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Abstract— The paper proposes a novel extension of many 

objective optimization using differential evolution (MaODE). 
MaODE solves a many objective optimization (MaOO) problem 
by parallel optimization of individual objectives. MaODE 
involves N populations, each created for an objective to be 
optimized using MaODE. The only mode of knowledge transfer 
among populations in MaODE is the modified version of 
mutation policy of DE, where every member of the population 
during mutation is influenced by the best members of all the 
populations under consideration. The present work aims at 
further increasing the communication between the members of 
the population by communicating between a superior and an 
inferior population, using a novel migration strategy. The 
proposed migration policy enables poor members of an inferior 
population to evolve with a superior population. Simultaneously, 
members from the superior population are also transferred to 
the inferior one to help it improving its performance. 
Experiments undertaken reveal that the proposed extended 
version of MaODE significantly outperforms its counterpart and 
the state-of-the-art techniques.  

Keywords—differential evolution; many-objective optimization; 
individual parallel optimization; multiple population; migration. 

I. INTRODUCTION  
Many-objective optimization (MaOO) refers to 

optimization problems, involving four or more conflicting 
objectives [1]. Over the past decade, popularity of MaOO 
algorithms have radically increased to solve real world 
optimization problems, like brain-computer interfacing [2], 
aerospace engineering [3], extraction of bioactive compound 
[4], robotics [5] and many more applications. However, there 
exists vast literature revealing the incapability of evolutionary 
multi-objective optimization (EMOO) algorithms to solve 
MaOO problem. The non-dominance criteria used in EMOO 
to form Pareto fronts fail to maintain sufficient selection 
pressure for a MaOO problem with four or more objectives. 
This is due to remarkable growth in the number of Pareto 
optimal solutions with the increase in the number of objectives 
beyond three [6], [7].  

Researchers are taking keen interest to overcome the 
impasse of EMOO to solve MaOO problems. Strategies 
proposed in [8], [9] aim at judicious selection of the 
significant objectives out of all objectives for a given MaOO 

problem. Traces of reference point based MaOO algorithms 
are found in [10], [11] where decision maker determines the 
search direction in the preferred regions of the Pareto front. 
Among the methods, enhancing Pareto optimality criteria, to 
solve MaOO problems, ε -dominance [12], fuzzy Pareto 
dominance [13] and subspace dominance comparison [14] 
need special mentioning. The authors’ previous work, referred 
to as many-objective optimization using differential evolution 
(MaODE) [15], utilizes the implicit parallelism of a 
population-based evolutionary algorithm (realized with DE) to 
effectively expedite the convergence of the algorithm. 

MaODE solves a MaOO problem in two steps. First, 
individual N objectives of the given MaOO problem are 
optimized in parallel by N evolving populations of solutions. 
Second, the well-performing solutions of all N populations are 
combined and ranked with respect to individual objectives. 
The set of equally good solutions with equal sum of rank 
(SoR) measures are declared as the solution to the MaOO 
problem. The scope of knowledge transfer between the 
populations is provided by modified version of DE/current-to-
best/1 mutation policy [16!19] of MaODE. Unlike the 
traditional DE/current-to-best/1 mutation policy, a target 
vector belonging to a population Pk is influenced by the best 
members of all N populations (instead of the best candidate of 
Pk only) to generate its donor vector. 

This strategy, however, ignores the average and poor 
performing members of a population, which if evolved with 
other populations, may have excelled in their performance. 
The present work aims at migration of members between 
different populations to aid an individual to evolve with 
respect to an objective on which it is most likely to perform 
well. The migration policy first judiciously selects the 
communicating pair of populations from N populations. The 
proposed selection strategy bypasses need of any network 
topology. The stratagem allows the best population to 
communicate the worst population, the second best to the 
second worst, and the third best to the third worst and so on. 
This communication/migration policy among diverse 
populations enhances the exploration capability of the 
MaODE algorithm. The quality of a population is determined 
based on the median and the interquartile range (IQR) of the 
objective function values of its members. A population with 

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:59:09 UTC from IEEE Xplore.  Restrictions apply. 



low median value (for minimization problem) and a high IQR 
is recorded as a superior population preserving diversity.  

Next the identified population-pairs participate in the 
migration process by exchanging their selected members. An 
inferior population Pj sends its poor-performing members to a 
superior population Pi. This provides an opportunity to the 
immigrating solutions to improve their quality by evolving 
with Pi. In return, Pi sends its randomly selected members to 
Pj. However, special care is taken to ensure that Pi should not 
lose its well-performing members to improve the performance 
of the inferior populations.  

The proposed MaOO algorithm, hereafter referred to as 
extended MaODE, is compared with its counterpart and three 
state-of-the-art techniques [20!22] to optimize the well-known 
DTLZ [23] and WFG [24] test suits. Experiments with 
different number of objectives reveal that the extended 
MaODE outperforms most of its contenders in a statistically 
significant manner. 

The paper is divided into five sections. Sections II and III 
respectively overview the DE and MaODE algorithms. 
Section IV provides the migration policy embedded in 
MaODE. Experimental settings for the benchmarks and 
simulation strategies are explained in section V. Section VI 
concludes the paper. 

II. DIFFERENTIAL EVOLUTION 
Differential Evolution (DE) [16!19] is a population-based 

meta-heuristic algorithm. We now present an overview of the 
main steps of the DE algorithm for a minimization problem. 
1. Initialization: A population 1 2( ) { ( ), ( ),..., ( )}NPG Z G Z G Z G=P

! ! !
 

of NP, D-dimensional real-valued target vectors is initialized 
randomly within the prescribed search-bound min max[ , ]Z Z

! !
 at 

generation G=0. The crossover rate CR is initialized in [0, 1]. 
The objective function value ))0(( iZf

!
is evaluated for the 

target vector )0(iZ
!

with i = 1, 2, …, NP.  
2. Mutation: DE/current-to-best/1 mutation strategy is 
employed to generate a donor vector )(GYi

"
 corresponding to 

each )(GZi
!

 using (1) for i = 1, 2, …, NP.  

