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Abstract. We study the extremal properties of a stochastic process xt defined by
a Langevin equation ẋt =

√
2D0V (Bt) ξt, where ξt is a Gaussian white noise with

zero mean, D0 is a constant scale factor, and V (Bt) is a stochastic "diffusivity" (noise
strength), which itself is a functional of independent Brownian motion Bt. We derive
exact, compact expressions in one and three dimensions for the probability density
functions (PDFs) of the first passage time (FPT) t from a fixed location x0 to the origin
for three different realisations of the stochastic diffusivity: a cut-off case V (Bt) = Θ(Bt)

(Model I), where Θ(z) is the Heaviside theta function; a Geometric Brownian Motion
V (Bt) = exp(Bt) (Model II); and a case with V (Bt) = B2

t (Model III). We realise
that, rather surprisingly, the FPT PDF has exactly the Lévy-Smirnov form (specific
for standard Brownian motion) for Model II, which concurrently exhibits a strongly
anomalous diffusion. For Models I and III either the left or right tails (or both) have
a different functional dependence on time as compared to the Lévy-Smirnov density.
In all cases, the PDFs are broad such that already the first moment does not exist.
Similar results are obtained in three dimensions for the FPT PDF to an absorbing
spherical target.
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1. Introduction

There is strong experimental evidence that in some complex environments the
observation of a "diffusive" behaviour, i.e., of a mean-squared displacement growing
linearly with time t in the form x2

t ∼ t does not necessarily imply that the position
probability density function (PDF) P (x, t) of finding a particle at position x at time t
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is Gaussian. In fact, significant departures from a Gaussian form have been reported,
with P (x, t) having cusp-like shapes in the vicinity of x = 0, and/or exhibiting non-
Gaussian tails. Such a behaviour was observed, e.g., for the motion of micron-sized beads
along nanotubes or in entangled polymer networks [1, 2], in colloidal suspensions [3] or
suspensions of swimming microorganisms [4], dynamics of tracers in arrays of nanoposts
[5], transport at fluid interfaces [6–8], as well as for the motion of nematodes [9]. Even
more complicated non-Gaussian distributions were observed in Dictyostelium discoideum
cell motion [10, 11] and protein-crowded lipid bilayer membranes [12, 13]. An apparent
deviation from Gaussian forms was evidenced in numerical simulations of particles
undergoing a polymerisation process [14], which is known to be anomalous in the non-
Stokesian case [15].

One increasingly popular line of thought concerning the origins of such non-
Gaussian diffusion advocates a picture based on the overdamped Langevin equation

dxt
dt

=
√

2Dt ξt, (1)

in which ξt is a usual white noise with zero mean and covariance ξtξt′ = δ(t− t′), while
the diffusivity Dt is an independent stochastic process which captures in a heuristic
fashion all possible dynamical constraints, local stimuli and interactions that a particle
may experience while moving in a heterogeneous complex environment. We note that
this overdamped formulation is appropriate for the description of typical tracer particles
in a liquid environment [16,17], e.g., of submicron tracer beads or fluorescently labelled
macromolecules in living cells. For these systems deterministic forces such as gravity
are typically also irrelevant.

In the pioneering work [18] Chubinsky and Slater put forth such a random diffusivity
concept for dynamics in heterogeneous systems for which they coined the notion
"diffusing diffusivity". Concretely, they modelled the diffusivity as a Brownian particle
in a gravitational field limited by a reflecting boundary condition at Dt = 0 in order
to guarantee positivity and stationarity of the Dt dynamics. In subsequent analyses
elucidating various aspects of the diffusing diffusivity model it was assumed that Dt is
a squared Ornstein-Uhlenbeck process [19–21]. Finally, [22] use a formulation directly
including an Ornstein-Uhlenbeck process for Dt. All these models feature a stochastic
diffusivity with bounded fluctuations around a mean value, with a finite correlation
time. When the process is started with an equilibrated diffusivity distribution, the
mean squared displacement has a constant effective amplitude at all times, in contrast to
non-equilibrium initial conditions [23]. The probability density function (PDF) P (x, t)

of such a process is not a Gaussian function at intermediate times.‡ Instead, P (x, t)

exhibits a transient cusp-like behaviour in the vicinity of the origin and has exponential

