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Abstract

An End-Of-Turn Detection Module (EOTD-M) is an essential component of au-

tomatic Spoken Dialogue Systems. The capability of correctly detecting whether

a user’s utterance has ended or not improves the accuracy in interpreting the

meaning of the message and decreases the latency in the answer. Usually, in di-

alogue systems, an EOTD-M is coupled with an Automatic Speech Recognition

Module (ASR-M) to transmit complete utterances to the Natural Language Un-

derstanding unit. Mistakes in the ASR-M transcription can have a strong e↵ect

on the performance of the EOTD-M. The actual extent of this e↵ect depends

on the particular combination of ASR-M transcription errors and the sentence

featurization techniques implemented as part of the EOTD-M. In this paper

we investigate this important relationship for an EOTD-M based on semantic

information and particular characteristics of the speakers (speech profiles). We

introduce an Automatic Speech Recognition Simulator (ASR-SIM) that mod-

els di↵erent types of semantic mistakes in the ASR-M transcription as well as

di↵erent speech profiles. We use the simulator to evaluate the sensitivity to

ASR-M mistakes of a Long Short-Term Memory network classifier trained in

EOTD with di↵erent featurization techniques. Our experiments reveal the dif-

ferent ways in which the performance of the model is influenced by the ASR-M

errors. We corroborate that not only is the ASR-SIM useful to estimate the
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performance of an EOTD-M in customized noisy scenarios, but it can also be

used to generate training datasets with the expected error rates of real working

conditions, which leads to better performance.

Keywords: Spoken Dialogue Systems, Automatic speech recognition,

End of turn detection, Natural language processing, Neural networks
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Introduction

Implementing Spoken Dialogue Systems involves solving several di�cult ma-

chine learning problems. This includes, among others, speech recognition, Natu-

ral Language Understanding, semantic disambiguation, and non-trivial response

generation. An additional problem is cascading failure, in which an early mis-5

take in any of the system components, will harm the performance of the subse-

quent components. In particular, mistakes in the Automatic Speech Recognition

Module (ASR-M) of a dialogue system based on the architecture illustrated in

Figure 1a will have an e↵ect on the performance of the End-Of-Turn Detection

Module (EOTD-M) and Natural Language Understanding Module (NLU-M).10

This consequently a↵ects the overall performance of the system. While di↵er-

ent approaches have addressed the question of solving or mitigating the errors

produced in the ASR-M (Fernández-Dı́az and Gallardo-Antoĺın, 2020; Graves

et al., 2013; Squartini et al., 2012; Zhou et al., 2014; Trentin and Matassoni,

2003; Hannun et al., 2014; Shahamiri and Salim, 2014; Salem et al., 2007; Am-15

rouche et al., 2010), only a few papers analyze the impact of these errors in

subsequent components. Voleti et al. (2019) analyzed the e↵ects of word substi-

tution errors on sentence embeddings, and Simonnet et al. (2018) measured the

impact of word substitution errors produced by ASR-M on NLU-M. Neverthe-

less, the question of the relationship between the di↵erent types of ASR-M errors20

and their influence on the EOTD-M has not been addressed. This question is

relevant as the deterioration of the performance of EOTD-M due to ASR-M er-

rors can be di↵erent as a function of the error: the EOTD-M can be insensitive
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to some errors but very sensitive to other types of errors. Furthermore, di↵erent

methods of converting words into numerical information (featurization) exploit25

di↵erent features of speech, consequently the combination of classifier and fea-

turization techniques could also be sensitive to some errors and insensitive to

other types of errors. However, investigating this relationship is complicated

by the fact that the particular errors that an ASR-M produces depend on the

features of human speech, ambient noise, and the performance of the ASR-M30

itself. It is very di�cult to accurately induce specific errors in the ASR-M by

manually manipulating these input characteristics. Some studies, such as Shao

and Chang (2011), manipulate the intensity of di↵erent types of noise (Gaus-

sian noise, pink noise, Volvo engine noise, and speech-like noise) introduced

into speech to evaluate the robustness evaluation of an ASR-M. Their ASR-M35

produces di↵erent rates of errors depending on the intensity of the introduced

noise, nevertheless, they can not control what types of errors are generated by

the ASR-M.

In this paper, we introduce an ASR Simulator (ASR-SIM) that replicates the

di↵erent transcription errors produced in an ASR-M due to noise, or due to the40

particular speech profile, without manipulating human speech or adding noise

to an acoustic input. The ASR-SIM allows us to investigate the relationship of

these errors with several EOTD-M, with di↵erent featurization techniques.

The main contributions of this paper are as follows: It analyzes for the first

time how di↵erent errors produced by ASR-M can a↵ect the non-trivial task of45

End-Of-Turn Detection. Secondly, it introduces an ASR-SIM, which is capable

of simulating di↵erent types of errors produced by the ASR-M, and simulate

speaker features that can be used by other modules that form part of a Spoken

Dialogue System. There is not other work to our knowledge that has addressed

the task of creating such a simulator, the closest comparable works being the50

above mentioned from Voleti et al. (2019) and Simonnet et al. (2018).

The paper is organized as follows: In Section 1, we present the necessary

background on Spoken Dialogue Systems, emphasizing the role of the EOTD-

M and ASR-M. In Section 2, we describe the di↵erent classes of errors that
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can be produced by an ASR-M as well as the characteristics of a speech profile.55

Section 3 introduces a flexible simulator of the ASR-M. In Section 4, we describe

the experimental framework and the featurization techniques used. In Section 5

we present and discuss the results of our experiments. Section 6 concludes the

paper and discusses future work.