))()(())()(()()( 2121 GZGZFGZGZFGZGY rri
best

ii
!!!!!!

−+−+=  (1) 

Here )(GZ best!
represents the best solution of the G-th 

generation and )(1 GZr
!

and )(2 GZr
!

 are randomly selected 
population members from P(G) excluding )(GZi

!
. F1 and F2 

are scale factors in [0, 2] controlling the exploitation and the 
exploration capabilities respectively.  
3. Crossover: The binomial crossover is concerned with 
selecting components from )(GZi

!
 and )(GYi

"
 to generate a 

trial vector )(GWi
!

. The selection of components from )(GZi
!

 
and )(GYi

"
 is controlled by the crossover ratio CR as follows. 

,
,

,

( ), if  rand or
( )

( ), otherwise
i j rand

i j
i j

y G  CR  j j
w G

z G  
≤ =!"= #

"$    
for j = 1, 2, …, D (2) 

with rand as a uniformly distributed random number in (0, 1). 
Here jrand represents a randomly chosen index from {1, 2, …, 
D}. The objective function value ( ( ))if W G

!
 is evaluated 

for ( )iW G
!

. This is repeated for i = 1, 2, …, NP.  
4. Selection:  A greedy selection process promotes the fitter 
candidate among )(GZi

!
 and )(GWi

!
 to the next generation as 

described by (3) for i = 1, 2, …, NP.  

( 1) ( ),  if ( ( )) ( ( ))

( ),    otherwise
i i i i

i

Z G W G     f W G f Z G
               Z G   

+ = ≤

=

! ! ! !
! . (3)  

5. Convergence: After each evolution cycle, steps 2 to 4 are 
reiterated until terminating criterion is satisfied. 

III. OVERVIEW OF DIFFERENTIAL EVOLUTION INDUCED 
MANY-OBJECTIVE OPTIMIZATION (MaODE) 

MaODE, proposed in [15], comprises two primary steps. 
First, each of the N objectives of the MaOO problem is 
handled by an individual DE. All N DEs are run in parallel to 
simultaneously optimize all N objectives. The second step 
deals with judiciously identify the common pool of solutions, 
which maximally satisfy all N objectives.  
Parallel optimization of N objectives: The crux of the first 
step is the premise that a single solution of a MaOO problem 
may not optimize all N > 4 objectives adequately. Hence it is 
desirable to optimize all N objectives in parallel and 
individually with an aim to obtain the pool of optimal 
solutions corresponding to each objective. This optimization 
policy envisages capturing the characteristics of all N > 4 
objectives effectively. The individual DE algorithm handling 
optimization of the specific k-th objective is referred to as k-
MDE (modified DE) for k = 1, 2, …, N. The steps of k-MDE 
are similar to the traditional DE, except for two modifications, 
as illustrated next. 

Let k bestZ −
!

 with the minimum objective function value 
( )k bestkf Z −
!

 be the fittest candidate evolved by k-MDE after 
attaining convergence for k ∈ {1, 2, …, N}. In the present 
context of MaOO, k bestZ −

!
may not be the optimal solution for 

the l-th objective, where l∈{1, 2, …, N} but l " k. Contrarily, 
a solution of k-MDE, which is slightly poor to k bestZ −

!
(with 

fitness say (1+!)× ( )k bestkf Z −
!

 for a small positive constant 
!), may emerge as a potential candidate for the remaining one 
or more objectives. In other words, only keeping the best 
solutions k bestZ −

!
of all N k-MDEs for k = 1, 2, …, N may lead 

to dismissal of promising regions in the search space jointly 
satisfying all objectives. Two approaches are proposed to 
overcome this impasse. 

First, after attaining convergence, we save a group of best-
fit solutions !k of k-MDE, instead of k bestZ −

!
only for k∈{1, 

2, …, N}. The range of fitness of the solutions to enter !k is 
set as [ ( )k bestkf Z −

!
, (1+!)× ( )k bestkf Z −

!
]. It allows ingress of 

the top 100×(1$!)% best-fit solutions with respect to the k-th 
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objective only for k ∈  {1, 2, …, N}. Evidently, a setting of ! 
= 0 allows only k bestZ −

!
in !k. More solutions are allowed to 

occupy !k with an increase in !. Mathematically, 
_max

1
( )  and ( )

G
k

k k k
G

Z f Z range Z G
=

! %" "= ∈ ∈# &
" "$ '

! P
! ! ! # .          (4.a) 

with   ( ), (1 ) ( )k best k best
k k krange f Z f Zα− −( )= + ×* +, -

! !
       (4.b) 

with Pk(G) denoting the population of k-MDE at the G-th 
generation. 

Second, to enjoy the composite benefits of the promising 
regions explored by all N optimization problems, the 
DE/current-to-best/1 mutation policy is amended as follows. 

1
1

2 1 2

( ) ( ) ( ( ) ( ))

                                           ( ( ) ( ))

Nk k l kl best
i i i

l
k k
r r

Y G Z G F Z G Z G

F Z G Z G

−
=

= + −.

+ −

! ! ! !

! !      (5)   

Here the second term allows the i-th individual ( )k
iZ G
!

of 
Pk(G) to gather knowledge from the best 
candidates ( )l bestZ G−

!
(for l = 1, 2, …, N) of all N optimization 

problems at generation G. 1( )k
rZ G
!

and 2 ( )k
rZ G
!

are randomly 

selected members of Pk(G) excluding ( )k
iZ G
!

. 

We employ N such k-MDEs in parallel, each dealing with 
optimization of the k-th objective only for k = {1, 2, …, N}.  

After obtaining the pool of best fit solutions !k 
(corresponding to the k-th objective) for k = 1, 2, …, N, we 
take their union given by 

1 2 ... N= # # #" ! ! ! .  (6) 

Evidently, each members of # satisfy at least one objective 
among N objectives to an extent of 100×(1$ !)%. 
Parallel optimization of N objectives: The second step of 
MaODE is concerned with identifying the pool of equally 
good solutions from # that maximally optimize all N 
objectives. This is accomplished in two phases. In the first 
phase, the rank of each member of # is evaluated with respect 
to individual N objectives. In the later phase, the optimal set of 
solutions (of the MaOO problem) with equal sum of ranks 
(SoRs) is identified. 

