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Abstract— The paper proposes a novel approach to adaptive 

selection of sample size for a trial solution of an evolutionary 
algorithm when noise of unknown distribution contaminates the 
objective surface. The sample size of a solution here is adapted 
based on the noisy fitness profile in the local surrounding of the 
given solution. The fitness estimate and the fitness variance of a 
sub-population surrounding the given solution are jointly used to 
signify the degree of noise contamination in its local 
neighborhood (LN). The adaptation of sample size based on the 
characteristics of the fitness landscape in the LN of a solution is 
realized here with the temporal difference Q-learning (TDQL). 
The merit of the present work lies in utilizing the reward-penalty 
based reinforcement learning mechanism of TDQL for sample 
size adaptation. This sidesteps the prerequisite setting of any 
specific functional form of relationship between the sample size 
requirement of a solution and the noisy fitness profile in its LN. 
Experiments undertaken reveal that the proposed algorithms, 
realized with artificial bee colony, significantly outperform the 
existing counterparts and the state-of-the-art algorithms.  

Keywords— artificial bee colony; noise-handling; temporal 
difference Q-learning; reinforcement learning; sampling. 

I. INTRODUCTION 
The reliance of real world optimization problems on 

evolutionary algorithms (EAs) has been widely observed over 
the past decades. The real world system characteristic is 
captured by the objective function of an EA, which is 
optimized for ensuring optimal utilization of system resources. 
However, the efficacy of the traditional EAs degrades with 
creeping of noise in the measurement of input data of the real 
world systems, primarily due to degraded sensor 
characteristics and/or noisy ambience. Edging of noise in the 
input measurement also induces inaccuracy in the assessment 
of objective function value (often called fitness) of a 
population member of an EA. Noisy fitness  measurements of 
quality (and poor) solutions deceive the evolutionary selection 
operator by rejecting (and accepting) them over the 
generations. Consequently, the traditional EA fails to track the 
true global optimum in the presence of noise in the fitness 
landscape. The intricacy of the problem increases with noise 
of unknown stochastic distribution contaminating multimodal 
fitness landscape. It has thus called the amendment of the 
traditional EAs to overcome the illusive effect of noise. This 
class of optimization algorithm devised to alleviate the 
problem is referred to as noisy optimization [1], [2].  

The well-known strategies used in noisy optimization 
algorithms include sampling [3!9], effective estimation of 
fitness [10], [11], dynamic population sizing [12], [13], 
improved search dynamics [14], [15] and robust selection 
operator [16], [17]. Among these, the most significant 
stratagem is sampling, where the fitness of a solution is 
periodically evaluated for a number of times, called sample 
size. An aggregate measure of these fitness samples thus 
obtained is used as the fitness estimate of the given solution. 
The multiple fitness evaluation of a solution increases the 
accuracy in its fitness assessment in the presence of noise of 
unknown distribution.  

Evidently, a large sample size ensures fitness accuracy but 
at the cost of computational overhead. To overcome this 
impasse, dynamic sampling policies are developed in the 
recent past [3!9]. Among the existing strategies, sequential 
sampling [3], progress based dynamic sampling strategy [4], 
noise analysis selection [5], and optimal computing budget 
allocation [6] need special mentioning. The major constraint 
of the existing strategies is to overlook the level of 
contamination of noise in the local neighbourhood of a 
solution to determine its sampling requirement. 

This issue has been addressed by the authors’ previous 
works [7!9]. The variance of fitness estimates of a sub-
population surrounding the given solution is used to capture 
the degree of creeping of noise in its local neighbourhood. It is 
referred to as local neighbourhood fitness variance (LNFV). 
Different monotonically increasing functional forms have 
been used to model the relationship between LNFE and the 
sample size required for a solution [7!9]. Experiments 
undertaken reveal that a specific functional form cannot 
guarantee optimal assignment of sample size to a solution for 
all possible distribution of noise in the fitness landscape.  

The paper proposes an alternative approach to bypass the 
need of a particular functional form to determine the sample 
size of a solution based on its LNFV. In addition to the LNFV, 
the policy also adapts sample size based on the local 
neighborhood fitness estimate (LNFE). The LNFV and LNFE 
are jointly used to capture the noise-contaminated fitness 
profile in the local vicinity of a solution. The reward and 
penalty based reinforcement learning mechanism of temporal 
difference Q-learning (TDQL) [18], [19] is used to prudently 
assign sample size (similar to action of TDQL) to a solution 
based on its local fitness profile, jointly captured by its 
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respective LNFV and LNFE (similar to states of TDQL). If the 
assignment of a sample size n to a solution by the TDQL 
increases LNFE (for maximization problem) and 
simultaneously reduces the respective LNFV, the selection is 
rewarded. Otherwise, the selection is penalized. These reward 
and penalties are encoded in the Q-values which in turn guide 
population of next generations to judiciously select their 
sample sizes.  

In the present work, the artificial bee colony [20] is 
selected as the EA. The performance of the proposed noisy 
single objective optimization algorithm, referred to as Q-
learning induced noisy bee colony (QLNBC), is compared with 
four state-of-the-art techniques [21!24]. The proposed adaptive 
sampling strategy is also used to replace the sampling policy 
recommended in [25] and results in a new competitor in the 
comparative framework, called extended QLNBC. The 
comparative performance is analyzed with respect to function 
error value metric while optimizing noisy versions of 28 
CEC’2013 benchmark functions [26]. The benchmark 
functions are contaminated with additive noise samples taken 
from Gaussian [27], Poisson [28], Rayleigh [29], exponential 
[30], and random distribution [31]. Experiments undertaken 
reveal that the proposed realizations outperform other 
algorithms in a statistically significant manner. The Wilcoxon 
test, the Friedman and Iman-Davenport non-parametric tests 
and the Bonferroni-Dunn post-hoc analysis [32] are undertaken 
to arrive at the conclusion.  