‡ The crossover from non-Gaussian to Gaussian forms distinguishes the diffusing diffusivity models
here from the superstatistical approach [24] employed originally in [1, 2]. In the latter case the shape
of the position PDF is permanently non-Gaussian.
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tails.§ Further extensions of this basic model were discussed in [23, 25, 26]. We also
mention recent models for non-Gaussian diffusion with Brownian scaling x2

t ∼ t based
on extreme value statistics [27] and multimerisation of the diffusing molecule [14, 28].
Generalisations to anomalous diffusion of the form x2

t ∼ tα with α ∈ (0, 2) in terms of
long-range correlated, fractional Gaussian noise was recently discussed [29, 30], as well
as a fractional Brownian motion generalisation [31] of the Kärger switching-diffusivity
model [32]. Finally, the role of quenched disorder is analysed in [33].

We note that the diffusing diffusivity process appeared earlier in the mathematical
finance literature, where it is used for the modelling of stock price dynamics. Indeed,
if we redefine dxt/dt in equation (1) as d ln(St)/dt, we recover the celebrated Black-
Scholes equation [34] for the dynamics of an asset price St with zero-constant trend and
stochastic volatility

√
2Dt. In this context, the choice of a squared Ornstein-Uhlenbeck

process for Dt corresponds to the Heston model of stochastic volatility [35]. The process
xt in equation (1) thus has a wider appeal beyond the field of transport in complex
heterogeneous media.

Several ad hoc diffusing diffusivity models in which the PDFs exhibit a non-
Gaussian behaviour for all times have been analysed recently [36] from a more general
perspective, i.e., not constraining the analysis to Brownian motion with x2

t ∼ t only,
but also extending it to anomalous diffusion. In reference [36], which focused mostly on
power spectral densities of individual trajectories xt of such processes—a topic which
attracted recent interest [37–40]—the corresponding position PDFs were also obtained
explicitly [36]. It was demonstrated that their functional form is very sensitive to the
precise choice of Dt. Indeed, depending on the choice of Dt, one encounters a very
distinct behaviour in the long time limit: the central part of the PDF may be Gaussian
or non-Gaussian, diverge as |x| → 0, or remain bounded in this limit, and also the tails
may assume Gaussian, exponential, log-normal, or even power-law forms.

The concept of first passage time (FPT) is fundamental for a given stochastic
process, as it quantifies when the variable of interest crosses a given threshold for the
first time [41–43]. This could be the moment in time when a diffusing test particle
first reaches a given distance away from its starting point, or when a stock market first
crosses a preset threshold value. The concept of first passage is central for the physical
chemistry of chemical reactions of diffusing reactants, for biology to model how animals
succeed in random searching for food, or for financial mathematics. More formally,
the first passage can be studied on the basis of the diffusion equation corresponding
of the specific diffusive process and by assuming absorbing boundary conditions in the
position where the target or threshold is located. In addition, the domain geometry
and the target properties (fully absorbing or partially reflecting) must be included in
the study [44]. Different facets of extremal and first-passage properties of diffusing
diffusivity models were scrutinised in [45–47]. Results from this analysis show that
in general heterogeneity and dynamic disorder broaden the first-passage time density,

§ Depending on the specific model and the spatial dimension the exponential may have a sub-dominant
power-law prefactor [19–22].
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increasing the likelihood of both short and long target location times. Thus, while on
average the reaction kinetics is slowed down, some realisations perform a faster search,
and this is sufficient to increase the activation speed in diffusion-limited reactions, which
are dominated by the non-asymptotic part of the first passage time behaviour.