For the first phase, each of the N objective function values 
of all the solutions of # is evaluated. In other words, all the 
remaining N!1 objective functions fl(.) are evaluated for the 
members of !k (and # as well) with already evaluated k-th 
objective fk(.) for k, l = 1, 2, …, N but k " l. Let fkbest be the 
best fitness value of the k-th objective after evaluating fk(.) for 
all members of # for k = 1, 2, …, N. A solution Z ∈

!
 " is 

assigned with a rank 1 with respect to the k-th objective if its 
fitness ( )kf Z ∈

!
[fkbest, (1+!)×fkbest] for k ∈{1, 2, …, N}. This 

signifies that the members acquiring rank 1 with respect to the 
specific k-th objective optimizes fk(.) by 100×(1$!)% or more. 
If ( )kf Z ∈

!
[(1+!)×fkbest, (1+2!)×fkbest], Z

!
is assigned with a 

rank 2 with respect to the k-th objective fk(.). Similarly, the set 
of solutions of rank 3 with respect to fk(.) is identified from " 

with fitness in [(1+2!)×fkbest, (1+3!)×fkbest]. Symbolically, a 
solution Z ∈

!
 " is assigned with a rank ( )kr Z

!
= R with respect 

to fk(.) if 

 ( ) ( )( ) 1 ( 1) , 1best best
k k kf Z R f R fα α( )∈ + − +* +, -
!

.               (7) 

This rank evaluation is continued for k = 1, 2, …, N for all 
members of ". Thus, the SoR of Z ∈

!
 " is obtained by 

 
1

( ) ( )
N

k
k

SoR Z r Z
=

= .
! !

.   (8) 

It is evident from the above description that the solutions 
achieving rank 1 for all N objectives have SoR = N×1=N. The 
solutions which obtain a rank 2 for a specific objective, but 
rank 1 for all the remaining N!1 objectives, are assigned with 
SoR = (N!1)×1 + 2 = N+1 and so on. Smaller the SoR better is 
the quality of a solution.  

After evaluating SoR for all members of ", the second 
phase commences with an aim to identify a subset "1 ⊂  ", 
consisting of the members " of with SoR = N. In other words, 
"1 includes the candidates of " which acquire rank 1 with 
respect to all N objectives. If no such "1 can be identified, the 
strategy searches for another subset "2 ⊂  " including the 
members with SoR = N+1. This process is continued until a 
non-empty subset "l is identified from " with its constituent 
members of SoR = N+l!1. The "l is declared as the optimal set 
of solutions "app to the given MaOO problem.  

IV. PROPOSED EXTENSION OF MaODE 
The aim of the MaODE is to allow a solution to evolve 

with respect to a specific objective only, which it may 
proficiently optimize. However, MaODE suffers from a 
constraint of inadequate communication between multiple DE 
populations, each concerned with optimization of specific 
objective. The only mode of communication employed in 
MaODE is to utilize the amended version of DE/current-to-
best/1 mutation policy, given in (5). In the modified mutation 
strategy, a target vector k

iZ ∈
!

Pk is attracted to the best 

solution l bestZ − ∈
!

 Pl of each population (for l = 1, 2, …, N) 
found so far. This in turn allows k

iZ
!

to communicate only with 

the best candidates l bestZ −
!

evolved by N k-MDE algorithms 
for k, l = 1, 2, …, N. 

However, it is intuitive that apart from the best solution, the 
remaining population members evolved by a k-MDE for k∈{1, 
2, …, N} may appear to be significant candidates for the 
remaining objectives too. Moreover, only 100×(1$!)% best-
fit solutions of !k for k = 1, 2, …, N participate in forming #, 
from where ultimately the optimal set of solutions of MaOO 
problem is obtained. The strategy thus ignores the average and 
poor performing solutions of k-MDE (for k∈ {1, 2, …, N}) 
which if evolved, by one of the remaining N!1 DEs, may 
emerge as potential candidates for the given MaOO problem. 
This insists for a suitable method of migration of population 
members across different fitness landscapes to transfer domain 
knowledge effectively. This in turn helps in exploring more 
potential regions in the parameter space with respect to all N 
objectives.   
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The proposed migration strategy is discussed next.  
1. First, the members of each population Pk are arranged in 

ascending order of their objective function values fk(.) (for 
minimization problem) for k = 1, 2, …, N. 

2. Each population Pk is then represented by the median fkmed 
and the interquartile range (IQR) #k of the sorted objective 
function values of its constituent members for k = 1, 2, …, 
N. 

3. The N populations are first arranged in the ascending order 
of their median fitness values fkmed and the rank thus 
obtained by Pk in the sorted list is denoted by rankk1 for k = 
1, 2, …, N. Evidently, the fittest population acquires rank 
1. 

4. The same set of N populations are again sorted in the 
descending order of their respective IQR of fitness 
measures #k and the rank acquired by Pk in this sorted list 
is represented by rankk2 for k = 1, 2, …, N. The population 
occupying the first position preserves the maximum 
diversity (required to ensure the exploration capability). 

5. The composite rank of Pk is thus obtained by 
1 2

k k krank rank rank= +    (9) 
for k = 1, 2, …, N. 

6. The N populations are now sorted in the ascending order of 
their respective composite ranks rankk for k = 1, 2, …, N. It 
is noteworthy that the population occupying the first 
position now can be treated as the best-performing 
population with quality fitness measure and population 
diversity.  

7. This step is concerned with identifying the emigration-
immigration population-pair based on the composite ranks 
of N populations. The premise is based on the principle of 
fair division [25], where the migration takes place between 
the superior and the inferior populations (instead of random 
pair or based on any specific network topology). The 
quality of the populations is determined based on their 
respective composite ranks. The fair division method 
employs an organized migration policy between the first 
N/2 populations and the remaining N/2 populations (which 
are already sorted in ascending order of their composite 
ranks rank). Here, the migration occurs between the best 
population and the worst population, the second best and 
the second worst, and the third best and the third worst and 
so on. The cooperation between two vastly different 
populations, targets to improve the population diversity and 
the possibility of exploration as well. 