(a)

(b)

Figure 1: Subfigure (a) shows an architecture where the EOTD-M uses the output of the

ASR-M as input. Subfigure (b) shows an architecture where the EOTD-M uses the output of

the ASR-M as input, but also has access to other features extracted from raw audio.

1. Background60

1.1. End-Of-Turn detection in Spoken Dialogue Systems

The audio signal received by the ASR-M is a continuous stream of audio.

The system must filter the human voice from ambient noise, and estimate the

best group of words that corresponds to the audio signal. As a result, the ASR-

M outputs a stream of words with timing information, which could be hundreds65

of words long in a whole conversation. A conversation between two humans

consists of a turn-taking transference of information, and replacing one of the

humans with a bot requires the detection of the user’s End-Of-Turn pauses. The

goal of an EOTD-M is to detect this change of turn in a conversation between a
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human and the system. This triggers the evaluation of the sentence or sentences70

received by the NLU-M.

The consequences of failing in EOTD-M are:

1. Anticipation: When the NLU-M receives an incomplete sentence, the

system may potentially answer while the user is still talking, causing over-

lap between the speech of the human and the system. Some systems close75

the users microphone (Chang et al., 2017) when answering, missing all the

information transmitted by the user during the overlap.

2. Excessive delay: when an End-Of-Turn is not detected in time, the

time gap between a real End-Of-Turn and the reply from the system is

too high, and the user experience is harmed by unnatural waiting times80

between turns.

Several aspects have to be considered when designing an EOTD-M. Partic-

ularly relevant are the architecture of the spoken dialogue (which defines the

input to the EOTD-M) and the features used in the classification problem.

The architecture of a Spoken Dialogue System can limit the input resources85

of an EOTD-M. Figures 1a and 1b illustrate how two common architectures

di↵erently condition the input of the EOTD-M. In Figure 1a, the EOTD-M

receives information exclusively from the ASR-M, while in Figure 1b not only

can ASR-M information be received, but also raw audio data. We can find

studies in the literature that are based on the architecture of Figure 1a, such90

as the work by Razavi et al. (2019), who study the impact of the prediction

power of features extracted from pause, prosodic, timing, lexical, syntactic and

semantic information. Nevertheless, it is more common to find studies using

features extracted from raw audio data, following the architecture in Figure 1b.

There are di↵erent features that can be extracted from raw audio data, Chang95

et al. (2017) extracted 40-dimensional log-Mel filterbanks with an upper limit of

4kHz and a frame step of 10ms using a 25ms window, while Maier et al. (2017)

and Aldeneh et al. (2018) used raw pitch (F0), smoothed F0 contour, Root

Mean Square signal energy, the logarithmized signal energy, intensity, loudness,
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MFCC and smoothed pitch.100

These two architectures exploit only the user’s speech information, but dif-

ferent architectures can o↵er more sources of information, for example the ar-

chitecture presented by Masumura et al. (2018) uses the user’s utterance in

conjunction with the interlocutor’s utterance.

1.2. Automatic speech recognition in Spoken Dialogue Systems105

Automatic speech recognition is the procedure through which a speech signal

is converted into a representation of words or other linguistic entities by means of

automated algorithms. It has been an active research area for decades, as it has

always been considered as an essential tool in human-machine communication

(Yu and Deng, 2016).110

In Figure 2 an example architecture of ASR-M, EOTD-M and NLU-M is

illustrated. Particularly, in the ASR-M architecture shown, the feature extrac-

tion component takes as input the raw audio signal, filters noises that do not

correspond to human speech frequencies, and extracts frequency-domain fea-

ture vectors that are used to feed the following acoustic model. The acoustic115

model estimates one or several sets of words that best match with the feature

vectors given, where each set of words is an hypothetical sentence based only on

acoustics. The acoustic model integrates knowledge about acoustics and pho-

netics, and for each hypothetical sentence, estimates the similarity score with

the audio. The language model estimates another score for each hypothesized120

sentence, this time, based on correlation between words learned from a training

corpora. The language model score can often be estimated more accurately if

the training corpora are related to the task domain. These two scores from each

hypothesis are combined in the hypothesis search component to output the word

sequence with the highest score as the recognized sentence (Yu and Deng, 2016).125

More recent architectures such as end-to-end ASR-M architectures simplify the

conventional ASR-M architecture into a single Deep Neural Network (DNN)

architecture. Besides, the end-to-end models require no lexicons and predict

graphemes or words directly, which makes the decoding procedure simpler than
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other hybrid models. To date, the end-to-end ASR-M architectures have gained130

significant improvement in speech recognition accuracy (Watanabe et al., 2017;

Chiu et al., 2018; Amodei et al., 2016). More complex architectures not only use

audio as input for the ASR-M, but also use video input to extract characteris-

tics related to lip contour in order to increase robustness as done in Borgstrom

and Alwan (2008). These general ASR-M architectures can be implemented135

for online and o✏ine systems, although there are some di↵erences since online

ASR-M can only use present and past contextual information to perform the

predictions, while o✏ine ASR-M can use the whole audio as context.

Regarding feature vectors, ever since the introduction of Mel-frequency cep-

stral coe�cients (MFCC), they have been the state-of-the art features in ASR-140

M, due to their reduced dimensionality and relatively easy procedure (Davis

and Mermelstein, 1980). Lately, as a consequence of the implementation of

DNN’s, more primitive representations can also be considered state-of-the-art

features, for instance Mel-frequency spectral coe�cients (MFSC) which is the

logarithmic scaled Mel-spectrogram from which MFCC are extracted (Martinez145

and Schädler, 2016).

