. Arhangel'skii, R. Isler and G. Tironi, On pseudoradial spaces, Comment. Math. Univ. Carolinae 27 (1986), 137–154.
- [3] A. Bella, Free sequences in pseudoradial spaces, Comment. Math. Univ. Carolinae 27 (1986), 163–170.
- [4] A. Bella and S. Spadaro, Cardinal invariants for the G_δ-topology, Colloquium Math., 156 (2019), 123–133.
- [5] A. Bella and S. Spadaro, Upper bounds for the tightness of the G_{δ} topology, preprint.
- [6] N. A. Carlson, J. R. Porter and G. J. Ridderbos, On cardinality bounds for homogeneous spaces and the G_κ-modification of a space, Topology Appl. 159 (2012), 2932–2941.
- [7] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proceedings 13 (1988), 17–72.
- [8] A. Dow, I. Juhász, L. Soukup, Z. Szentmiklóssy and W. Weiss, On the tightness of G_{δ} -modifications, Acta Math. Hungarica **158** (2019), 294–301.
- [9] R. Engelking, *General Topology*, PWN, Warsaw, 1977.
- [10] I. Juhász, On two problems of A.V. Archangel'skii, General Topology and its Applications 2 (1972) 151-156.
- [11] I. Juhász, Cardinal Functions in Topology Ten Years Later, Math. Centre Tracts 123, Amsterdam, 1980.
- [12] M. Kojman, D. Milovich and S. Spadaro, Noetherian type in topological products, Israel Journal of Mathematics 202 (2014), 195–225.
- [13] O. Okunev, A σ -compact space without uncountable free sequences can have arbitrary tightness, Questions Answers Gen. Topology **23** (2005), 107–108.
- [14] P. Simon and G. Tironi, Two examples of pseudoradial spaces, Comment. Math. Univ. Carolinae 27 (1986), 155-161.
- [15] S. Spadaro and P. Szeptycki, G_{δ} -covers of compact spaces, Acta Math. Hungarica **154** (2018), 252–263.
- [16] G. Tironi, Pseudoradial spaces: results and problems, Mediterr. J. Math. 3 (2006), no. 2, 313–325.

S. SPADARO

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF CATANIA, VIALE A. DORIA 6, 95125 CATANIA, ITAY *Email address:* santidspadaro@gmail.com

8