8. Once the pairs of communicating populations are 
determined, the next task is to identify the migrating 
population members. Let Pi$Pj be a population-pair 
participating in the migration process with Pi (and Pj) as 
the superior (and the inferior) population for i, j = 1, 2, …,, 
N but i " j. The migration in undertaken in two phases. 

(a) First, the proposed approach gives an opportunity to the 
poor members of an inferior population Pj to improve their 
quality by migrating to a better population Pi. The members 
of Pj are already sorted in ascending order of their 
objective function values (as in step-1). Let n be the 
number of candidates of Pj that possess objective function 

values greater than the upper quartile of the sorted fitness 
measures (for minimization problem). Evidently, these are 
the poor-performing members of Pj. They are given an 
opportunity to improve their performance by evolving with 
better population. So this set of n poor-performing 
solutions from an inferior population Pj is selected for 
migration to a better population Pi.   

(b) However, to keep the size of each population fixed at NP, 
the strategy also migrates n members of Pi to Pj. The n 
solutions are chosen randomly from the members of the 
sorted population Pi (as done in step-1), which possess 
objective function values above the lower quartile. This 
selection policy ensures that the population Pi should not 
lose its quality members with objective function values 
less than the lower quartile (for minimization problem). It 
is based on the supposition that it is better to preserve a 
quality solution in a population rather than eliminating it 
from the given population to enhance the performance of 
other populations.  
The migration strategy outlined above is undertaken after 

every GM generations of k-MDE for k = 1, 2, …, N. The 
amended versions of k-MDE and MaODE to solve MaOO 
problem are referred to as extended k-MDE and extended 
MaODE henceforth. The pseudo-codes are given below.  
Procedure extended_k-MDE 

Input:   Population size NP, Crossover rate CR, Optimizing objective 
function fk(.), Migrating generation gap GM. 

Output:Set of solutions !k with objective measures in [fkbest, (1+!) 
fkbest]. 

 
Begin 

I. Initialization:  
(i) Set the generation number G%0 and randomly initialize D- 

dimensional NP target vectors ( )k
iZ G
!

of population Pk(G) for i = 
1, 2, …, NP.  

(ii) Evaluate the objective function value ( ( ))k
k if Z G
!

 for i = 1, 2, …, 
NP. 

(iii) Set ( )
1

( ) arg min ( ( ))
NP

kk best
k i

i
Z G f Z G−

=
← / 0

1 23 4

! !
.  

(iv)  Set ( ( )), (1 ) ( ( ))k best k best
k k krange f Z G f Z Gα− −= + ×( )

, -
! !

 and 

{ }( ) ( )  and ( )k
k kG Z f Z range Z G= ∈ ∈S P

! ! !
. 

II. While stopping criterion is not reached, do begin 
(a) Migration: If mod(G, GM) == 0 then do 

Call migration(P1(G), P2(G), …, PN(G)) to get 
updated population Pk(G). 

End If.  
(b) Mutation: Generate a donor vector ( )k

iY G
"

 corresponding to 

the candidate solution ( )k
iZ G
!

 using (5) for i = 1, 2, …, NP.  

(c) Crossover: Generate a trial vector ( )k
iW G
!

corresponding to 

the candidate solution ( )k
iZ G
!

and the donor vector 

( )k
iY G
"

using (2) i = 1, 2, …, NP.  
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(d) Evaluate the objective function value ( ( ))k
k if W G
!

 for i = 1, 2, 
…, NP. 

(e) Set ( 1) ( )k k
i iZ G W G←+
! !

 if ( ( )) ( ( ))k k
k i k if W G f Z G≤
! !

 for i = 
1, 2, …, NP. 

(f) Set 

( 1) ( )  if  ( ( )) ( ( ))k best k k k best
i k i kZ G W G f W G f Z G− −+ ← ≤

! ! ! !
. 

(g) Set ( ( 1)), (1 ) ( ( 1))k best k best
k k krange f Z G f Z Gα− −= + + × +( )

, -
! !

 and 

{ }( 1) ( ) and ( 1) ( ) .k
k kG Z Z range Z G Gf+ ← ∈ ∈ +S P S

! ! !
#  

(h) Increase the generation value G%G+1. 
End While. 

III. Set !k % S(G). 
IV. Return !k. 

End. 
 
Procedure migration 
Input:   N populations P1(G), P2(G), …, PN(G).  
Output:Updated populations after migration. 
Begin 
1. Sort members of Pk in ascending order of fk(.) for k = 1, 2, …, N. 
2. Sort Pks in ascending order of its median objective function value 

fkmed and identify its rank rankk1 for k = 1, 2, …, N.  
3. Sort Pks in descending order of its IQR #k of objective function 

values and identify its rank rankk2 for k = 1, 2, …, N. 
4. Determine the composite rank rankk using (9) for k = 1, 2, …, N. 
5. Sort Pks in ascending order of rankk for k = 1, 2, …, N and let the 

sorted populations be P1-sort(G), P2-sort(G), …, PN-sort(G). 
6. For i = 1:N/2 

(a) Set Pi % Pi-sort and Pj % P(N$i+1)-sort. 
(b) Select the set of members %j of Pj with objective 

function values greater than the upper quartile of Pj. 
(c) Set n % |%j|. 
(d) Randomly select n members %i from Pi with objective 

function values greater than the lower quartile of Pi. 
(e) Exchange members of %i and %j. 

End For. 
7. Return the updated populations to the corresponding optimization 

problem. 
End. 
 
Procedure extended_MaODE 
Input:   N objectives of MaOO problem.  
Output:Approximate global optima of the MaOO problem. 
Begin 
1. Run N, extended_k-MDE(NP, CR, fk(.)) in parallel to obtain !k 

for k = 1, 2, …, N.  
2. Set "% !1U !2U …U !N. 
3. Evaluate fk(.) for k = 1, 2, …, N for all members of ". 
4. Evaluate ( )kr Z

!
 for k = 1, 2, …, N using (7) and thus 

( )SoR Z
!

using (8) for all Z ∈
!