In what follows we focus on the first passage properties of three models of generalised
diffusing diffusivity introduced in [36]. In these models particle dynamics obeys the
Langevin equation (1) with Dt = D0V (Bt), where D0 is a proportionality factor—
the diffusion coefficient—while V (Bt) is a (dimensionless) functional of independent
Brownian motion Bt, with V (z) being a prescribed, positive-defined function. We
here use the definition of Brownian motion Bt in terms of the stochastic integral
Bt = 2DB

∫ t
0
dt′ζt′ , where ζt represents another (additional to the white noise process

ξt in equation (1)) Gaussian, zero mean, δ-correlated white noise, such that Bt=0 = 0,
〈Bt〉 = 0, and

〈BtBt′〉 = 2DB min(t, t′). (2)

Note that DB is the diffusion coefficient of the Brownian motion Bt driving the diffusing
diffusivity and is different from D0. The latter represents a dimensional scale factor
that can be associated to the diffusion coefficient of the particle. Here and henceforth,
the angular brackets denote averaging with respect to all possible realisations of the
Brownian motion Bt, while the bar corresponds to averaging over realisations of the
white noise process. We note parenthetically that the extremal properties of the
Langevin dynamics subordinated to another Brownian motion have been actively studied
in the last years within the context of the so-called run-and-tumble dynamics. In this
experimentally-relevant situation, the force acting on the particle is a functional of the
rotational Brownian motion (see e.g., reference [48]).

Specifically we concentrate on the FPTs from a fixed position x0 > 0 to a perfectly
reacting target placed at the origin and determine the full FPT PDFH(t|x0) for different
choices of the Brownian motion functional V (Bt). In this way we are able to vary the
time-dependent randomness introduced into the diffusivity Dt according to the different
physical scenarios to be studied. In particular, following the models introduced in [36],
we select three choices for V (Bt):
(I) V (Bt) = Θ(Bt), where Θ(z) is the Heaviside theta function such that Θ(z) = 1 for
z ≥ 0, and zero, otherwise;
(II) V (Bt) = exp(−Bt/a) with a scalar parameter a; and
(III) V (Bt) = B2

t /a
2.

In Model I, which we call "cut-off Brownian motion" the process xt undergoes a standard
Brownian motion with diffusion coefficient D0 once Bt > 0, and pauses for a random
time at its current location when Bt remains at negative values. Albeit the mean-
squared displacement of xt grows linearly in time in this model (see reference [36]), this
is indeed a rather intricate process, in which a duration of the diffusive tours and of the
pausing times have the same broad distribution. We note that this model represents an
alternative to other standard processes describing waiting times and/or trapping events.
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One could think of, for instance, the comb model, in which a particle, while performing
standard Brownian motion along one direction, gets stuck for a random time in branches
perpendicular to the direction of the relevant diffusive motion [49–51].

In Model II the diffusivity Dt follows so-called Geometric Brownian Motion, as does
an asset price in the Black-Scholes model [34]. Note that here the dynamics of xt is not
diffusive—the process progressively freezes when Bt goes in the positive direction and
accelerates when Bt performs excursions in the negative direction. Overall the latter
dominate and the mean-squared displacement exhibits a very fast (exponential) growth
with time. Lastly, in Model III the process xt accelerates when Bt goes away from the
origin in either direction, and we are thus facing again a super-diffusive behaviour: the
process xt in equation (1) shows a random ballistic growth with time. In a way, such
a behaviour resembles the so-called "scaled" diffusion because for typical realisations of
the process Bt one has |Bt| ∼

√
t and, hence, xt evolves in the presence of a random force

whose magnitude grows with time in proportion to
√
t. As shown in [36] the position

PDF of this process is Gaussian around the origin and exponential in the tails. This
can be compared to scaled Brownian motion, a Markovian process with time dependent
diffusion coefficient K (t) ∼ tα−1 in the ballistic limit α→ 2, whose position PDF stays
Gaussian at all times [52]. Conversely, heterogenous diffusion processes with position
dependent diffusion coefficient K (x) ∼ |x|β in the limit β = 1 are also ballistic but have
an exponential position PDF (with subdominant power-law correction) at all times [53].