2. Sources of errors in ASR-M

One of the most challenging aspects of ASR-M is the mismatch between the

training and testing conditions, or real life acoustic conditions. During testing,

a system may encounter new recording conditions, microphone types, speakers,150

accents and di↵erent sources of background noise. Furthermore, even if the test

scenarios are seen during training, there can be significant variability in their

statistics (Serdyuk et al., 2016). Without specific noise-robust processing, even

state-of-the-art speech recognition degrades rapidly under decreasing Signal-to-

Noise Ratios (Narayanan et al., 2006).155

These conditions will produce the following errors in the ASR-M transcrip-

tion result:

1. Confused word (substitutions): Due to the pronunciation, noise, or
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Figure 2: ASR-M, EOTD-M, and NLU-M architectures

even the accent, some words can be mistranslated. This often occurs when

two words are phonetically similar.160

2. Missing word (deletion): Sometimes due to noise, accent or other

speech particularities, word sounds can be confused with ambient noise or

unintelligible sounds.

3. Extra word (insertion): Although some ambient sounds can be con-

fused with words, the most common source of word insertion occurs when165

the phoneme of a word can be represented by a tuple of words, instead

of the true corresponding word. For example the tuple of words“Join in”

could replace the word “Joining” because they are phonetically similar.
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The Word Error Rate (WER)(Zechner and Waibel, 2000) defined below

(Equation 1):170

WER =
S +D + I

N
(1)

where S, D, I and N are the number of substitutions, deletions, insertions

and number of words in the reference respectively, is a common metric used

to measure the performance of an ASR-M or machine translation system. The

general di�culty of measuring performance lies in the fact that the recognized

word sequence can have a di↵erent length from the reference word sequence175

(supposedly the correct one). WER is derived from the Levenshtein distance,

working at the word level instead of the phoneme level, and it is a valuable tool

for comparing di↵erent systems as well as for evaluating improvements within

one system. This kind of measurement, however, provides no details on the

nature of translation errors (Morris et al., 2004).180

2.1. Speech profiles

The problems exposed above are related with the conversion of sound waves

to phonemes, but there are other characteristics that are useful for communi-

cation and are related to the timing and duration of other language resources.

These characteristics are: pronunciation speed, speaking rate, and pause dura-185

tion.

Each person has their own way of speaking. And not even a combination

of pronunciation speed, speaking rate, pause length or accent is fixed for a

single person, it also varies depending on their mood or fatigue. Henceforth

we will refer to the measurable set of these characteristics as speech pro-190

file. In subsequent sections, we introduce a speech profile representation and

propose a way to obtain realistic values of the speech profile representation

parameters from the analysis of real ASR-M outputs. For example, in Figure

3, the average letter duration of multiple speakers is compared, calculated as

letter duration = word pronunciation time/word length. The figure shows195

the average letter duration grouped by word length. The data is extracted from
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the Switchboard dataset (Godfrey et al., 1992), which has become the de facto

standard experimental testbed for speech recognition, and will be explained in

more detail in Section 4. In Figure 3 it is possible to observe the profiles of the

speakers that have the maximum and minimum average letter duration, as well200

as the profile of another 20 randomly chosen speakers. Figure 3 reveals that the

fastest profile is double the speed of the slowest, illustrating how wide the range

of speeds can be in a group of speakers.

Figure 3: Pronunciation speed profiles

3. ASR Simulator

As it is not possible to generate all possible types of noise that an ASR-M205

can receive, our goal is to introduce an ASR-SIM that can be controlled in such

a way that the transcribed data exhibits di↵erent types and rates of artifacts.

A characteristic feature of our simulator is that, instead of using an audio file

as input, a dialogue transcription or a plain text can be used. The ASR-SIM

converts any conversation transcription into an ASR-M output with the desired210

probabilities of ASR-M errors, and desired speech profiles.

The ASR-SIM output format is composed of two di↵erentiated parts:

1. Word information: Contains the possible words that the ASR-SIM may es-

timate that correspond to the audio fragment, and their confidence value.
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2. Timing information: Indicates the timestamp of the start of the pronun-215

ciation of the word, and its duration.

The transformation from plain text to word and timing information will be

determined by a number of internal parameters of the simulator. These param-

eters can be grouped into two classes: WER probabilities and speech profile

parameters.220

3.1. WER probabilities

The ASR-SIM allows us to set the probability of each particular error that

makes up the WER (probability of a confused word, probability of a missing

word, probability of an extra word). Given a sentence, for each word the three

error probabilities are evaluated to determine if the word is a↵ected by one of the225

defined errors. These errors were introduced in Section 2, and the description

of the methods implemented to simulate each type of error follows:

1. Confused word: the word is substituted by a phonetically similar word.

The phonemes of the replacement and replaced words will have a Leven-

shtein distance smaller than a given threshold. The timing information is230

calculated using the information of the substituted word.

2. Missing word: the word is substituted by a token that represents an un-

known phoneme < Unk >. The timing information is calculated using

the information of the substituted word.

3. Extra word: the phoneme of the word is randomly split into two sub-235

phonemes, and each one is replaced by a word with a phoneme with a

Levenshtein distance smaller than a given threshold. The timing infor-

mation is calculated using the original word information, proportionally

sharing the word duration between the two replacement words, and with

a pause p = 0 between replacements.240

The implementation of the di↵erent error methods should mimic the errors

of the ASR-M we want to simulate with the ASR-SIM. Even if an ASR-M uses

a common set of features, the combination of the Acoustic model, the Language

11



model and the Hypothesis Search make each ASR-M unique, and therefore the

characteristics of the errors generated are unique as well. For example, for an245

ASR-M that gives more importance to the Acoustic model than to the Language

model, when making a confused word error the true word might be replaced

by a phonetically similar word, even if it causes an unlikely semantic error.