 ". 
5. Set l%1. 
6. Identify the solutions of ", with SoR=N and include them in "1. 
7. While "l is empty 

Set l%l+1. 
Identify the solutions of ", with SoR=N+l!1 and include them in 
"l. 

End While. 
8. Set "app % the first non-empty subset "l of " with equally good 

trial solutions with minimum SoRs.  

9. Return "app. 
End. 
 

V. EXPERIMENTAL RESULTS 
A. Comparative Framework and Parameter Setting 

The proposed algorithm extended MaODE is compared 
with its counterpart MaODE [15] and three state-of-the-art 
MaOO techniques including hypervolume estimation 
algorithm for multi objective optimization (HypE) [20], multi 
objective evolutionary algorithm based on decomposition 
(MOEA/D) [21] and grid based evolutionary algorithm 
(GrEA) [22].  
Parameter settings of MaODE and extended MaODE: Like 
MaODE, the performance of the extended MaODE also 
depends on prudent selection of !, CR, F1 and F2. A setting of 
! = 0 allows only the best solution with respect to each of the 
N objectives to enter #. It leads to loss of diversity. 
Contrarily, a large value of ! may allow remarkable increase 
in the number of poor solutions in # degrading the 
performance of the algorithm. Thus, an exhaustive experiment 
is undertaken by varying ! from 1 to 0 (with a subtractive step 
of 0.005). A favorable balance between the quality 
performance and the diversity is obtained for ! = 0.05. It 
allows 95% best-fit solutions of each of the N objectives to 
enter #. The crossover ratio CR and scale factors F1 and F2 for 
the proposed algorithm and its counterpart are varied within 
the range of (0, 1) to check the appropriate value to be set so 
as to get quality performance (with respect to performance 
metrics discussed next). Since the performance does not 
change significantly for CR & 0.9, F1 & 0.5 and F2 & 0.5, we 
set CR = 0.9, F1 = 0.5 and F2 = 0.5. 
Reproduction operator parameters: For GrEA, MOEA/D 
and HyPE, the control parameters for simulated binary 
crossover (SBX) and polynomial mutation are set as 20 each. 
The crossover probability (for SBX policy) and the mutation 
probability are respectively set as 1 and 1'D for D dimensional 
search space.  
Grid divisions: The grid divisions of GrEA for different test 
functions are set following the guidelines in [22]. 
Neighborhood size: The neighborhood size for MOEA/D is 
set as 20. 
Sampling size: The hypervolume in HypE is approximated by 
the Monte Carlo method. The corresponding sampling size is 
set to 10,000 as given in [20]. 
Population size: The population size of GrEA and HyPE are 
set as the population size of MOEA/D depending on the 
number of reference points and the number of objectives. For 
N = 6, 8 and 10, the population size T is respectively set as 
132, 156 and 275 [21]. For MaODE and its extended version, 
the population size NP for each objective is set as T/N. 
B. Benchmark Functions and Terminating Condition  

Two benchmark suites, namely DLTZ [23] and WFG [24], 
are used to analyze the performance of the contender 
algorithms. The DTLZ and WFG suits respectively comprise 
of nine and seven benchmark functions. For each benchmark 
function, the number of objectives N takes values from {6, 8, 
10}. 
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The number of variables D for DTLZ test suite is set to 
N+k–1. The parameter k is set to 5 and 20 for DTLZ1 and 
DTLZ7 respectively. The remaining five benchmark problems 
of the DTLZ test suit consider k = 10. For the WFG test suite, 
D is set to K + L. The distance parameter L is set as 10 for all 
the WFG benchmark instances irrespective of the number of 
objectives N. However, the position parameter K takes values 
of 10, 7, and 9 for N = 6, 8, and 10 respectively [15]. 

The terminating condition for the contender algorithms is 
specified by the maximum number of generations. For DTLZ1 
and WFG2, the maximum number of generations is fixed at 
700, while for DTLZ3 and WFG1, it is set as 1000. For the 
remaining ones, it is limited to 250. 
C. Performance Metrics 

The comparative analysis of the performance of the 
contender algorithms is undertaken with respect to two 
performance metrics, including the hypervolume (HV) [26] 
and the inverted generational distance (IGD) [27]. Let %* be 
the set of points distributed uniformly along the optimal 
Pareto front and %app be the approximate Pareto front obtained 
by a MaOO algorithm, both in the objective space. It is to be 
noted that in case of extended MaODE and its counterpart, %app 
denotes the objective function values of the members of # app.  
(a) Hypervolume: The total size of the objective space, 
dominated by the members of %app represents its HV. A 
reference point representing the worst possible point or the 
anti-optimal point [28] is used to evaluate HV. After 
normalizing objective function values of the solutions in %app 
in (0, 1), the reference point is selected as (1, 1, 1, …., 1). To 
employ Monte-Carlo approach [29] to evaluate HV, a set of 
106 sampling points are considered in the hyper-rectangle 
between the origin and the reference point in the objective 
space. The fraction of the sample points, dominated by the 
members of %app, inside the hyper-rectangle represents the 
hypervolume HV(%app). An attainment function is defined for 
all the sampled points u in the hyper-rectangle and 
hypervolume is obtained by averaging the attainment function 
values of the sample points inside the hyper-rectangle. The 
attainment function is given by 

{1,       if      dominates   u( ) 0,       otherwise
appuα = % .         (10) 

A higher value of HV measure is an indicator of better 
performance of the given MaOO algorithm. 
(b) Inverted Generational Distance: IGD [27] considers the 
minimum Euclidean distance d(u, %app),  between the points in 
u ∈ %*  and points in %app. A set of 500 uniformly sampled 
points is considered to represent %*. The performance of a 
MaOO algorithm is better, if the points in %app are close to the 
points in %*. Thus a low value of IGD is an indicator of good 
performance. 
D. Performance Analysis 