For all three models we derive exact compact expressions for the FPT PDF H(t|x0)

in one dimension and also evaluate their forms for the three-dimensional case, which
thus generalise the known results for a standard Brownian motion. We note that for a
standard Brownian motion in two dimensions, the FPT PDF is known only in form of
an inverse Laplace transform and via an integral representation [54, 55]. Although an
analogous expression for diffusing diffusivity models under study can be found rather
directly from our general results (see below), we do not present such an analysis here
because the resulting expressions appear to be rather cumbersome. We remark that, in
general, the exact FPT PDFs are known in closed-form only for a very limited number
of situations (see, e.g., [41–43,56–58], compare [59,60] for a "simple" spherical system).
Thus, our results provide novel and non-trivial examples of stochastic processes for
which the full FPT PDF can be calculated exactly and appears to have a simple explicit
form.

The paper is outlined as follows. In section 2 we present some general arguments
relating the FPT PDF and the position PDF P (x, t) for the processes governed by
equation (1). In section 3 we present our results for the three models under study.
Finally, in section 4 we conclude with a brief summary of our results and an outlook.

2. General setup

A general approach for evaluating the FPT PDF for the diffusing diffusivity models
in equation (1) was developed in [45] (see also [46, 47]). In this approach, one takes
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the advantage of the statistical independence of thermal noise and of the stochastic
diffusivity Dt. Qualitatively speaking, the thermal noise determines the statistics of the
stochastic trajectories of the process xt, whereas the diffusing diffusivity controls the
"speed" at which the process runs along these trajectories. As a consequence, for a
particle starting from x0 at time 0 the FPT PDF to a target, H(t|x0), can be obtained
via subordination [45] (see also [21]),

H(t|x0) =

∞∫
0

dT q(t;T )H0(T |x0), (3)

where H0(T |x0) is the FPT PDF to the same target for ordinary Brownian motion with
a constant diffusivity D0, and q(t;T ) is the PDF of the first-crossing time τ of a level T
by the integrated diffusivity,

τ = inf{t > 0 : Tt > T}, Tt =

t∫
0

dt′D(t′). (4)

In other words, Tt/D0 plays the role of a "stochastic internal time" of the process xt,
which relates it to ordinary diffusion. The PDF q(t;T ) can be formally determined by
inverting the identity [45]

∞∫
0

dT e−λT q(t;T ) = −∂Υ(t;λ)/∂t

λ
, (5)

where Υ(t;λ) is the generating function of the integrated diffusivity,

Υ(t;λ) =

〈
exp

−λ t∫
0

dt′D(t′)

〉 =

〈
exp

−D0λ

t∫
0

dt′ V (Bt′)

〉 . (6)

In the case of a constant diffusivity, V (z) = 1, one simply gets Υ(t;λ) = exp(−D0λt).
When the process xt is confined to a bounded Euclidean domain Ω ⊂ Rd, the

FPT PDF H(t|x0) can be obtained via a spectral expansion over the eigenvalues λn and
eigenfunctions un of the Laplace operator in which the conventional time-dependence via
e−D0tλn is replaced by (−∂Υ(t;λn)/∂t) [45]. In fact, substituting the spectral expansion
for ordinary diffusion [41],

H0(T |x0) =
∑
n

λne
−Tλn un(x0)

∫
Ω

dx un(x), (7)

into equation (3), one gets with the aid of equation (5) that

H(t|x0) =
∑
n

(
−∂tΥ(t;λn)

)
un(x0)

∫
Ω

dx un(x). (8)

In turn, the analysis is more subtle for unbounded domains as one can no longer rely
on spectral expansions.
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In what follows we focus on two emblematic unbounded domains, for which the
FPT probability density H0(T |x0) for ordinary diffusion is known:
(i) xt evolving on a half-line (0,∞) with the starting point x0 > 0 and a target placed
at the origin, for which

H0(T |x0) =
x0 exp

(
−x2

0/(4T )
)√

4πD0(T/D0)3
(9)

is the Lévy-Smirnov distribution (with T = D0t). Substituting this function into
equation (3), one gets [45]

H(t|x0) =
2

π

∞∫
0

dk

k
sin(kx0)

(
−∂tΥ(t; k2)

)
. (10)

Note that the position PDF reads

P (x, t|x0) =

∞∫
0

dk

π
cos(k(x− x0)) Υ(t; k2), (11)

such that the two PDFs are related via ∂P (0, t|x0)/∂t = 2∂H(t|x0)/∂x0. This is specific
to the half-line problem.