In this example implementation the phonemes are obtained using the Refined

Soundex algorithm, originated with the implementation of phonetic algorithms250

included with the Apache Commons library (Fossati and Di Eugenio, 2008). We

use the Levenshtein distance (Levenshtein, 1966) to compare word phonemes,

as it is commonly used to compute error rates of ASR-M. We have used the

implementation in the Pyphonetics library1 for these tools, and the English

dictionary from the Nltk library2 has been used as a source of replacement255

words for the Confused and Extra word errors.

3.2. Speech profile parametrization

The parametrized characteristics of the speech profile used by the simulator

are:

1. Word duration260

2. Pause duration

While in theory these parameters could be arbitrarily set, a realistic output

of the ASR-SIM will require a more sensible setting of the parameters. We ad-

dress this issue using a statistical analysis of real ASR-M outputs. As described

in Section 2.1, a speech profile can be defined by a set of characteristics. All265

these characteristics are measurable, and we can therefore generate a set of vari-

ables to simulate a particular speech profile, or simulate multiple speech profiles

by modifying these variables. In order to perform the experiments that will be

defined in Section 4, we will parametrize word duration performing the study

1https://pypi.org/project/pyphonetics/
2https://www.nltk.org/
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Figure 4: Letter duration (ms)

described in Section 3.2.1, and pause duration (Section 3.2.2) based on Campi-270

one and Véronis (2002). These parameters will directly a↵ect the codification of

the sentences, since some codification methods use pauses between words as in-

put information, and pause duration will a↵ect the amount of evaluation points

used in the experiments, as detailed in Section 4.1.

3.2.1. Word duration275

In order to simulate word duration, we will use the values obtained by calcu-

lating the average and standard deviation of the letter duration of the speakers

from the Switchboard dataset (Figure 3). The distribution of the values ob-

tained for the letter duration calculus is illustrated in Figure 4. The ASR-SIM

will use this empirical distribution to estimate the duration of each letter in a280

word, randomly sampling from the distribution. Although more sophisticated

methods could have been used to estimate the pronunciation time of a par-

ticular word, this method maintains simplicity, and it still makes words last a

proportional, but not fixed, amount of time for their length.

3.2.2. Duration of pauses285

Campione and Véronis (2002) present a large-scale study of silent pause du-

ration, based on the analysis of read and spontaneous speech. Although in their
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study, spontaneous speech analysis is only performed in French, it does not rep-

resent an obstacle for our analysis since it has been observed that the language

di↵erences with respect to gap duration seem to be minor (Weilhammer and290

Rabold, 2003). Campione and Véronis (2002) made the hypothesis that the

observed pause duration distributions are the result of a combination of three

categories of pauses. By using Generalized Reduced Gradient (GRG2), they ob-

tained a parametrized probabilistic model of the duration of pauses, which is

described by Equation 2:295

D(x) = k1N(µ1,�1, x) + k2N(µ2,�2, x) + k3N(µ3,�3, x) (2)

where D(x) is the distribution of the duration of pauses, N(µi,�i, x) is the

normal law of mean µi, and their standard deviation is �i (duration of pauses

are log-transformed). The parameters k1, k2 and k3 represent the weight of each

component distribution (k1 + k2 + k3 = 1).

Based on this work, we match each of these pause duration distributions in300

increasing order of µi, with the pause between words, comma pause and dot

pause respectively. The µ and � values used for each distribution are shown in

Table 1. Although µ values are available in the original study, � values were

deduced from the figures in Campione and Véronis (2002).

The ASR-SIM will generate pauses according to these distributions when305

using plain text inputs. However, if the original pause information is provided,

this information will be used.

Table 1: Pause distributions parameters.

i µi �i

Between words pause 1 78 1.3

Comma pause 2 426 1.6

Dot pause 3 1585 1.3
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Algorithm 1: Pseudocode of the ASR-SIM main function

1: asr output = [];

2: for token in source text do

3: if is word(token) then

4: is confused = random() > confused word threshold

5: is missing = random() > missing word threshold

6: is extra = random() > extra word threshold

7: possible errors = [ ]

8: if is confused then possible errors.append(“confused”)

9: if is missing then possible errors.append(“missing”)

10: if is extra then possible errors.append(“extra”)

11: error = random selection(possible errors)

12: if error == “confused” then

13: confused word = get close match(token)

14: asr output.append(confused word)

15: else if error == “missing” then

16: asr output.append(<unk>)

17: else if error == “extra” then

18: word1, word2 = generate extra word(token)

19: asr output.append(word1)

20: asr output.append(pause between words)

21: asr output.append(word2)

22: else

23: asr output.append(token)

24: else

25: if token == “,” then

26: asr output.append(comma pause)

27: else if token == “.” then

28: asr output.append(point pause)

29: else if token == “ ” then

30: asr output.append(pause between words)

31: return asr output; 15



Algorithm 2: Pseudocode of the generate extra word( word ) function

1: w1 Length = random(1, length(word))

2: w2 Length = length(word) - w1 Length

3: w1 segment = word[:w1 Length]

4: w2 segment = word[w1 Length:]

5: firstWord = get close match(w1 segment)

6: secondWord = get close match(w2 segment)

7: return firstWord, secondWord

3.3. ASR Simulator pseudocode

The general procedure to transform a text to the desired ASR-SIM output

is the one described by Algorithm 1. The output of the ASR-SIM contains the310

recognized words, and the associated timing information. Any character that

is not a letter is removed from the input text, except for commas and periods

which represent pauses in the speech.