 The proposed algorithm is compared with the counterpart 
algorithm MaODE and other three contenders HypE, 
MOEA/D and GrEA with respect to the median and 
interquartile range (IQR) of the performance metrics (HV and 
IGD) over 50 independent runs. Wilcoxon rank sum test [30] 
is used to analyze the statistical significance of 50 sample 

values of the performance metrics. However, the Wilcoxon 
test is undertaken between the best algorithm (providing near 
optimal value of the performance metric) and each of the 
remaining algorithms with a significance level of 0.05. The 
null hypothesis of the statistical test assumes all algorithms 
being compared are statistically equivalent. The null 
hypothesis is rejected if the p-value of the Wilcoxon rank sum 
test is found to be less than 0.05. Tables I and II respectively 
report the median and the IQR (within parenthesis) of HV and 
IGD metric values obtained by the contender algorithms over 
50 independent runs respectively. The p-values obtained by 
the Wilcoxon test is given under brackets. The p-values are 
marked as NA i.e. not applicable when the best algorithm is 
compared with itself.  The best results are reported in bold in 
Tables I and II.  

The results reported in Table-I reveal that extended 
MaODE algorithm supersedes MaODE in 24 cases out of 27 
benchmark instances with respect to HV metric. Among these 
24 instances, four cases are found where the performances of 
extended MaODE and its counterpart are not statistically 
significant. These four cases include WFG2 with N = 8, 
WFG3 with N = 6 and 8 and WFG4 with N = 10. Out of the 
remaining 3 cases, it can be observed that for WFG8 and N = 
8, the performance of MaODE and the extended MaODE is 
similar, however, the extended MaODE achieves smaller IQR. 
For the rest 2 cases of WFG1 with N = 6 and WFG5 with N = 
8, MaODE insignificantly outperforms the extended MaODE 
with respective p-values of 0.05674 and 0.05518. It 
substantiates the merit of the proposed migration policy to 
enhance the performance of MaODE. MaODE achieves the 
second rank among the contenders. GrEA supersedes the 
extended MaODE in cases of WFG4 with N = 6, WFG6 with 
N = 6 and WFG 8 with N = 10.  

Similar trend of performance of the competitor algorithms 
is observed from Table-II with respect to IGD metric. The 
extended MaODE achieves the best rank for 18 cases out of 
21 instances of DTLZ test suite. Here also MaODE emerges 
as the second best algorithm by superseding HypE, MOEA/D 
and GrEA) in 13 cases. 

TABLE-I-A: PERFORMANCE EVALUATION WITH RESPECT TO HV FOR 
WFG1 AND WFG2 

Func. N HypE MOEA/D GrEA MaODE Extended 
MaODE 

WFG1

6 
9.218e-01 9.677e-01 9.304e-01 9.858e-01 9.784e-01 

(9.004e-03)(2.602e-02) (3.901e-02) (2.454e-02) (2.987e-02)
[1.345e-02][5.827e-02] [4.587e-02] [NA] [5.674e-02]

8 
9.161e-01 9.045e-01 9.040e-01 9.173e-01 9.792e-01 

(4.489e-02)(4.749e-02) (5.703e-02) (4.084e-02) (3.734e-02)
[5.433e-02][2.437e-02] [1.881e-02] [2.395e-02] [NA] 

10 
9.108e-01 9.488e-01 8.493e-01 8.444e-01 9.749e-01 

(1.148e-01)(1.568e-02) (3.669e-02) (5.768e-02) (2.693e-02)
[2.733e-02][2.386e-02] [3.222e-02] [3.416e-02] [NA] 

WFG2

6 
6.676e-01 8.495e-01 9.348e-01 9.689e-01 9.982e-01 

(9.680e-02)(8.527e-02) (7.229e-02) (2.554e-02) (2.678e-02)
[3.238e-02][3.395e-02] [4.725e-02] [3.781e-02] [NA] 

8 
9.920e-01 9.710e-01 9.414e-01 9.841e-01 9.981e-01 

(2.610e-03)(2.178e-02) (9.894e-02) (3.091e-03) (2.916e-03)
[2.297e-02][1.044e-02] [1.181e-02] [5.546e-02] [NA] 

10 
9.878e-01 9.734e-01 9.572e-01 9.949e-01 9.991e-01 

(2.983e-03)(3.971e-02) (1.780e-02) (1.965e-03) (1.984e-03)
[5.309e-02][5.036e-02] [2.293e-02] [3.472e-02] [NA] 
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TABLE-I-B: PERFORMANCE EVALUATION WITH RESPECT TO HV FOR 
WFG3 TO WFG9 

Func. N HypE MOEA/D GrEA MaODE Extended 
MaODE 

WFG3 

6 
5.420e-01 4.827e-01 5.881e-01 5.707e-01 6.256e-01 

(7.047e-03) (6.446e-03) (8.292e-03) (7.371e-03) (7.983e-03)
[2.080e-02] [3.310e-02] [NA] [5.851e-02] [NA] 

8 
5.933e-01 5.938e-01 5.730e-01 5.901e-01 6.429e-01 

(1.739e-02) (5.275e-03) (1.316e-02) (2.399e-02) (2.689e-02)
[6.067e-02] [NA] [4.164e-02] [5.209e-02] [NA] 

10 
5.538e-01 6.018e-01 4.966e-01 5.708e-01 6.361e-01 

(4.830e-03) (2.150e-03) (1.616e-02) (3.535e-03) (2.946e-03)
[2.703e-02] [NA] [4.349e-02] [4.911e-02] [NA] 

WFG4 

6 
7.495e-01 7.516e-01 8.026e-01 7.871e-01 7.973e-01 

(2.298e-02) (1.347e-02) (1.071e-02) (1.639e-02) (1.587e-02)
[1.590e-02] [3.227e-02] [NA] [4.699e-02] [4.485e-02]

8 
7.296e-01 6.535e-01 7.879e-01 8.401e-01 8.853e-01 

(3.030e-02) (1.976e-02) (8.003e-03) (6.694e-03) (6.937e-03)
[2.723e-02] [3.196e-02] [3.236e-02] [3.648e-02] [NA] 