(ii) In the second case we consider the dynamics in a three-dimensional (3d) region
outside of an absorbing sphere of radius R. In this case one has for ordinary diffusion

H3d
0 (T |x0) =

R exp
(
−(|x0| −R)2/(4T )

)√
4πD0(T/D0)3

, (12)

for any starting point x0 ∈ R3 outside the target, i.e., with |x0| > R. Comparing
equations (10) and (12) one gets for any diffusing diffusivity process Dt:

H3d(t|x0) =
R

|x0|
H(t||x0| −R), (13)

with H(t|x0) given by equation (10). Note that the position PDF in this case

P (x, t|x0) =
1

2π2|x− x0|

∞∫
0

dk k sin(k|x− x0|) Υ(t; k2). (14)

We highlight that in an unbounded three-dimensional space some trajectories travel to
infinity and never reach the target, such that the target survival probability reaches
a non-zero value when time tends to infinity. This implies that the FPT PDF is not
normalised with respect to the set of all possible trajectories xt. In standard fashion,
the PDF in equation (13) can be renormalised over the set of such trajectories which do
reach the target up to time moment t.

Using these general results, we now obtain closed-formed expressions for the FPT
PDF of models I, II, and III.
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3. Results

3.1. Model I

We first consider the functional form V (Bt) = Θ(Bt), for which the generating function
of the integrated diffusivity can be straightforwardly determined by taking advantage
of the celebrated results due to Kac [61] and Kac and Erdös [62]. In our notations, we
have

Υ(t; q2) = exp

(
−D0q

2t

2

)
I0

(
D0q

2t

2

)
, (15)

where I0(z) is the modified Bessel function of the first kind of order zero defined as [63]

I0(z) =
1

π

∫ π

0

dθ ez cos θ cos θ. (16)

Note that the inverse Laplace transform of the expression in equation (15) produces
the celebrated Lévy arcsine law [64]. Curiously, this expression does not depend on the
diffusion coefficient DB of Brownian motion Bt driving the diffusing diffusivity.

Substituting expression (15) into equation (10) we get

H(t|x0) =
x0√

4π3D0t3
exp

(
− x2

0

8D0t

)
K0

(
x2

0

8D0t

)
, (17)

where K0(z) is the modified Bessel function of the second kind of order zero [63],

K0(z) =

∫ ∞
0

dt cos(z sinh t). (18)

For completeness we also provide the moment-generating function of the FPT T ,

〈exp(−λT )〉 =
2

π

∞∫
x0
√
λ/D0

dz K0(z) , (19)

where the integral can also be represented in terms of modified Struve functions [63].
Due to the presence of K0(z), the FPT PDF H(t|x0) is functionally different from

the conventional Lévy-Smirnov probability density (9)—we denote it as H(LS)(t|x0)—
and this difference manifests itself both in the left and right tails of the FPT PDF.
At short times t � x2

0/(8D0), (i.e., for the left tail of the FPT PDF), one gets from
equation (17)

H(t|x0) ' exp(−x2
0/(4D0t))

πt
(t→ 0), (20)

meaning that the PDF acquires, due to the presence of K0(z), an additional factor 1/
√
t.

As a consequence, H(LS)
0 (t|x0)/H(t|x0) ' x0/

√
D0t → ∞ in this limit, implying that

H(t|x0) vanishes faster than the Lévy-Smirnov density.
Conversely, at long times t� x2

0/(8D0) (i.e., for the right tail of the PDF), one has
from equation (17)

H(t|x0) ' x0√
4π3D0t3

(
ln

(
16D0t

x2
0

)
− γ
)
, (21)
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Figure 1. FPT PDF H(t|x0) of the diffusing diffusivity dynamics to the absorbing
endpoint of the half-line (0,∞) for Model I. The thick solid line shows the exact form
(17), while the thin dashed and dash-dotted lines present the short-time and long-time
asymptotic relations (20) and (21), respectively. Here we set x0 = 1 and D0 = 1.

where γ = 0.5772.. is the Euler-Mascheroni constant [63]. Hence, in the long-t limit the
FPT PDF of Model I due to the additional logarithmic factor has a heavier tail than the
Lévy-Smirnov density. Figure 1 illustrates the FPT PDF and its asymptotic behaviour.