The paper is divided into six sections. Section II overviews 
the traditional ABC and the TDQL algorithms. A brief outline 
of the existing sample size adaptation policies is given in 
section III. Section IV provides the noise handling mechanism 
used to extend the ABC. Simulation results are reported in 
section V. Section VI concludes the paper. 

II. PRELIMINARIES 

A. Artificial Bee Colony Algorithm 
Artificial bee colony (ABC) [20] is a population-based 

meta-heuristic algorithm. An overview of the main steps of the 
ABC algorithm is presented next for maximization problem. 
1. Initialization: ABC begins with a population P(t) of S, D-
dimensional real-valued solutions 1 2{ ( ), ( ), ..., ( )}SZ t Z t Z t

! ! !
, 

randomly initialized within the search bound of the given 
optimization problem at generation t = 0. The fitness value 

( (0))ifit Z
!

of (0)iZ
!

is evaluated for i = 1, 2, …, S. 
2. Employed Bee Phase: In this phase, a randomly chosen 
parameter (j∈  {1, 2, …, D} of a solution �( )iZ t

!
 is modified to 

generate an offspring solution ( )iZ t′
!

 following (1) for i = 1, 2, 
…, S. The remaining D–1 components of ( )iZ t′

!
are identical to 

that of �( )iZ t
!

.  

, , , ,( ) ( ) ( ( ) ( ))i j i j i j k jz t z t F z t z t′ = + × −        (1) 

Here �( )kZ t
!

 is a solution selected randomly from 
P(t)\ �( )iZ t

!
and F represents the scale factor in ("1, 1). ( )iZ t

!
 is 

replaced by ( )iZ t′
!

, if ( ( ))ifit Z t′
!

# ( ( ))ifit Z t
!

. 

3. Probability of Selection by Onlookers:  This step is 
concerned with assigning a high probability of selection to a 
solution with better fitness for the subsequent step. In other 
words, the selection probability of ( )iZ t

!
 with fitness 

( ( ))ifit Z t
!

is calculated using (2) for i = 1, 2, …, S. 

1
( ( )) ( ( ))

S
i i j

j
ps fit Z t fit Z t

=
= %

! !
                             (2) 

4. Onlooker Bee Phase: The q-th onlooker probabilistically 
selects a solution ( )iZ t

!
 ∈  P(t) based on psi and employs (1) to 

generate a new solution ( )iZ t′
!

. ( )iZ t′
!

replaces ( )iZ t
!

in the next 
generation t+1 provided ( ( ))ifit Z t′

!
# ( ( ))ifit Z t

!
. This step is 

repeated for all onlooker bees with q = 1, 2, …, S. 
5. Scout Bee Phase:  This step deals with random re-
initialization of a population member (within predefined 
search boundary) remaining unchanged for a predefined 
number of generations, called ‘limit’.  
6. Convergence: After each evolution cycle, steps 2 to 5 are 
repeated until terminating criterion is satisfied. 

B. Temporal Difference Q-Learning 
Q-learning is a well-known member of the class of 

reinforcement learning [18], [19]. In Q-learning, an agent at a 
given state !i∈{!1, !2, …, !M} selects and executes an action "j 
from a set of possible N actions {"1, "2, …, "N} and eventually 
receives an immediate reward/penalty r(!i, "j) from its 
environment. It helps the agent to learn a control policy to 
reach a definite goal by increasing the possibility of its correct 
response.  

Let,  
Q(!i, "j) be the quality factor of the state-action pair <!i, 

"j> encoding the total reward that the agent acquires by 
execution of an action "j at state !i.  

#(!i, "j) be the transition function that returns the next state 
!k∈{!1, !2, …, !M} of the agent due to execution of action "j at 
state !i.  

To ensure unbiased selection of actions in the initial phase, 
equal Q-value is assigned to each state-action pair. At a 
particular instant of Q-learning, the agent occupies a state 
!i∈{!1, !2, …, !M}, consults the Q-values Q(!i, "l), for l = 1, 2, 
…, N to select and execute an action "j ∈{"1, "2, …, "N}. The 
agent consequently receives an immediate reward r(!i, "j) and 
moves to the new state !k using #-transition rule. The Q-value 
Q(!i, "j) is then updated based on the immediate reward r(!i, "j) 
and the cumulative reward expected by the agent in subsequent 
state-transitions from its next state !k. The currently updated Q-
value is used to guide the agent to judiciously select its actions 
at state !(i) in subsequent instants. Now, the next state !k = #(!i, 
"j) is considered as the initial state, and the steps of action 
selection, receiving immediate reward, state-transition and Q-
value update are repeated forever. 

Evidently, the reinforcement learning policy used to update 
the Q-values plays the vital role to ensure the quality 
performance of Q-learning. According to the classical Q-
learning, the updated Q value at state !i after execution of 
action "j is given by (3).  
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( , ) ( , ) max ( ( , ), )

              = ( , ) max ( , )

i j i j i j

i j k

Q r Q

r Q
α

α

τ α τ α γ δ τ α α

τ α γ τ α
′

′

′= +

′+
          (3) 

Here, $ ∈ (0, 1] denotes the discounting factor used to 
signify the importance of the cumulative future reward 
max ( , )kQ

α
τ α

′
′ . A factor of 0 implies an opportunist agent by 

considering only the immediate rewards, while $ approaching 1 
will make the agent strive for a long-term high reward. 