In Algorithm 1, the source text is analyzed token by token (line 2). Whenever

the token corresponds to a word (line 3), for each error type a random number is315

generated and compared to the associated threshold value (lines 8-10), the error

to apply will be randomly selected between those that exceed the corresponding

threshold (line 11), and the error mechanism is executed (lines 12-21). On the

other hand, if the token is not a word, it will generate a pause based on the

type of token (lines 25-30).320

In lines 17-21, the extra word error is generated using an auxiliary function

called generate extra word, which is in charge of generating two words from one,

as explained in Section 2 and described in Algorithm 2. The generate extra word

function randomly splits the word (lines 1-4) and finds a similar word for each

segment with the function get close match (lines 5-6). This function is also used325

in line 10 to generate the confused word error by calculating the Levenshtein

distance between the phonemes as explained in Section 3.
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The source code is available under GNU General Public License v3.0 3 in

it’s source code repository4.

4. Experiments330

In this section we present the experimental framework we have designed to

evaluate the influence of the di↵erent types of errors in the behavior of the

EOTD-M. We conduct this evaluation using the ASR-SIM presented. The pa-

rameters of the simulator are changed to produce di↵erent combinations of er-

rors. The performance of the EOTD-M prediction task is then tested on this335

simulated data. The section is organized as follows: Firstly, we describe the

EOTD-M prediction task and the features used as input for the classifier. Then

we describe the characteristics of the classifier, and the metrics used to evaluate

the results. The two sections that follow describe the corpora used and how er-

rors are generated by the ASR-SIM. Finally, we present and discuss the results340

of the experiments.

4.1. EOTD-M classification and sets of features

To evaluate the sensitivity of the classifier, we rely on the Prediction at

Pauses task described by Skantze (2017). This is a standard turn-taking decision

task that takes place at brief pauses during an interaction. The goal is to predict345

whether the user holding the turn is going to continue speaking (HOLD), or swap

turns (SHIFT).

As mentioned in Section 1.1, there are multiple features that can be extracted

from raw audio data, but since we use the ASR-SIM, our features will be those

that can be extracted from transcriptions. Therefore, in this experiment, we350

compare the sensitivity of the classifier to the use of the following sets of feature

vectors:

3https://choosealicense.com/licenses/gpl-3.0/
4https://github.com/CesarMontenegro/AsrSimulator

17



– Word Embeddings: multi-dimensional meaning representations of a

word. For these experiments, we use the GloVe (Global Vectors for

Word Representation (Pennington et al., 2014)) pretrained embed-355

dings5. This is a popular vector representation for Natural Language

Processing tasks.

– POS Tags: part-of-speech tag for each word is considered to be a good

predictor of turn-switches in the literature (Gravano and Hirschberg,

2011). To obtain the tags, we use the tagger from the Nltk library,360

and generate a one-hot representation.

– Pauses: duration of time gaps between every pair of consecutive

words in the sentence.

– Combined: a combination of Word Embeddings, POS Tags and Pauses.

4.2. Characteristics of the classifier365

In the literature, the most frequently used models for EOTD-M are models

based on LSTM Recurrent Networks (Maier et al., 2017; Aldeneh et al., 2018;

Roddy et al., 2018; Liu et al., 2017; Shannon et al., 2017; Masumura et al.,

2017; Hara et al., 2019). Despite being combined with other layers or algorithms

(e.g., Shannon et al. (2017) add Convolutional Layers to the architecture), the370

main di↵erences between them are the features they use to train the algorithm.

Therefore, for our experiments, we will use the LSTM architectures illustrated

in Figure 5, with the parameters described in Table 2.

For model validation, each scenario generated in these experiments will di-

vide the dataset into three subsets. These three divisions will be called Train,375

Validation and Test. The algorithm will learn from the Train subset, while

Validation is used to avoid overfitting by stopping the training process when

the validation loss stops improving. The parametrization of this anti-overfitting

mechanism is described by the earlyStopping variables in Table 3. The patience

5Available online at https://nlp.stanford.edu/projects/glove/
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(a) Single-feature input architecture (b) Multiple-feature input architecture

Figure 5: Subfigure (a) shows the architecture of the models that use one of the three features

vectors as input. Subfigure (b) shows the architecture of the models that use the three types

of feature vectors as input.

Table 2: Architecture of the models used, Layer(type) is the name of the units used in each

particular layer and Units is the number of units in the layer.

Layer (type) Units

LSTM 128

Dense(relu) 128

Dense(sigmoid) 1

parameter allows the anti-overfitting mechanism to prevent the training proce-380

dure from stopping when it is temporally stuck in a local minima. Nevertheless,

for these experiments we have observed that even low values of patience are

enough to avoid local minima and overfitting.

4.3. Metrics

The LSTM network will output the probability of a sentence being a SHIFT385

pause. Using a threshold value, this output can be binarized, thus allowing

to calculate the accuracy and other metrics. However, the determination of

this threshold can severely a↵ect the result. To avoid this drawback, in these
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Table 3: Parameter of the training procedure for the LSTM based model, n batch samples

per gradient update, epochs is the number of epochs to train the model, learning rate controls

how much to modify the model’s parameters in response to the estimated error after each

epoch, pad sequence is the maximum length in number of words of a sentence (if the sentence

is larger than this value, the first words in the sentence are discarded until it reaches the

specified length), earlyStopping monitor is the variable monitored that will trigger the early

stopping of the training procedure, earlyStopping patience is the number of epochs with no

improvement after which training will be stopped, loss function is the optimization score

function and optimizer is the name of the algorithm used to fit the parameters.