We also note that the FPT PDF H(t|x0) resembles the free propagator of this
diffusing diffusivity motion [36],

P (x, t|x0) =
e−(x−x0)2/(8D0t)

√
4π3Dt

K0

(
(x− x0)2/(8D0t)

)
=
x0

t
H(t| |x− x0|). (22)

This curious effect follows from equations (10) and (11) and from the fact that Υ(t;λ)

for this model is only a function of D0tλ.

3.2. Model II

For Model II we have V (Bt) = exp(−Bt/a) and the corresponding function Υ(t; q2) was
evaluated within a different context in [65]—in fact, Υ(t; q2) is related to the moment-
generating function of the probability current in finite Sinai chains. Explicitly, Υ(t; q2)

is defined by the Kontorovich-Lebedev transform

Υ(t; q2) =
2

π

∫ ∞
0

dx exp

(
−DBt

4a2
x2

)
cosh

(πx
2

)
Kix

(
2aq

√
D0

DB

)
, (23)

where Kix(z) is the modified Bessel function of the second kind with purely imaginary
index [63]. We note that the exact forms of Υ(t;λ) are also known for the case when
Bt experiences a constant drift [66,67]. Inserting this expression into equation (10) and
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performing the integrations we find that the FPT PDF of Model II is given explicitly
by

H(t|x0) =
a arcsinh

(
x0/

(
2a
√
D0/DB

))
√
πDBt3

exp

−
a2 arcsinh2

(
x0

2a
√
D0/DB

)
DBt

 . (24)

Remarkably, this is exactly the Lévy-Smirnov density of the form

H(t|x0) =
X0√

4πD0t3
exp

(
− X2

0

4D0t

)
, (25)

with an effective starting point

X0 = 2 a arcsinh
(
x0

/(
2a
√
D0/DB

))
, (26)

dependent not only on x0 but also on the diffusion coefficientsD0 andDB in a non-trivial
way.

Expectedly, the moment-generating function for the FPT is simply given by a one-
sided stable law of the form

〈exp(−λT )〉 = exp
(
−X0

√
λ/D0

)
, (27)

as for Brownian motion.

3.3. Model III

For Model III we set V (Bt) = B2
t /a

2. The function Υ(t; q2) can be calculated exactly
by using the results of Cameron and Martin [68,69] (see also [70])

Υ(t; q2) =
1√

cosh (cqt)
, (28)

where c = 2
√
DBD0/a2. Inserting this expression into equation (10) and performing

the integral, we arrive at the rather unusual form of the FPT PDF

H(t|x0) =
x0√

2π3 ct2
Γ

(
1

4
+
ix0

2ct

)
Γ

(
1

4
− ix0

2ct

)
, (29)

where Γ(x) is the Gamma function. At short times, using the asymptotic formula
|Γ(a+ ib)|2 ' 2πe−πb/

√
b as b→∞ for a = 1/4, we get

H(t|x0) '
2
√
x0/c√
πt3

exp(−πx0/(2ct)). (30)

While the t-dependence of expression (30) is exactly the same as in the Lévy-Smirnov
density, the dependence on x0 is rather different, and also the PDF depends, through
the constant c, on the diffusion coefficient DB. In fact, setting

X2
0 =

2πx0D0

c
= πx0a

√
D0/DB , (31)
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Figure 2. FPT PDF H(t|x0) to the absorbing endpoint of the half-line (0,∞) for
Model III. The thick solid line shows the exact form (29) while the thin dashed and
dash-dotted lines represent the short-time and long-time asymptotics (30) and (33),
respectively. Here we set x0 = 1, D0 = 1, DB = 1, and a = 1.

we can rewrite the short-time behaviour as

H(t|x0) '
√

8/π
X0√

4πD0t3
exp(−X2

0/(4D0t)), (32)

which is the Lévy-Smirnov distribution, except for the additional numerical factor
√

8/π.
At long times, the PDF exhibits the heavy tail

H(t|x0) ' x0 [Γ(1/4)]2√
2π3 c

t−2 , (33)

i.e., it decays faster than the Lévy-Smirnov distribution, but not fast enough to insure
the existence of even the first moment. Figure 2 illustrates the FPT PDF H(t|x0) and
its asymptotic behaviour.