The temporal difference Q-learning (TDQL) [18], [19] is a 
modified version of the classical Q-learning. In TDQL, the 
current Q-value at state-action pair <!i, "j> is also used to 
update its value following (4).  

( , ) (1 ) ( , )
                               ( ( , ) max ( ( , ), )

i j i j

i j i j

Q Q
r Q

α

τ α β τ α
β τ α γ δ τ α α

′

← − × +
′× +    (4) 

The learning rate $ ∈ (0, 1) determines the degree of 
dominance of the newly acquired reward over the old 
information. Evidently, the agent stop learning with $ = 0, 
while $ = 1 allows the agent to consider the latest information 
only.  

III. OVERVIEW OF EXISTING SAMPLING POLICIES 
The primary objective of a noisy optimization problem is to 

estimate the true fitness of a candidate solution when the 
fitness landscape is contaminated with noise of unknown 
stochastic distribution. The infiltration of noise in the fitness 
measure of a quality solution may deprive it from promotion to 
the next generation population. On the contrary, a true inferior 
solution with deceptive noisy fitness value may occupy the 
next generation population.  

To avoid this camouflaged presence of noise in the fitness 
measure of an offspring iZ ′

!
 (generated from its parent iZ

!
 

through employed/onlooker bee phase), its fitness ( )ifit Z ′
!

is 
repeatedly evaluated for ( )in Z ′

!
times, called sample size.  The 

strategy is referred to as sampling. An aggregate measure of 
the resulting ( )in Z ′

!
number of fitness samples of ( )ifit Z ′

!
is then 

used as the effective fitness estimate ( )ifit Z ′
!

[7!9]. The 
accuracy of the estimate ( )ifit Z ′

!
is ascertained from the fitness 

variance ( )iV Z ′
!

capturing the spread of ( )in Z ′
!

samples of  
( )ifit Z ′
!

away from the fitness estimate ( )ifit Z ′
!

 [7!9]. The 
evaluations of effective fitness estimate ( )ifit Z ′

!
and fitness 

variance ( )iV Z ′
!

are omitted here due to space constraint. 
Interested readers may refer to [7!9] for the necessary 
background. 

Evidently, proper selection of sample size is an essential 
step of noisy optimization problem to ensure accurate fitness 
measures of population members. Authors’ previous works 
[7!9] are concerned with adaptive sampling strategy where 
each candidate solution iZ ′

!
 is assigned with a sample size 

( )in Z ′
!

based on noise-contamination level in its local 

neighborhood (LN). As the true distribution of noise in the 
fitness landscape is unknown, the fitness variance ( )iZϑ ′

!
 of the 

solutions in the LN of iZ ′
!

is used to model the noise-
contamination level in the respective LN. ( )iZϑ ′

!
is referred to 

as local neighbourhood fitness variance (LNFV) of iZ ′
!

. 
Intuitively, a large (or a small) ( )iZϑ ′

!
indicates a large (or 

small) degree of intrusion of noise in the LN of iZ ′
!

demanding 
a large (or small) sample size ( )in Z ′

!
. This in turn balances the 

trade-off between the degree of accuracy in the fitness estimate 
and the runtime.  

The sample size ( )in Z ′
!

is modeled as a monotonically non-
decreasing function of ( )iZϑ ′

!
in the existing works [7!9]. 

Symbolically,  
( ) ( ( ))i in Z g Zϑ′ ′=
! !

.   (5) 
Here g(.) denotes the monotonically non-decreasing 

function used to predict sample size ( )in Z ′
!

based on LNFV 
( )iZϑ ′
!

. Different forms of g(.) have been adopted in [7!9]. 
The existing approaches suffer from two limitations. 
First, the methods predict sample size of an offspring iZ ′

!
 

based on its LNFV only, ignoring the varying convexity of the 
fitness landscape of its LN. Specifically, for a maximization 
problem, if iZ ′

!
falls in an LN with large fitness estimate, a large 

( )in Z ′
!

is required to guarantee the true quality of iZ ′
!

. 
Otherwise, a small value of ( )in Z ′

!
is used to reduce the runtime 

overhead. Hence, the first aim of the present work is to predict 
sample size ( )in Z ′

!
of iZ ′
!

jointly based on its LNFV ( )iZϑ ′
!

and 
local neighbourhood fitness estimate (LNFE) ( )iZµ ′

!
. 

( )iZϑ ′
!

and ( )iZµ ′
!

jointly capture the fitness profile of the LN of 

iZ ′
!

. Mathematically,  

( ) ( ( ), ( ))i i in Z g Z Zϑ µ′ ′ ′=
! ! !

.  (6) 
Second, the judicious selection of the functional form g(.) 

greatly influences the efficacy of the sampling strategy. A 
specific functional form of g(.) being biased to the nature of 
stochastic distribution of noise in the fitness landscape, may 
not always predict the appropriate sample size required for all 
possible stochastic distribution of noise. This gridlock has been 
overcome here by employing TDQL-induced adaptive 
sampling policy which detours the need for a specific 
functional form of g(.). 