10 
5.988e-01 4.787e-01 8.114e-01 7.992e-01 8.417e-01 

(5.458e-02) (1.629e-02) (8.871e-03) (1.117e-02) (2.4391e-02)
[2.719e-02] [3.605e-02] [4.169e-02] [5.168e-02] [NA] 

WFG5 

6 
6.498e-01 5.315e-01 7.035e-01 7.016e-01 7.375e-01 

(1.668e-02) (1.187e-02) (5.934e-03) (7.392e-03) (6.162e-03)
[5.290e-03] [5.485e-03] [2.583e-02] [1.093e-02] [NA] 

8 
5.657e-01 4.125e-01 6.572e-01 7.137e-01 7.014e-01 

(1.317e-02) (1.185e-02) (5.914e-03) (6.247e-03) (5.671e-03)
[2.022e-02] [2.241e-02] [3.817e-02] [NA] [5.518e-02]

10 
3.760e-01 3.333e-01 5.843e-01 6.103e-01 6.683e-01 

(1.535e-02) (8.460e-03) (5.784e-03) (4.789e-03) (5.267e-03)
[3.859e-02] [4.664e-02] [4.863e-02] [3.762e-02] [NA] 

WFG6 

6 
4.585e-01 6.557e-01 6.945e-01 5.906e-01 6.527e-01 

(7.447e-03) (3.900e-02) (2.380e-02) (2.068e-02) (2.613e-02)
[6.944e-03] [9.601e-03] [NA] [4.681e-02] [5.576e-02]

8 
2.620e-01 4.920e-01 6.157e-01 6.938e-01 7.615e-01 

(1.833e-02) (2.282e-02) (1.590e-02) (1.423e-02) (1.892e-02)
[2.627e-02] [2.651e-02] [4.305e-02] [2.568e-02] [NA] 

10 
3.969e-01 4.593e-01 7.704e-01 7.861e-01 8.376e-01 

(1.068e-02) (3.319e-02) (1.930e-02) (1.028e-02) (2.598e-02)
[2.600e-02] [3.357e-02] [5.706e-02] [4.782e-02] [NA] 

WFG7 

6 
3.656e-01 5.924e-01 6.521e-01 6.766e-01 7.268e-01 

(1.657e-02) (3.111e-02) (2.662e-02) (7.862e-03) (6.625e-03)
[1.310e-02] [1.738e-02] [2.930e-02] [2.391e-02] [NA] 

8 
6.242e-01 5.496e-01 7.367e-01 7.806e-01 8.317e-01 

(4.410e-02) (3.474e-02) (8.555e-03) (8.214e-03) (7.142e-03)
[1.213e-02] [2.212e-02] [3.774e-02] [3.152e-02] [NA] 

10 
6.300e-01 3.069e-01 8.625e-01 8.747e-01 9.037e-01 

(3.549e-02) (8.094e-03) (7.448e-03) (6.463e-03) (6.962e-03)
[1.973e-02] [3.439e-02] [3.681e-02] [2.968e-02] [NA] 

WFG8 

6 
3.776e-01 2.065e-01 4.481e-01 4.346e-01 4.947e-01 

(1.519e-02) (1.978e-02) (3.052e-02) (2.565e-02) (2.831e-02)
[3.417e-02] [2.211e-02] [3.056e-02] [3.520e-02] [NA] 

8 
2.746e-01 3.129e-01 4.322e-01 6.056e-01 6.056e-01 

(1.708e-02) (2.249e-02) (1.650e-02) (1.962e-02) (1.571e-02)
[1.351e-02] [1.654e-02] [2.121e-02] [NA] [NA] 

10 
3.001e-01 5.299e-01 7.937e-01 5.722e-01 6.923e-01 

(2.038e-02) (2.620e-02) (3.604e-02) (1.512e-02) (1.613e-02)
[2.149e-02] [4.108e-02] [NA] [4.431e-02] [4.632e-02]

WFG9 

6 
3.436e-01 3.935e-01 7.097e-01 6.968e-01 7.863e-01 

(3.511e-02) (4.076e-02) (4.352e-02) (4.450e-02) (4.653e-02)
[3.775e-02] [3.845e-02] [4.173e-02] [4.042e-02] [NA] 

8 
4.126e-01 4.880e-01 5.650e-01 6.269e-01 6.915e-01 

(6.416e-02) (2.691e-02) (1.504e-02) (1.1027e-02) (1.792e-02)
[1.887e-02] [3.952e-02] [4.746e-02] [3.472e-02] [NA] 

10 
4.348e-01 5.563e-01 7.640e-01 6.856e-01 7.561e-01 

(3.707e-02) (3.626e-02) (6.116e-03) (5.906e-03) (6.124e-03)
[2.193e-02] [3.356e-02] [NA] [4.167e-02] [4.261e-02]

 

TABLE-II: PERFORMANCE EVALUATION WITH RESPECT TO IGD FOR 
DTLZ TEST SUITE 

Func. N HypE MOEA/D GrEA MaODE Extended 
MaODE 

DTLZ
1 

6 
2.292e-01 1.085e-01 1.373e-01 9.918e-02 9.131e-02 

(4.357e-02)(5.856e-02) (6.745e-03) (3.776e-03) (3.366e-03)
[1.173e-02][2.876e-02] [1.765e-02] [2.876e-02] [ NA] 

8 
3.148e-01 1.866e-01 2.511e-01 1.349e-01 1.142e-01 

(2.534e-02)(1.377e-02) (3.665e-02) (1.035e-02) (1.956e-02)
[2.151e-03][8.450e-03] [4.106e-02] [3.524e-02] [NA] 

10 
2.378e-01 2.218e-01 1.395e-01 1.422e-01 1.226e-01 

(3.667e-02)(3.333e-02) (1.786e-02) (2.887e-02) (2.385e-02)
[3.238e-02][3.245e-02] [4.5856e-02 [5.658e-02] [NA] 

DTLZ
2 

6 
4.697e-01 4.066e-01 2.574e-01 2.571e-01 2.012e-01 

(5.360e-02)(4.701e-02) (1.894e-03) (1.662e-03) (1.724e-03)
[1.481e-02][2.735e-02] [5.023e-02] [4.621e-02] [NA] 