Parameter Value #

n batch 1000

epochs 200

learning rate 0.01

pad sequence length 30

earlyStopping monitor val loss

earlyStopping patience 5

loss function binary crossentropy

optimizer adam
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experiments the Area Under the ROC Curve (AUC) will be used to evaluate

the performance of the LSTM models.390

4.4. Dialogue data corpora

The experiments will be performed with two datasets. The first dataset will

be based on the Switchboard dataset, for which we will not generate timing

information (word duration and pause duration) since it already has that in-

formation available, and we will only induce the correspondent artifacts. This395

dataset is a telephone-speech corpus that consists of approximately 260 hours

of speech and was originally collected by Texas Instruments in 1990-1991, un-

der DARPA sponsorship6. It is a collection of about 2,400 two-sided telephone

conversations among 543 speakers (241 female, 302 male) from all areas of the

United States. In these types of conversations, where there is a lack of non-verbal400

communication, backchannel communication is very present. For End-Of-Turn

detection, we are not interested in backchannel turns, we focus on the speech of

the speaker who leads the turn, and is making a statement. The backchannel

communication made by the listener on a turn is ignored, resulting in a dataset

of 35,323 sentences.405

The second dataset will be based on the OpenSubtitles en-es corpus7, for

which the ASR-SIM will have to estimate all the timing information based on

the parameters we have defined. The OpenSubtitles en-es corpus contains 61.4

million speech turns from movie scripts. These speech turns do not belong to real

speech, the dialogues are scripted, and therefore the structure and vocabulary410

vary from natural human-to-human speech. Nevertheless, this dataset provides

a complementary validation benchmark for our study, since each communication

scenario presents a particular problem, such as telephone conversations, face-to-

face conversations or videoconferences. We will train and test the EOTD-M on

these types of dialogues without trying to export the models from the scripted-415

6https://catalog.ldc.upenn.edu/LDC97S62
7[dataset] http://opus.nlpl.eu/OpenSubtitles.php
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Table 4: Example of the generation of SHIFT and HOLD instances with � = 1045ms

Hypothetical sentence

Hello, I would like to buy a necklace, a gold necklace.

Pause duration

Hello<1200ms>I would like to buy a necklace<1600ms>a gold necklace

Instances and labels generated from the sentence (� = 1045ms):

Hello I would like to buy a necklace a gold necklace SHIFT

Hello I would like to buy a necklace HOLD

Hello HOLD

dialogue environment to human-to-human speech. For the experiments, we will

use 50.000 randomly selected sentences from this dataset.

According to the EOTD-M problem described in Section 4.1, each speech

turn generates a SHIFT-labeled instance, while HOLD instances are generated

from turns containing pauses longer than the specified threshold (� = 1045ms).420

This is proposed in Campione and Véronis (2002) as a cut between the distribu-

tions that we have associated with comma and dot pauses. A HOLD instance is

the sub-sequence of tokens that precedes each pause greater than the threshold

in a turn. Illustrative examples of the generation of SHIFT and HOLD instances

can be found in Tables 4 and 5, where, from a hypothetical transcribed sentence,425

we analyze the pause duration to generate HOLD and SHIFT instances. The

example in Table 4 uses a threshold value of � = 1045ms, and the one in Table 5

uses � = 1500ms.

Finally, the datasets are balanced to contain the same amount of SHIFT and

HOLD instances. This is done by randomly sampling from each class.430

4.5. Word Error probabilities

The probabilities of the ASR-SIM errors used to analyze the impact on the

quality of the LSTM estimator are: {0.0, 0.1, 0.3, 0.5, 0.7} for the three types of

errors. In order to identify which factors influence each feature representation
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Table 5: Example of the generation of SHIFT and HOLD instances with � = 1500ms

Hypothetical sentence

Hello, I would like to buy a necklace, a gold necklace.

Pause duration

Hello<1200ms>I would like to buy a necklace<1600ms>a gold necklace

Instances and labels generated from the sentence (� = 1500ms):

Hello I would like to buy a necklace a gold necklace SHIFT

Hello I would like to buy a necklace HOLD

technique, each error probability is analyzed independently. The threshold for435

the Levenshtein distance of Confused and Extra word errors is set to ⌧ = 3.

To evaluate the impact of the di↵erent error types and probabilities, the ex-

periments will be conducted following two strategies: same distribution and

di↵erent distribution. The same distribution strategy will apply the same error

probability in train, validation and test sets, given a particular error type and440

probability. The di↵erent distribution strategy will apply the error to the test

set only, while the algorithm will train with free-from-error data. This second

strategy simulates the scenario in which the training data is generated in a con-

trolled environment, with a low probability of errors. However, the evaluation

data is generated in a real environment, exposed to the errors defined in Sec-445

tion 2. Therefore, the di↵erent distribution strategy will allow us to investigate

how important training with the expected test error rates is.

5. Results

Before analyzing how the ASR-SIM transcription errors a↵ect the perfor-

mance of the LSTM based EOTD-M, we have measured how each error type450

a↵ects each featurization technique. Inspired on the analysis performed by Vo-

leti et al. (2019), where they investigate the e↵ects of word substitution errors

(Confused word error) on sentence embeddings, we have measured how much
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featurized sentences change under the e↵ect of the di↵erent errors generated in

the ASR-SIM.455

5.1. E↵ects of the ASR-SIM errors on the featurization techniques

The errors considered in this paper can cause variations in the length of

a sentence, unlike in Voleti et al. (2019), where only the confusion error is

analyzed, which does not change the number of words in a sentence. Extra word

error adds words to the sentences, and this makes the approach of Voleti et al.460

(2019) unsuitable for this paper, since it compares the original and modified

sentences word to word.

Therefore, to overcome this di↵erence, we treat the sentences as time series of

feature vectors, and use the Dynamic Time Warping (DTW) measure (Liu et al.,

2007) to compare sentences without errors and sentences with the induced errors.465

DTW is a measure that finds the optimal alignment between two time series

by stretching or shrinking one of the time series along its time axis (Salvador

and Chan, 2007). This warping between two time series can then be used to

determine the similarity between the two time series by means of a defined

distance measure. DTW is often used in speech recognition to determine if two470

waveforms represent the same spoken phrase (Abdulla et al., 2003).