IV. PROPOSED METHOD 
This section elaborates the steps used to employ the TDQL-

induced adaptive sampling policy. 
1. Local Neighborhood Formation 

The first step is concerned with dividing the search space 
into a number of local neighborhoods (LNs). First, for each 
candidate solution, we compute the following composite 
measure 
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1 1

( ) ( )( ) 1
( ) ( )

i i
i S S

j j
j j

fit Z ZZ
fit Z Z

ϑφ
ϑ

= =
% %

. /
0 1
0 1= − ×
0 1
0 12 3

! !!
! !     (7) 

for i = 1, 2, …, S. For a maximization problem, more the 
fitness measure (.)fit and small the fitness variance %(.), small 
is the composite measure &(.). The entire population is then 
sorted in ascending order of their respective composite 
measures. The candidate at the top most position of the 
sorted population P is selected as the first local 
guide 1,lgZ

!
of the first LN !1. The LN !1 with local 

guide 1,lgZ
!

is formed by the sub-population lying within 
the hyperspace bounded by 1, 1,[% ,% ]l hZ Z

! !
, where 

 1, 1, 1,1,
1 21 2% { % , % ,..., % }lg lg lgl

DDZ z z z z z z= − − −
!

 (8.a) 
  1, 1, 1,1,

1 21 2% { % , % ,..., % }lg lg lgh
DDZ z z z z z z= + + +

!
 (8.b) 

 
and         &zj= (zj

h –zj
l)/S             for j = 1, 2, …, D.   (8.c) 

 
Here, zj

l and zj
h respectively denote the minimum and 

maximum search boundary along the j-th dimension for j 
= 1, 2, …, D. To construct the second LN !2, the 
solution at the top most position of the sorted list 
{P"!1} is recorded as the second local guide 2,lgZ

!
. The 

subordinates of 2,lgZ
!

lying within 2, 2,[% ,% ]l hZ Z
! !

 
(following (8)) are included in the second LN !2.  

This is repeated until each member of P is assigned 
to an LN and finally, the D-dimensional search space is 
segmented into a number of LNs. Let the number of LNs 
thus identified in the current generation be denoted by C.  
2. Fitness Estimate and Fitness Variance in Local 

Neighborhood  
The fitness profile of each LN (discovered in the last step) 

here is characterized by the effective fitness estimate and the 
fitness variance of their constituent population members, 
however, with different weights. Let j

lZ
!

be the l-th member of 

the j-th LN !j with its effective fitness estimate ( )j
lfit Z
!

 for l 
= 1, 2, …, |!j|. Moreover, let 'l j be the average of effective 
fitness estimates of all population members of !j, however 
excluding ( )j

lfit Z
!

. Mathematically, 

1,
( )

1

j
j

k
k k lj

l
j

fit Z
ξ = ≠=

−

%
!

!

!

   (9) 

for l = 1, 2, …, |!j|. Next, we determine the weight of 
( )j

lfit Z
!

, given by  

( )exp ( )j j
l l lw fit Z ξ= − −

!
 .  (10) 

The design philosophy is based on the supposition that 
larger the value of ( )j j

l lfit Z ξ−
!

, greater is the degree of 

disagreement between effective fitness estimate of j
lZ
!

and 

other members of LN !j, indicating possibility of ( )j
lfit Z
!

to 
be noisy. Thus its significance towards calculation of LNFE of 
the entire LN !j must be reduced by assigning a small weight 
wl. It is apparent from (10) that with an increase in 

( )j j
l lfit Z ξ−
!

, wl tends to be reduced to zero. After 

evaluating the weights 0 < wl < 1 for all members of !j for l = 
1, 2, …, |!j|, we obtain the local neighborhood fitness 
estimate (LNFE) of LN !j, say µj, as 

  ( )
1 1

( )
j j

j
j l ll

l l
w fit Z wµ

= =
= ×% %

! !!
.             (11) 

Finally, the local neighborhood fitness variance (LNFV) 
of LN !j is computed following (12).  

2

1 1
( ( ) )

j j
j

j l j ll
l l

w fit Z wϑ µ
= =

. / . /
0 1 0 1= −0 1 0 1
0 1 0 12 3 2 3
% %
! !!

  .     (12) 

Once we obtain µj and %j for all neighborhoods j = 1, 2, …, 
C in a particular generation, the normalized LNFE µj-norm ∈ [0, 
1] and LNFV %j-norm ∈ [0, 1] of !j are computed using (13) and 
(14) respectively for j = 1, 2, …, C.  

1

C
j norm j k

k
µ µ µ−

=
= %    (13) 

1

C
j norm j k

k
ϑ ϑ ϑ−

=
= %  

       
(14) 

3. Design of Q-Table 
The proposed adaptive sampling policy accesses a three-

dimensional Q-table to determine sample size of a solution 
from the pool {2, 3, …, N} where N denotes the maximum 
sample size. The solution is assigned  to a state-pair in the Q-
table based on its normalized LNFE and LNFV. The first 
dimension of the Q-table represents the possible set of M 
states of population members based on their normalized LNFE 
µnorm, denoted by {!1(1), !1(2), …, !1(M)}. Similarly, the 
second dimension of the Q-table {!2(1), !2(2), …, !2(L)} 
encodes L possible states of the candidate solutions based on 
their normalized LNFV %norm. The columns of the Q-table 
denote uniformly quantized values of the sample size {2, 3, 
…, N}, to be used for the periodic fitness evaluation of a 
solution.  

The state !1(m) ∈ {!1(1), !1(2), …, !1(M)} represents 
normalized LNFEs in the range [(m – 1)/M, m/M) while the 
state !2(l) ∈ {!2(1), !2(2), …, !2(L)} symbolizes normalized 
LNFVs in the range [(l – 1)/L, l/L). In other words, a candidate 
solution Z

!
, belonging to the LN !j, is assigned to a state-pair 
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<!1(m), !2(l)> if the corresponding normalized LNFE µj-norm ∈  
[(m – 1)/M, m/M) and the respective normalized LNFV %j-norm 
∈[(l – 1)/L, l/L) for m ∈  {1, 2, …, M} and l ∈  {1, 2, …, L}. 
The component Q(<!1(m), !2(l)>, ") of the Q-table denotes the 
Q-value correponding to a sample size "∈{2, 3, …, N} at a 
specific state-pair <!1(m), !2(l)> for m ∈{1, 2, …, M} and l 
∈{1, 2, …, L}. 
4. Identification of Local Neihborhood of an Offspring 

Next, the employed/onlooker bee phase of ABC is 
employed to generate an offspring iZ ′

!
from its respective 

parent iZ
!