Finally, the FPT PDF H(t|x0) is plotted for the three considered models in figure
3(a). In addition, we present the empirical histograms of the FPT generated by Monte
Carlo simulations, observing excellent agreement. Moreover, we depict in figure 3(b)
the FPT PDF H(t|x0) to an absorbing sphere of radius R along with Monte Carlo
simulations results. Details on Monte Carlo simulations are summarised in Appendix
A.

4. Conclusion

First passage properties of a stochastic process are crucial for the quantification of
secondary processes triggered by the arrival of the test particle to its target, such
as chemical reactions or financial transactions. In financial market data the first
passage dynamics with respect to a given, prescribed threshold value can immediately be
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Figure 3. (a) Comparison of the FPT PDF H(t|x0) to the absorbing endpoint of the
half-line (0,∞) for the three considered models. The solid lines represent the analytical
results, while the symbols show the empirical histograms obtained from Monte Carlo
simulations with 104 runs. We set x0 = 1, D0 = 1, DB = 1, and a = 1 (for Models
II and III). (b) Similar comparison for the FPT PDF H(t|x0) to an absorbing sphere
of radius R = 1. The starting point is |x0| =

√
3, while the other parameters are the

same.
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studied. Similarly, in physical processes studied by simulations first passage properties
are analysed in order to pinpoint the underlying physical process, see, e.g., the
analysis in [?]. However, even in experimental systems such first passage properties
are now routinely measured, by following fluorescently labelled, single particles by
superresolution microscopes [?]. Detailed analytical predictions for the first passage
behaviour of different stochastic processes are therefore needed for dedicated data
analysis.

To this end, we studied the extremal properties of a stochastic process xt generated
by the Langevin equation (1) with a stochastic diffusivity V (Bt). The latter is taken
to be a functional of an independent Brownian motion Bt. For three choices of the
functional form of V (Bt) we derived exact, compact expressions for the FPT PDF from
a fixed initial location to the origin. Such distributions are known only for a very
limited number of stochastic processes, and hence, our work provides novel examples of
non-trivial processes for which this type of analysis can be carried out exactly. Similar
results were obtained for the first passage time to an absorbing spherical target in three
dimensions.

Following the recent reference [36], which revealed a universal large-frequency
behaviour of spectral densities of individual trajectories xt for the three models studied
here, one could expect the same short-time asymptotic behaviour of the FPT PDF
for all these models, with a generic Lévy-Smirnov form. Indeed, in [36] it was shown
that the spectral densities of individual realisations of xt decay as 1/f 2 when f → ∞,
i.e., exactly as the spectral density of standard Brownian motion. However, we realised
here that the FPT PDF is of Lévy-Smirnov form (with an effective starting point,
dependent on the diffusion coefficients DB and D0) only for Model II, in which V (Bt)

is exponentially dependent on Bt, such that the process xt is strongly anomalous and
its mean-squared displacement grows exponentially with time. In turn, for Model I
with the cut-off Brownian motion V (Bt) = Θ(Bt), which exhibits a diffusive behaviour
〈x2

t 〉 ∝ t, we observed essential departures from the Lévy-Smirnov form. We saw that the
corresponding FPT PDF decays faster than the Lévy-Smirnov law in the limit t → 0,
and slower than the Lévy-Smirnov law in the limit t → ∞. For Model III with the
squared Brownian motion V (Bt) = B2

t /a
2, the left tail of the FPT PDF has the Lévy-

Smirnov form with a renormalised starting point, while the right tail decays faster. In
all models the distributions are broad such that even the first moment does not exist.