DTW has been previously used to compare similarity between sentences

(Liu et al., 2007), and although it does not guarantee the triangle inequality, it

provides an estimation of how the errors a↵ect the vectorized representation of

the sentences. For this evaluation we have used the Python FastDTW library8475

based on the work of Salvador and Chan (2007), which is an approximate DTW

algorithm that provides optimal or near-optimal alignments with an O(N) time

and memory complexity.

We have randomly selected 1000 sentences to calculate the average distance

to their modified version for each dataset, the distance is calculated by the480

FastDTW algorithm with the Euclidean distance between each pair of matched

8https://pypi.org/project/fastdtw/

24



words. The distances have been calculated under the e↵ect of the di↵erent

error probabilities described in Section 4.5. This comparison exercise has been

performed 10 times to take into consideration the variability generated in the

ASR-SIM, and averaged to illustrate the results in Figures 6 and 7. These485

figures are composed of three plots each, one for each featurization technique.

Each plot contains information on how a particular featurization technique is

a↵ected by the three error types with di↵erent error probabilities. The Y axis

represents the average distance between sentences, and the X axis represents

the error probability of the modified version of the sentences.490

Figure 6: DTW distances between 1000 Switchboard sentences and their modified versions

generated by the ASR-SIM.

The first plot from left to right in Figures 6 and 7 shows that all the er-

rors a↵ect similarly to the Embedding featurization. Nevertheless, the error

that a↵ects the most is the confused word error followed by extra word error

and missing word error. The second plot in Figures 6 and 7 shows how POS

featurization is similarly a↵ected by extra word error and missing word error,495

and slightly less a↵ected by confused word error. This result responds to the

expectations since the distance between every pair of one-hotted POS tags is

the same, and occasionally the confused word can have the same POS tag as

the original word.

Finally, Pause featurization seems to be una↵ected by confused word error500
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Figure 7: DTW distances between 1000 subtitle sentences and their modified versions gener-

ated by the ASR-SIM.

and extra word error, but it is a↵ected by missing word error. This is also

expected since missing word error and confused word error do not alter the

pause between the duration of words, while extra word error creates a pause

between the two words added.

5.2. E↵ects of the ASR-SIM errors on EOTD-M505

We compute the predictions made by the LSTM based classifier given di↵er-

ent errors in the ASR-SIM transcription, di↵erent sentence featurization tech-

niques and di↵erent scenarios. The results are shown in Figures 8, 9, 10 and

11.

For each dataset, there are two figures displaying the results for the same distribution510

and di↵erent distribution strategies. Each of the Figures 8-11 is composed of

three plots, one for each ASR-SIM error type defined in Section 2. Each plot

shows the average AUC score obtained from a 10-fold experiment for each fea-

turization technique and the combination of the three techniques, taking into

account the variability obtained from randomly generating dataset splits and515

error generation.

A first analysis of Figures 8-11 reveals that the Pause feature representa-

tion obtains the worst AUC results not only for every error probability on the
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same distribution experiments, but also for low error probabilities on the dif-

ferent distribution experiments. This poor performance can be explained by520

the fact that pause duration information is very limited and does not capture

semantic aspects of EOTD-M. This seems to be confirmed by the observation

that the Combined features produce the highest AUC values, being the most

complex representation used in this work.

Figure 8: Results for the Switchboard dataset with equal train-test distribution.

Figure 9: Results for the Switchboard dataset with di↵erent train-test distribution.

Therefore, we focus our analysis on the Combined, Embeddings and POS525

features since, as previously discussed, Pauses features do not produce accurate

classifications. Analyzing the e↵ect of the shift of error distributions between

train and test sets (same distribution vs di↵erent distribution), Figures 8-11

show that the e↵ect of the change of distributions is remarkable under the e↵ect
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of the confused word error andmissing word error, and, to a lesser extent, for the530

extra word error. This e↵ect is similar in both datasets, and more remarkable

in the Combined and Embeddings experiments, which show fast degradation as

the error probabilities grow. The payo↵ of having the most complex features is

that it is the most sensitive to errors, deteriorating to the point of performing

worse than other simpler features. This can be appreciated in Confused and535

Missing word error of Switchboard results in Figure 9, and on the Subtitles

results shown in Figure 11.

Figure 10: Results for the Subtitles dataset with equal train-test distribution.

Figure 11: Results for the Subtitles dataset with di↵erent train-test distribution.

On the other hand, POS features, despite achieving a worse performance

than the Embedding features, are less a↵ected by low error probabilities. Nev-

ertheless, missing word errors have a stronger impact than the other errors, as540
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can be seen in Figures 9 and 11. We may hypothesize that a confused word can

still keep the same POS tag, and does not alter the vectorized representation

of the sentence as much as a missing word error. In the same way, extra word

errors generate two words, of which at least one could also have the same POS

tag as the original word, despite having an extra tag from the other word. This545

hypothesis is reinforced by the results illustrated in Figures 6 and 7, and ana-

lyzed in Section 5.1, where confused word error is the least severe error in terms

of altering the POS featurization of a sentence.