. To determine sample size for periodic fitness 
evaluation of iZ ′

!
, its LN !j is identified for k ∈{1, 2, …, C}, 

by finding out the local guide ,k lgZ
!

 with the minimum 
distance from iZ ′

!
among all C local guides.  

5. State-pair Assignment of a Trial Vector 
The normalized LNFE µk-norm and LNFV %k-norm are used to 

assign iZ ′
!

 to a specific state-pair in the Q-table. If µk-norm ∈ [(m 
– 1)/M, m/M) and %k-norm∈  [(l – 1)/L, l/L), iZ ′

!
is assigned to the 

state-pair <!1(m), !2(l)> for m∈{1, 2, …, M} and l∈{1, 2, …, 
L}. 
6. Adaptive Selection of Sample Size using Temporal 

Difference Q-Learning 
Once iZ ′

!
is assigned to a state-pair <!1(m), !2(l)>, for 

m∈{1, 2, …, M} and l∈{1, 2, …, L}, the TDQL is employed 
to select a sample size from {2, 3, …, N} based on the Q-
values Q(<!1(m), !2(l)>, ") for " = 2, 3, …, N. The reward and 
penalty obtained during the selection of sample size " at state-
pair <!1(m), !2(l)> in the previous generations are used to 
adapt the Q-values Q(<!1(m), !2(l)>, ") in the subsequent 
generations. If  Q(<!1(m), !2(l)>, ") # Q(<!1(m), !2(l)>, "/) for 
"/ = 2, 3, …, N, it signifies that the selection of particular 
sample size " was rewarded many times before in the 
evolution process. The learning experience thus selects the 
sample size ( )in Z ′

!
= " with the highest Q-value. The 

probability of selection of ( )in Z ′
!

= " from the pool {2, 3, …, 
N} at the state-pair <!1(m), !2(l)> is given by  

            1 2

1 2
2

( ( ), ( ) , )
( , , )

( ( ), ( ) , )
N
Q m l

p m l  
Q m l

α

τ τ α
α

τ τ α
′=

=
′%

             (15) 

for m = 1, 2, …, M and l = 1, 2, …, L. To maintain adaptation 
and learning in all Q’s present in all possible state-pairs, the 
Roulette-choice strategy [19] is employed for selection of 
sample size. The strategy selects a sample size " from the pool 
{2, 3, …, N} for an offspring iZ ′

!
 at state-pair <!1(m), !2(l)> if 

the following condition holds where rand(0, 1) denotes a 
random number uniformly distributed in (0, 1). 

1

1 1
( , , ) rand(0,1) ( , , )p m l p m l

α α

α α
α α

−

′ ′= =
′ ′≤ ≤% %  (16) 

7. State-Transition 
The sample size ( )in Z ′

!
= " selected for iZ ′

!
in the last step is 

used for its periodic fitness evaluation, effective fitness 
estimate ( )ifit Z ′

!
and fitness variance ( )iV Z ′

!
, using the 

approaches proposed in [7!9]. The evaluated 
( )ifit Z ′
!

and ( )iV Z ′
!

are now used to evaluate the new 
normalized LNFE and LNFV of !k, the LN of iZ ′

!
, using (11)-

(14). Let the currently obtained values of normalized LNFE 
and LNFV be denoted by cur

k normµ − and cur
k normϑ − . If 

cur
k normµ − ∈ [(x – 1)/M, x/M) and cur

k normϑ − ∈ [(y – 1)/L, y/L), for 
x∈{1, 2, …, M} and y∈{1, 2, …, L}, then iZ ′

!
is assigned to 

the new state-pair <!1(x), !2(y)> from its old state-pair <!1(m), 
!2(l)>. Symbolically,  

1 2 1 2( ( ), ( ) , ) ( ), ( )m l x yδ τ τ α τ τ=   (17) 

8. Reward and Penalty based Update of Q-Table 

If cur
k norm k normµ µ− −> (for maximization problem) or 

cur
k norm k normϑ ϑ− −< , the selection of sample size " ∈  2, 3, …, 

N at the state-pair <!1(m), !2(l)> is rewarded with the 
respective reward, given below. 

If   and  cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −> ≥  

1 2( ( ), ( ) , ) cur
k norm k normr m lτ τ α µ µ− −= − . (18.a) 

If   and  cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −≤ <  

1 2( ( ), ( ) , ) cur
k norm k normr m lτ τ α ϑ ϑ− −= − . (18.b) 

If   and  cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −> <  

1 2( ( ), ( ) , ) ( ) ( ).cur cur
k norm k norm k norm k normr m lτ τ α µ µ ϑ ϑ− − − −= − + − (18.c) 

If   and  cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −≤ ≥ , then the 

selection is penalized with  

1 2( ( ), ( ) , )r m l Kτ τ α = −    (19) 

with K as a positive constant value, however, small. 
The corresponding Q-value is then updated with 

1 2 1 2

1 2 1 2

( ( ), ( ) , ) (1 ) ( ( ), ( ) , )
                       ( ( ( ), ( ) , ) max ( ( ), ( ) , )
Q m l Q m l

r m l Q x y
α

τ τ α β τ τ α
β τ τ α γ τ τ α

′

← − × +
′× +

(20) 
Update the normalized LNFE and LNFV of !k as  

  and  cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −← ← .  (21) 

