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Abstract

According to the reports of the World Health Organisation (WHO), cardiovascular
diseases are the number one cause of death worldwide. Specifically, arterial disease and
degeneration are the major reasons for cardiovascular death and disability. Because these
diseases are dependent on the changes of the mechanical properties of the arterial wall, it is
very important to know as much as possible about the structural composition of arteries.

The human aorta is the biggest artery in the body and consists of three main parts,
ascending aorta, aortic arch and descending aorta. The walls of the arteries consist of three
layers, the intima, media and adventitia, where each of the layers has different physiological
functions and therefore distinct mechanical properties. These were investigated using, i.e.,
uniaxial tensile, inflation or planar biaxial-testing.

Purpose of this thesis was to apply the biomechanical approach by mean of numerical and
experimental test referring to patient-specific aortic geometries with ascending thoracic
aortic aneurysms. However, despite the ample literature and the related scientific and
industrial activity in this field, many different phenomena are not yet consolidated.

The PhD Thesis is then divided into two main sections: the first is composed by a brief
introduction on ATAA, with some background about mechanical properties of soft tissues, the
evolution of the constitutive model, some remarks of the continuum. The second section of

the thesis is based on the different research activities developed during the PhD.

KEYWORDS: continuum mechanics; hyperelastic material; hyperelastic models; experimental

identification, multiphoton imaging, Second-harmonic generation, fine element method.
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1. Introduction and Motivation

1.1. Cardiovascular Disease

Cardiovascular disease (CVD) is the leading cause of death worldwide and is expected to
account for more than 23 million deaths by 2030 [1]. Two of these diseases that occur in the
thoracic aorta (TA), aneurysms (TAA) and dissections (TAD), are rare but life-threatening
events with poorly understood pathophysiologies.

CVD is closely linked to health inequalities, with more CVD-related deaths in women than
men, more CVD-related deaths in middle-income than high-income countries, and
pronounced declines in coronary mortality in countries with the most advanced
contemporary care. With the ageing population, CVD prevalence is expected to increase and
often co-exist with other diseases, leading to multi-morbidity. Major risk factors for CVD
including obesity and diabetes are becoming more prevalent.

CVD is also a heavy economic burden for both public and private institutions. By 2030, the
total global cost of CVD is set to rise from approximately USS$863 billion in 2010 to a

staggering USS1,044 billion ( World Heart Federation, 2020), (see Figure 1).

2010-2030 GLOBAL COST OF CARDIOVASCULAR DISEASE

2030 - ------mmm e
2010 --pan----------- -
55%
DIRECT
HEALTHCARE
COSTS
$863 $1,044
BILLION BILLION

Figure 1 — The economic costs. Source: WEF/Harvard School of Public Health -The Global Economic Burden of Non-
communicable Diseases



The projected increase in healthcare costs is illustrated in Figure 2, which displays the total
healthcare costs from CVD for the period through to 2020. By the end of the decade, the six
countries combined will face CVD-related healthcare costs of €98.7 billion. Hence, there is a
rise in per capita costs in each of the individual countries. Sweden and Germany face a per
capita cost of €455 and €417, respectively. Costs will also rise in Italy (€297), the UK (€264)

and France (€244).
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20 - 16.1 ' 17.3
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- - ‘ ! 2020
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Figure 2 — Healthcare cost of CVD, forecast 2014-220, in £billion

Among the diseases affecting the cardiovascular system (CVS), it is possible to distinguish
between those affecting the heart (i.e. cardiomyopathies, heart failure, heart valve diseases)
and those affecting the aorta and the other vessels of the CVS (i.e. aortic aneurysm, aortic
dissection, coronary artery diseases). Although many different diseases merit biomechanical

study, here we simply list a few.

Atherosclerosis is characterized by a focal accumulation of lipids, extra cells and proteins,

calcium, and necrotic debris within the intimal layer of arteries. In most cases, this
accumulation causes a narrowing of the lumen (i.e., stenosis) which thereby compromises
distal blood flow. One of the primary complications, however, is that atherosclerotic plaques
can rupture and then clot - this can result in either the complete occlusion of the blood vessel
or the shedding of a clot which occludes a smaller, distal vessel. Consequences can include

myocardial infarction (heart attack) or stroke (brain attack).



Heart Failure is characterized by a marked decrease in cardiac output, increased venous
pressures, or both; this results in elevated ventricular pressures that over distend the
ventricles and thereby diminish their ability to pump blood. Heart failure is generally classified
according to whether the right or left ventricle is affected. Left heart failure leads, for
example, to pulmonary edema and hence breathlessness - sometimes called congestive heart
failure.

Hypertension is defined as the persistent elevation of blood pressure. Normal systemic
pressure is = 120/80 mmHg (systolic/diastolic) and systemic hypertension is generally defined
as pressures above 160/90 mmHg; pulmonary hypertension is generally defined as pressures
above 30/12 mmHg. Hypertension may not have a known cause (called essential or
idiopathic) or it may result from other diseases (then called secondary hypertension), such as
renal, endocrine, or central nervous system diseases. The primary importance of
hypertension is that it is a major risk factor for other, potentially fatal, diseases, including
aneurysms, end-stage renal disease, stroke, sudden cardiac death, etc.