The impact of these induced errors has been also measured in terms of

training time. In figures 12-13 the training time under each error probability is550

illustrated. In each figure, given the featurization technique, we can compare

the training time for each error type. The X axis in this type of plots (Swarm

plots and violin plots) does not correspond to a continuous variable, it acts as

an auxiliary variable that helps to plot multiple instances that have the same

Y value (training time in this case) without overlapping those instances. These555

figures show how, for both datasets, neither the error type nor the probability

a↵ect the training time significantly. Although the lack of influence of the errors

on the training time could be caused by the 200 epoch limit by making all the

training processes stop at the same epoch, this is not the case since none of the

training processes reached the epoch limit.560

Summarizing all the information extracted, we can conclude that missing

word error is the most potentially harmful error an ASR-M can deliver to the

EOTD-M if the classifier is not trained with the expected error probabilities.

Not only it modifies the vectorization of a sentence severely, but it is also the er-

ror that a↵ects the performance of an LSTM based EOTD-M the most. Another565

important finding is that representations that are less e�cient for the EOTD-M

under low error probabilities can become more e�cient for particular types of

errors when the error rate is increased. This is the case of the POS represen-

tation, which can outperform the embedding representation for high confused

word and extra word error probabilities in the di↵erent train-test distribution570

scenario. Nevertheless, for this to happen in some embedding and error type
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Figure 12: Training time for the Switchboard dataset.

configurations, the error probability must reach values of 0.5 or above, such is

the case of Figure 9 for confused word error. In other studies such as Voleti

et al. (2019) and Simonnet et al. (2018), where the e↵ects of confused word

error on embeddings and NLU-M respectively are studied, the maximum error575

probability simulated is 0.5, and real transcription errors, the percentage error

was 23%. Nevertheless, in this study we have covered a wider range of error

probabilities, since the amount of errors depend not only on the ASR-M itself

but also the audio conditions, and that is sometimes an uncontrollable factor.

The results obtained from the experiments are similar using both datasets,580

and the behavior of the classifiers under the influence of the generated errors

is coherent. This indicates that the ASR-SIM is suitable for the purpose of

simulating ASR-M transcriptions and simulating errors.
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Figure 13: Training time for the Subtitles dataset.

6. Conclusions and future work

In this paper we have proposed a method for investigating the influence of585

the ASR-M output errors on the behavior of the EOTD-M of Spoken Dialogue

Systems, which has not been addressed before. The ASR-SIM introduced in this

paper generates the transcription of a simulated dialogue starting from plain

text, with the amount and type of noise specified by the user. This leads to a

realistic simulation of a variety of problems exhibited by ASR-M components.590

The code of this simulator will remain available in GitHub 9 for future studies

as a contribution of this work. The absence of comparable simulators in the

literature, is one of the motivations of this work.

9https://github.com/CesarMontenegro/AsrSimulator
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Some of the insights from our analysis are the following:

1. The ASR-SIM is suitable for the purpose of simulating ASR-M transcrip-595

tions and simulating errors.

2. Word embeddings produce the best overall results for the EOTD-M task.

This is consistent with previous reported results.

3. The most influential error across representations is the missing word error.

4. In terms of classifier performance, there is an interaction between types600

of errors and featurization techniques.

5. It is more e↵ective to include ASR-M simulated errors in the train and

validation sets in order to make the classifiers more robust.

So far, we have only exploited the capability of the ASR-SIM to vary the

three types of noise exposed. However, further research can be done by combin-605

ing noise with the di↵erent speech profiles described in Section 2.1. Moreover,

in this early version of the ASR-SIM, errors are generated randomly among the

words of a sentence, nevertheless there are probably certain characteristics in

some words that make them more prone to errors compare to others. A study

on what word characteristics are more influential on the probability of a word610

to be miss transcribed would help to create more realistic scenarios by the ASR-

SIM. Also, in order to increase the amount of algorithms that can benefit from

this simulator, the pause and word duration simulations can be extended with

other simulations, such as tone and other variables extracted from audio. Doing

this, solutions based in the architecture represented in Figure 1b will be able to615

benefit from the advantages that the ASR-SIM o↵ers.
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Fernández-Dı́az, M., Gallardo-Antoĺın, A., 2020. An attention long short-term

memory based system for automatic classification of speech intelligibility. En-

gineering Applications of Artificial Intelligence 96, 103976.665

Fossati, D., Di Eugenio, B., 2008. I saw tree trees in the park: How to correct

real-word spelling mistakes, in: LREC, pp. 896–901.

Godfrey, J.J., Holliman, E.C., McDaniel, J., 1992. Switchboard: Telephone

speech corpus for research and development, in: International Conference on

Acoustics, Speech and Signal Processing, IEEE. pp. 517–520.670

34



Gravano, A., Hirschberg, J., 2011. Turn-taking cues in task-oriented dialogue.

Computer Speech & Language 25, 601–634.

Graves, A., Mohamed, A.r., Hinton, G., 2013. Speech recognition with deep

recurrent neural networks, in: International Conference on Acoustics, Speech

and Signal Processing, IEEE. pp. 6645–6649.675

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger,

R., Satheesh, S., Sengupta, S., Coates, A.e.a., 2014. Deep speech: Scaling up

end-to-end speech recognition. arXiv preprint arXiv:1412.5567 .

Hara, K., Inoue, K., Takanashi, K., Kawahara, T., 2019. Turn-taking prediction

based on detection of transition relevance place, pp. 4170–4174.680

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions,

and reversals, in: Soviet Physics Doklady, pp. 707–710.

Liu, C., Ishi, C., Ishiguro, H., 2017. Turn-taking estimation model based on joint

embedding of lexical and prosodic contents, in: Proceedings of Interspeech,

pp. 1686–1690.685

Liu, X., Zhou, Y., Zheng, R., 2007. Sentence similarity based on dynamic time

warping, in: International Conference on Semantic Computing, IEEE. pp.

250–256.

Maier, A., Hough, J., Schlangen, D., 2017. Towards deep end-of-turn prediction

for situated spoken dialogue systems, pp. 1676–1680.690
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