V. EXPERIMENTS AND RESULTS 
A. Benchmark Functions and Performance Metric 

Noisy versions of 28 single objective benchmark functions 
proposed in CEC’2013 [26] are used here to compare the 
performance of the QLNBC algorithm with its contenders in 
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the presence of noise (in the fitness landscape) following 
Gaussian [27], Poisson [28], Rayleigh [29], exponential [30] 
and random [31] distribution. Function error value (FEV) is 
considered as the performance metric for the comparative 
analysis. For a particular benchmark function f, FEV is 
represented by 

*( ) medFEV f f f= −   (22) 

where fmed denotes the median of the best fitness values 
obtained by an algorithm over R runs (say 50) and f* 
represents the true optimum value of f. Smaller the FEV, 
better is the performance of an algorithm. 
B. Comparative Framework  

The comparative framework is formed by considering a 
few widely popular noisy single objective optimization 
algorithms (NSOOAs), including learning automata induced 
noisy bee colony (LANBC) [21], memetic for uncertainties 
DE (MUDE) [22], subset based LA incorporated particle 
swarm optimization (LAPSO) [23], and noise tolerant genetic 
algorithm (NTGA) [24]. In the present work, the sampling 
strategy of extended LANBC [25] is replaced with the 
proposed TDQL induced adaptive sampling policy while 
keeping other strategies embedded in extended LANBC 
unchanged. The new contender algorithm thus developed is 
referred to as extended QLNBC henceforth and is regarded as 
new member of the comparative framework.  
C. Results and Performance Analysis 

Comparative performance analysis of the proposed 
algorithms (QLNBC and extended QLNBC) with their 
contenders is undertaken in this section. The performance 
analysis is carried out for all possible noise distribution in the 
fitness landscape. However, a few results are reported for 
space restriction. 

The median FEV values obtained by all seven contenders 
over 50 independent runs are reported in Table-I with 
corresponding interquartile range (within parenthesis). Noise 
samples taken from zero mean Gaussian distribution of 
variance 0.57 are used to additively contaminate the 
benchmark functions to test the accuracy of the algorithms. 
Statistical significance of superiority of one algorithm over 
others is assessed by Wilcoxon rank sum test [32] with a 
significance level of 0.05. The test is undertaken between the 
best algorithm (providing the minimum median FEV value) 
and the rest and the respective p-value thus obtained is 
reported in the third bracket for each benchmark instance. 
Here NA denotes not applicable cases of comparing the best 
algorithm with itself. The null hypothesis is concerned with 
statistically equivalent performance of the best algorithm and 
each of the remaining contenders. The null hypothesis is 
rejected on obtaining the corresponding p-value less than 
0.05. 

It is evident from Table-I that extended QLNBC 
outperforms its contenders in 19 cases out of 28 benchmark 
functions. Out of these 19 cases, 17 cases reveal statistically 
significant superiority of the extended QLNBC to its 
contenders. In case of f10 and f15, extended QLNBC 
marginally outperforms extended LANBC, though not 
significantly. However, extended QLNBC is outperformed by 
extended LANBC in case of f13 and f23. QLNBC supersedes 
its extended version for f20. The performance difference is 
however statistically insignificant. For f01!f03, f17, f19 and 
f26, both extended QLNBC and extended LANBC achieve the 
same accuracy. The interquartile range obtained by extended 
LANBC for f17 and f19 is however more than that of 
extended QLNBC. Similar performance of QLNBC and its 
extended counterpart is also noted for f01 and f02. 

 
TABLE I-A: FEVS OF NSOOAS IN PRESENCE OF ZERO MEAN GAUSSIAN NOISE (OF VARIANCE =0.57) IN FITNESS LANDSCAPE f01 TO f08 

 
Functions Ext. QLNBC Ext. LANBC QLNBC LANBC MUDE LAPSO NTGA

f01 
0.00e+000 0.00e+000 0.00e+000 0.00e+000 1.89e-007 2.13e-007 3.95e-007

(0.00e+000) (0.00e+000) (0.00e+000) (0.00e+000) (1.25e-008) (3.31e-008) (6.16e-008)
NA NA NA NA [3.86e-005] [1.94e-005] [4.30e-006]

f02 
0.00e+000 0.00e+000 0.00e+000 5.67e-004 7.95e-004 1.27e-003 1.61e-003

(0.00e+000) (0.00e+000) (0.00e+000) (5.56e+001) (1.24e+002) (9.09e+002) (1.10e+004)
NA NA NA [1.45e-003] [3.91e-004] [5.48e-006] [2.28e-006]

f03 
0.00e+000 0.00e+000 7.21e-003 7.90e-003 1.08e-002 6.69e-002 1.48e-001

(0.00e+000) (0.00e+000) (8.33e+001) (1.64e+002) (2.16e+002) (2.51e+002) (2.68e+002)
NA NA [4.86e-002] [4.83e-002] [4.50e-002] [1.53e-002] [6.47e-003]

f04 
5.17e-005 1.05e-004 3.62e-004 3.74e-003 5.01e-003 6.84e-003 1.26e-002

(2.99e-005) (7.83e-005) (5.22e-004) (6.30e-004) (9.01e-004) (1.13e-001) (1.64e+000)
NA [3.01e-003] [2.67e-003] [2.41e-003] [3.04e-004] [1.23e-004] [2.73e-005]

f05 
0.00e+000 1.51e-008 9.05e-008 1.99e-006 2.16e-006 1.47e-005 5.16e-005

(0.00e+000) (4.82e-004) (1.34e-003) (3.48e-003) (3.84e-003) (4.55e-003) (5.61e-003)
NA [4.74e-005] [1.67e-005] [4.61e-007] [4.24e-007] [4.09e-007] [1.14e-007]

f06 
1.55e+001 2.86e+001 3.10e+001 3.83e+001 4.05e+001 4.08e+001 4.27e+001
(6.65e-006) (7.48e-002) (1.45e+000) (3.02e+000) (6.46e+000) (7.38e+000) (9.04e+000)