Myocardial Infarction, or heart attack, is defined as the death of myocardium (necrosis)

due to a lack of oxygen (ischemia). If one survives a heart attack, the necrotic tissue is
generally removed and replaced with a 'collagen patch’, which in some cases may form an
aneurysm. As noted above, atherosclerosis is the most common cause of heart attacks.
Stroke, strictly speaking, is any sudden or severe attack, as, for example, a sun-stroke or
heat-stroke. Commonly, however, by the term stroke, we imply the death of a portion of the
brain due to the lack of oxygen, and thus it is sometimes referred to as a brain attack in
analogy with a heart attack. As noted above, strokes are often caused by the rupture and

clotting of an atherosclerotic plaque. In addition, however, strokes may also be caused by the



shedding of an embolus from the heart or a proximal vessel or by the rupture of an
intracranial malformation or aneurysm.

Valvular heart disease is any cardiovascular disease process involving one or more of the

four valves of the heart (the aortic and mitral valves on the left side of the heart and the
pulmonic and tricuspid valves on the right side of the heart). Often It is necessary for the
surgical replacement of one of the heart valves; prosthetic heart valves are among the most
successful implants in cardiovascular surgery.

Aneurysms are focal dilatations that result from a local weakening of a pressure distended
organ. Within the vasculature, the two most common forms are abdominal aortic aneurysms
(AAA), ascending thoracic aortic aneurysm (ATAA) and intracranial saccular aneurysms. These
types of lesions have very different etiologies, the former often related to atherosclerosis and
the latter not; both generally involve the proteolytic breakdown of portions of the
extracellular matrix, however. When possible, AAAs are typically treated via the surgical
replacement by a synthetic arterial graft; among many others, Albert Einstein died of a
ruptured AAA.

Among these pathologies described above, the thesis concerns the biomechanics of
aneurysm of the ascending thoracic aorta (ATAA).

A study from Olmsted County, MN,[2] demonstrated annual age- and sex-adjusted
incidences per 100 000 people of 3.5 (95% Cl, 2.2—4.9) for thoracic aortic aneurysm rupture
and 3.5 (95% Cl, 2.4-4.6) for acute aortic dissection [3]. The Global Burden of Disease Study
2016 used statistical models and data on incidence, prevalence, case fatality, excess
mortality, and cause-specific mortality to estimate disease burden for 315 diseases and

injuries in 195 countries and territories. The highest age-standardized mortality rates



attributable to aortic aneurysm are estimated for Northern and Eastern Europe, southern and

tropical Latin America, and Oceania Figure 3.
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Figure 3 — Age-standardized prevalence of peripheral artery disease per 100 000, both sexes, 2016. Country. Source
by E. Benjamin et al. [1]

1.2. Soft tissues

Biological tissues are roughly divided into: (i) hard tissues like bone and tooth, and (ii) soft
tissues such as skin, muscle, blood vessel, and lung. Hard tissues contain mineral, whereas
soft tissues do not. Because of this, they have very different mechanical properties.

One of the major differences in mechanical properties is that soft tissues are much more
deformable than hard tissues. Therefore, infinitesimal deformation theories that are applied
to metals and hard plastics cannot be used for soft tissues; instead, finite (large) deformation
theories that are useful for rubber elasticity are often used to describe the mechanical

behaviour of soft tissues [4]. This section deals with the basic mechanical properties of



biological soft tissues and their mathematical formulation, including several biomechanical

features unique to soft tissues.

Soft connective tissues of our body are complex fibre-reinforced composite structures.
Their mechanical behaviour is strongly influenced by the concentration and structural
arrangement of constituents such as collagen and elastin, the hydrated matrix of

proteoglycans, and the topographical site and respective function in the organism.

Collagen. Collagen is a protein which is very important for vertebrate physiology. It is a
macromolecule with a length of about 280 nm. The rod-like shape of the collagen molecule
comes from three polypeptide chains which are composed in a right-handed triple-helical
conformation. Most of the collagen molecule consists of three amino acids; glycine (33%),
which enhances the stability of the molecule, proline (15%) and hydroxyproline (15%).
Collagen molecules are linked to each other by covalent bonds building collagen fibrils.
Depending on the primary function and the requirement of the strength of the tissue the
diameter of collagen fibrils varies (the order of magnitude is 1.5 nm; see Nimni and Harkness
(1988) [5]). Collagen appears as concentrically arranged fibres in the structure of blood
vessels. More than 12 types of collagen have been identified [6]. The most common collagen
is type |, which can be isolated from any tissue. It is the major constituent in blood vessels.
The intramolecular crosslinks of collagen give the connective tissues the strength, which
varies with age, pathology, etc. They shrink upon heating due to breakdown of the crystalline
structure (at 65 a C, for example, mammalian collagen shrinks to about one-third of its initial
length, Fung (1993 [7]), p. 263). Collagen fibres represent the main load-carrying elements of

arterial walls that render the material properties anisotropic.
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Figure 4 — Schematic view of the hierarchical features of collagen (Buehler 2008) 8]

Elastin. Elastin is another major component of certain soft tissues, such as arterial walls and
ligaments. It is a protein, which is a major constituent of the extracellular matrix of connective
tissue. It is present as thin strands in soft tissues such as skin, lung, ligamenta flava of the
spine and ligamentum nuchae (the elastin content of the latter is about 5 times that of
collagen). The long flexible elastin molecules build up a three-dimensional (rubber-like)
network, which may be stretched to about 2.5 of the initial length of the unloaded
configuration. In contrast to collagen fibres, this network does not exhibit a pronounced
hierarchical organization. As for collagen, 33% of the total amino acids of elastin consist of
glycine. However, the proline and hydroxyproline contents are much lower than in collagen
molecules. The mechanical behaviour of elastin may be explained within the concept of
entropic elasticity. Elasticity arises through entropic straightening o