We conclude that the universal 1/f 2 decay of the spectral density does not
distinguish between different diffusing diffusivity models. Indeed, as we discussed earlier,
the white noise ξt in the Langevin equation (1) determines the statistics of trajectories in
space, whereas its amplitude,

√
2Dt, can speed up or slow down the motion along each

trajectory [45]. The spectral density is thus more sensitive to the spatial aspect of the
dynamics, and its universal decay simply reflects that the statistics of the trajectories
governed by the white noise is the same for all considered models. In turn, the FPT is
also sensitive to the temporal aspect of the dynamics, i.e., to the "speed", at which the
particle moves along the trajectory. This feature makes the spectral density and the
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first-passage time analysis techniques complementary.
It will be interesting to extend this analysis to other models for diffusion in

heterogeneous media, in particular, when the driving noise is Gaussian but long-range
correlated. For this case the behaviours of the mean squared displacement and the
position PDF were recently considered in a superstatistical approach [71, 72], in a
generalised diffusing diffusivity picture [29, 30], as well as in terms of an intermittent
two-state model of different particle mobility [31,73].
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Appendix A. Monte Carlo simulations

Monte Carlo simulations are carried out to support analytical results. The Euler
integration scheme is applied to simulate numerically the Langevin equation (1). For
each realisation an independent Brownian motion run Bt is generated to obtain the
dimensionless random diffusivity through the specific functional V (Bt) for each model.
Note that in 3D, assuming an overall isotropy of the system, the same Brownian motion
run is used to calculate the diffusivity along the three dimensions.

In order to implement the absorbing target, represented by a single point in 1D
and by a sphere in 3D, the following procedure is used:

1D. The absorbing point is located at the origin and the initial position is x0 > 0. At
each step ti the algorithm checks whether xti ≤ 0; if the latter condition is true
then the simulation is stopped and ti is stored as the first passage time for that
trajectory, else the simulation carries on.

3D. The absorbing sphere is centred in the origin and has a radius R. The initial
position x0 is located outside of the absorbing sphere and will thus identify a sphere
with initial radius r0 = |x0| > R. At each step ti the algorithm checks whether
rti = |xti | ≤ R; if the latter condition is true the simulation is stopped and ti is
stored as the first passage time for that trajectory, else the simulation carries on.

Note that, especially in the 3D case, there are trajectories that will diffuse away from
the absorbing target and will (practically) never return to it. In order to overcome
this issue a maximum simulation time tmax is fixed. This means that tmax will define a
maximum for the first passage times obtained from simulations. For the results shown
in this paper we set tmax = 102.
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1D 3D
Model I Model II Model III Model I Model II Model III

ε 0.2 0.2 0.3 0.2 0.3 0.3

Table A1. Values for the estimator defined in equation (A.1) for the three models in
both 1D and 3D.

Histograms of the stored first passage times are created to estimate the first passage
time distribution for each model, in both 1D and 3D. Results are shown in the main text,
figure 3. One can see that there are small deviations of the histogram points from the
analytical curves. Such deviations are due to statistical error. Indeed we can calculate
the residuals, defined as the difference between the numerical and the analytical points,
that isHnum(t|x0)−Hth(t|x0), and plot them together with the statistical error bars. The
latter are given by the square root of the counts within each bin—under the assumption
that the counts follow a Poisson distribution. In figure A1 results of this analysis are
shown. The residuals are always zero within the error bar. The only exceptions are
given by the points in which no error bar is reported, corresponding to bins where there
are no counts—nothing can be said about those points. In addition to this analysis
the following quantity can be evaluated as a common estimator of the deviation from
analytical curves,

ε =
1

NB

NB∑
i=1

|Hnum(ti|x0)−Hth(ti|x0)|
Hth(ti|x0)

, (A.1)

where NB is the total number of bins. The results from equation (A.1) for the three
models are reported in Table A1. The values vary between 0.2 and 0.3, confirming our
claim that numerical results and analytical predictions are in excellent agreement.
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