NA [1.43e-003] [1.23e-004] [4.10e-005] [1.95e-006] [1.56e-006] [2.30e-007]

f07 
3.71e+000 3.43e+001 3.56e+001 3.75e+001 4.48e+001 4.78e+001 6.37e+001

(3.25e+000) (5.72e+000) (6.69e+000) (9.16e+000) (9.18e+000) (9.71e+000) (1.10e+001)
NA [1.10e-003] [3.17e-005] [2.40e-005] [1.33e-006] [7.97e-006] [7.52e-007]

f08 
2.08e+001 2.09e+001 2.10e+001 2.10e+001 2.10e+001 2.10e+001 2.10e+001
(2.96e-002) (3.58e-002) (4.23e-002) (4.64e-002) (4.65e-002) (5.19e-002) (6.20e-002)

NA [3.56e-002] [1.47e-002] [1.03e-002] [5.38e-003] [5.15e-003] [4.93e-003]
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TABLE I-B: FEVS OF NSOOAS IN PRESENCE OF ZERO MEAN GAUSSIAN NOISE (OF VARIANCE =0.57) IN FITNESS LANDSCAPE f09 TO f28 
 

Functions Ext. QLNBC Ext. LANBC QLNBC LANBC MUDE LAPSO NTGA

f09 
1.16e+001 1.66e+001 3.40e+001 4.37e+001 4.90e+001 4.98e+001 5.05e+001

(1.27e+000) (2.27e+000) (2.29e+000) (2.46e+000) (2.86e+000) (3.33e+000) (3.60e+000)
NA [5.94e-002] [5.57e-002] [5.07e-002] [4.18e-002] [1.48e-002] [9.40e-004]

f10 
5.14e-008 5.35e-004 7.55e-004 5.14e-003 1.25e-002 1.75e-002 2.57e-002

(4.12e-005) (7.22e-002) (1.19e-003) (3.64e-003) (1.15e-002) (1.28e-002) (1.37e-002)
NA [5.10e-002] [2.36e-004] [3.02e-006] [2.59e-006] [3.22e-006] [3.03e-007]

f11 
7.88e-001 3.27e+000 5.50e+000 5.74e+000 7.43e+000 1.54e+001 1.69e+001

(1.27e-003) (4.21e-002) (9.88e-002) (1.21e-001) (3.21e-001) (1.92e+000) (2.59e+000)
NA [2.97e-003] [1.26e-003] [3.42e-004] [3.35e-004] [9.09e-005] [3.95e-006]

f12 
9.72e+000 2.69e+001 4.20e+001 6.63e+001 8.55e+001 9.65e+001 1.32e+002

(1.86e+000) (2.78e+000) (7.71e+000) (9.46e+000) (2.09e+001) (2.27e+001) (3.26e+001)
NA [3.41e-004] [2.50e-004] [1.86e-004] [2.47e-005] [2.02e-006] [3.05e-007]

f13 
8.05e+001 4.55e+001 9.26e+001 1.41e+002 1.48e+002 1.84e+002 1.96e+002

(7.92e+000) (2.68e+000) (1.89e+001) (1.99e+001) (2.27e+001) (3.07e+001) (3.37e+001)
[9.93e-003] NA [9.78e-003] [2.20e-004] [1.79e-004] [2.99e-004] [2.78e-005]

f14 
1.37e+001 2.06e+001 2.75e+001 2.19e+002 5.38e+002 7.48e+002 7.90e+002

(5.73e+000) (8.55e+000) (1.03e+001) (7.45e+001) (1.83e+002) (2.65e+002) (4.48e+002)
NA [4.91e-003] [3.79e-003] [1.57e-004] [1.46e-005] [4.52e-006] [7.25e-006]

f15 
1.09e+003 2.18e+003 2.28e+003 4.36e+003 6.35e+003 6.47e+003 7.42e+003

(2.83e+002) (3.67e+002) (4.32e+002) (4.38e+002) (5.31e+002) (5.51e+002) (6.30e+002)
NA [5.47e-002] [4.39e-002] [6.97e-003] [4.97e-004] [5.84e-005] [3.89e-006]

f16 
3.84e-001 7.84e-001 1.07e+000 1.46e+000 1.63e+000 1.72e+000 2.12e+000

(3.21e-002) (4.23e-002) (1.68e-001) (1.96e-001) (2.03e-001) (2.35e-001) (2.81e-001)
NA [1.26e-003] [5.16e-004] [4.89e-004] [3.22e-004] [5.01e-005] [5.33e-006]

f17 
4.36e+001 4.36e+001 5.07e+001 5.40e+001 5.65e+001 6.55e+001 7.37e+001
(2.58e-003) (3.17e-002) (4.10e-001) (1.12e+000) (1.77e+000) (2.37e+000) (4.29e+000)