8 
7.017e-01 6.644e-01 3.669e-01 3.535e-01 3.157e-01 

(4.494e-02)(5.700e-02) (3.383e-03) (3.551e-03) (3.813e-03)
[1.842e-02][3.128e-02] [5.033e-02] [4.672e-02] [NA] 

10 
7.329e-01 7.497e-01 3.950e-01 1.421e-01 1.161e-01 

(4.447e-02)(6.853e-02) (2.600e-02) (2.224e-02) (2.548e-02)
[3.901e-02][3.878e-02] [4.646e-02] [4.783e-02] [NA] 

DTLZ
3 

6 
4.487e-01 4.937e-01 2.167e-01 2.167e-01 2.592e-01 

(7.654e-02)(1.910e-01) (6.232e-02) (7.235e-02) (7.625e-02)
[2.079e-02][2.233e-02] [3.471e-02] [3.582e-02] [NA] 

8 
6.344e-01 7.754e-01 3.778e-01 4.244e-01 3.673e-01 

(1.227e-01)(1.287e-01) (1.982e-01) (4.167e-02) (4.725e-02)
[2.553e-02][3.974e-02] [4.627e-02] [4.088e-02] [NA] 

10 
7.369e-01 6.874e-01 4.959e-01 3.971e-01 3.387e-01 

(5.950e-02)(2.717e-01) (1.517e-01) (7.456e-02) (7.582e-02)
[2.664e-02][3.221e-02] [4.057e-02] [3.705e-02] [NA] 

DTLZ
4 

6 
6.383e-01 5.268e-01 2.658e-01 2.678e-01 2.385e-01 

(1.209e-01)(1.679e-02) (2.210e-03) (1.442e-03) (1.521e-03)
[2.750e-02][4.379e-02] [3.278e-02] [5.695e-02] [NA] 

8 
7.033e-01 7.596e-01 3.783e-01 3.521e-01 3.146e-01 

(7.503e-02)(6.516e-02) (2.881e-03) (2.780e-03) (2.537e-03)
[3.112e-02][1.506e-02] [4.935e-02] [3.682e-02] [NA] 

10 
8.256e-01 7.810e-01 4.040e-01 3.572e-01 3.216e-01 

(1.769e-02)(2.023e-02) (9.373e-03) (1.327e-02) (1.638e-02)
[1.152e-02][2.354e-02] [4.221e-02] [4.527e-02] [NA] 

DTLZ
5 

6 
1.530e-02 2.412e-02 8.920e-02 7.449e-02 5.599e-02 

(9.717e-03)(1.539e-02) (1.586e-02) (1.458e-02) (1.746e-02)
[NA] [3.138e-02] [1.129e-02] [4.178e-02] [3.836e-02]

8 
5.020e-02 8.441e-02 1.703e-01 3.213e-02 3.042e-02

(1.022e-02)(1.922e-02) (4.758e-02) (3.367e-02) (3.749e-02)
[2.151e-02][1.555e-02] [4.616e-02] [3.572e-02] [NA] 

10 
2.934e-02 7.163e-02 4.155e-01 2.969e-01 2.614e-01 

(2.917e-03)(4.168e-02) (7.877e-02) (5.794e-02) (5.582e-02)
[2.418e-02][4.898e-02] [2.194e-02] [6.024e-02] [NA] 

DTLZ
6 

6 
3.557e-01 1.587e-01 2.520e-01 2.055e-01 1.652e-01 

(5.688e-02)(3.154e-01) (6.178e-02) (1.544e-01) (1.739e-01)
[1.311e-02] [NA] [2.043e-02] [2.970e-02] [2.361e-02]

8 
4.522e-01 1.658e-01 5.590e-01 2.227e-01 1.521e-01 

(3.403e-01)(2.918e-02) (1.735e-01) (4.116e-02) (4.469e-02)
[3.014e-02][2.583e-02] [1.108e-02] [3.556e-02] [NA] 

10 
2.320e-01 4.624e-01 4.116e-01 2.288e-01 2.173e-01 

(4.720e-02)(5.534e-02) (2.717e-01) (4.076e-02) (4.628e-02)
[5.593e-02][2.539e-02] [2.120e-02] [2.683e-02] [NA] 

DTLZ
7 

6 
1.555e+00 4.024e-01 5.602e-01 5.772e-01 5.143e-01 
(1.276e-01)(1.652e-02) (2.501e-02) (4.624e-03) (4.634e-03)
[4.276e-03] [NA] [4.005e-02] [1.312e-02] [1.548e-02]

8 
2.831e+00 1.342e+00 1.001e+00 9.327e-01 9.051e-01 
(2.222e-01)(2.423e-01) (2.334e-02) (1.963e-02) (1.468e-02)
[2.892e-02][3.651e-02] [4.644e-02] [3.547e-02] [NA] 

10 
2.960e+00 1.543e+00 1.321e+00 1.216e+00 1.172e+00 
(1.684e-01)(4.554e-01) (9.439e-02) (8.852e-02) (8.529e-02)
[2.294e-02][2.734e-02] [4.815e-02] [3.891e-02] [NA] 
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VI. CONCLUSION 
The paper proposed a novel extension of the authors’ 

previous work on MaODE. The primary objective of MaODE 
is to optimize individual N objectives (of a MaOO problem) in 
parallel so as to preserve the significance of each objective 
and helping the solutions to evolve in a specific fitness 
landscape where they perform well. The present work 
enhances the performance of MaODE by devising a novel 
migration policy to exchange members of two populations, 
each concerned with optimization of a specific objective 
function. The migration strategy allows a poor population to 
receive members from a well-performing population. It in turn 
helps to improve the performance of the poor population. 
Simultaneously, the inferior members of the poor population 
are transferred to the well-performing population. This gives 
an opportunity to these inferior members to evolve with a 
well-performing population for possible enhancement of their 
quality. Experimental results reveal a statistically significant 
quality performance of the proposed MaOO algorithm over its 
contenders. 
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