NA NA [6.95e-003] [9.15e-004] [5.02e-005] [3.47e-005] [2.84e-007]

f18 
6.60e+001 1.09e+002 1.26e+002 1.30e+002 1.48e+002 1.53e+002 1.67e+002

(1.17e+001) (1.33e+001) (1.61e+001) (2.87e+001) (3.33e+001) (3.64e+001) (4.48e+001)
NA [1.27e-002] [5.24e-002] [6.73e-004] [2.10e-004] [2.77e-004] [2.58e-005]

f19 
2.13e+000 2.13e+000 3.38e+000 3.42e+000 3.84e+000 3.89e+000 4.33e+000
(2.91e-001) (3.51e-001) (4.69e-001) (4.89e-001) (6.74e-001) (7.24e-001) (7.96e-001)

NA NA [1.26e-004] [3.20e-005] [3.39e-006] [1.08e-006] [8.63e-007]

f20 
1.89e+001 1.91e+001 1.40e+001 1.91e+001 1.94e+001 2.01e+001 2.05e+001
(4.44e-001) (5.39e-001) (3.86e-001) (5.84e-001) (6.55e-001) (7.85e-001) (7.96e-001)
[5.54e-002] [3.91e-003] NA [3.41e-004] [2.75e-004] [2.01e-004] [1.36e-005]

f21 
2.28e+002 2.38e+002 2.45e+002 2.96e+002 3.72e+002 5.08e+002 6.30e+002

(1.07e+001) (4.03e+001) (1.83e+002) (2.27e+002) (2.73e+002) (2.88e+002) (3.25e+002)
NA [3.03e-004] [1.01e-004] [6.27e-005] [5.42e-005] [1.17e-006] [8.20e-007]

f22 
2.43e+001 2.79e+001 4.37e+001 2.79e+002 3.38e+002 5.70e+002 5.97e+002

(1.46e+001) (2.57e+001) (4.07e+001) (4.93e+001) (2.66e+002) (3.55e+002) (3.61e+002)
NA [2.62e-003] [1.01e-003] [6.66e-004] [6.49e-005] [3.03e-007] [1.41e-007]

f23 
1.85e+003 8.04e+002 2.91e+003 6.51e+003 7.23e+003 8.25e+003 8.79e+003

(3.63e+002) (3.26e+002) (5.35e+002) (5.52e+002) (6.52e+002) (7.36e+002) (8.98e+002)
[1.48e-002] NA [1.07e-003] [1.11e-004] [1.00e-005] [2.41e-006] [3.16e-007]

f24 
2.23e+002 2.26e+002 2.36e+002 2.80e+002 2.82e+002 2.84e+002 3.07e+002

(2.23e+000) (5.53e+000) (9.34e+000) (1.18e+001) (1.40e+001) (1.70e+001) (1.95e+001)
NA [5.60e-003] [5.53e-003] [1.25e-003] [3.75e-005] [2.21e-005] [4.29e-007]

f25 
2.25e+002 3.01e+002 3.05e+002 3.14e+002 3.26e+002 3.37e+002 3.60e+002

(3.97e+000) (8.01e+000) (1.01e+001) (1.05e+001) (1.21e+001) (1.47e+001) (1.83e+001)
NA [4.89e-005] [4.60e-005] [2.98e-005] [9.21e-006] [2.77e-006] [7.83e-007]

f26 
2.28e+001 2.28e+001 1.92e+002 2.40e+002 2.49e+002 2.65e+002 2.78e+002

(3.68e+000) (3.68e+000) (2.38e+001) (3.83e+001) (5.88e+001) (6.71e+001) (9.08e+001)
NA NA [5.17e-003] [2.47e-004] [2.07e-005] [2.05e-006] [9.50e-007]

f27 
3.91e+002 6.87e+002 9.19e+002 9.27e+002 9.56e+002 1.12e+003 1.38e+003

(3.85e+001) (9.80e+001) (1.36e+002) (1.38e+002) (1.39e+002) (1.76e+002) (1.88e+002)
NA [4.15e-003] [2.42e-003] [2.61e-004] [1.37e-005] [9.96e-006] [1.93e-006]

f28 
3.83e+002 4.22e+002 4.30e+002 4.38e+002 4.58e+002 4.58e+002 5.55e+002
(1.65e-004) (3.55e-001) (2.03e+001) (8.67e+001) (3.57e+002) (4.17e+002) (4.36e+002)

NA [4.11e-003] [2.20e-003] [1.55e-003] [5.97e-004] [2.85e-005] [3.90e-005]
 
 

VI. CONCLUSION 
The paper proposes a novel approach to utilize the benefit 

of the reinforcement learning (RL) technique to judiciously 
assign sample size to solutions for their periodic fitness 
evaluation in a noisy fitness landscape. The sample size is 
determined based on the noisy fitness profile in the 
surrounding of the solutions. The fitness estimate and fitness 

variance of a sub-population surrounding a solution are used to 
capture the fitness profile in the local neighborhood of the 
given solution. The proposed approach detours the requirement 
of any specific functional form to model the relationship 
between the sample size of a solution and its noisy local fitness 
profile. TDQL is selected here as a RL mechanism to assign a 
small (and a large) sample size to a solution in a more (and a 
less) noisy zone, captured by its LNFE and LNFV.  
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A relative comparison of the proposed algorithms 
(QLNBC and extended QLNBC) with five state-of-the-art 
algorithms  reveals that the proposed algorithms outperform 
most of their competitors with respect to FEV metric. Noisy 
versions of a set of 28 CEC’2013 benchmark functions have 
been used to arrive at the foregoing conclusions. Additive 
noise samples taken from Gaussian, Poisson, Rayleigh, 
exponential and random distributions are used to realize the 
noisy versions of the benchmark functions. The Wilcoxon 
rank-sum test, the Friedman and the Iman-Davenport non-
parametric tests are undertaken to affirm the statistical 
significance of the reported results.  
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