
Q-Learning Induced Artificial Bee Colony for Noisy
Optimization

Pratyusha Rakshit1, Amit Konar2

1Basque Center for Applied Mathematics, Bilbao, Spain
1, 2Department of Electronics and Telecommunication Engineering

Jadavpur University, Kolkata, India
1pratyushar1@gmail.com, 2konaramit@yahoo.co.in

Atulya K. Nagar
Department of Mathematics and Computer Science, Liverpool Hope

University, United Kingdom
nagara@hope.ac.uk

Abstract— The paper proposes a novel approach to adaptive

selection of sample size for a trial solution of an evolutionary
algorithm when noise of unknown distribution contaminates the
objective surface. The sample size of a solution here is adapted
based on the noisy fitness profile in the local surrounding of the
given solution. The fitness estimate and the fitness variance of a
sub-population surrounding the given solution are jointly used to
signify the degree of noise contamination in its local
neighborhood (LN). The adaptation of sample size based on the
characteristics of the fitness landscape in the LN of a solution is
realized here with the temporal difference Q-learning (TDQL).
The merit of the present work lies in utilizing the reward-penalty
based reinforcement learning mechanism of TDQL for sample
size adaptation. This sidesteps the prerequisite setting of any
specific functional form of relationship between the sample size
requirement of a solution and the noisy fitness profile in its LN.
Experiments undertaken reveal that the proposed algorithms,
realized with artificial bee colony, significantly outperform the
existing counterparts and the state-of-the-art algorithms.

Keywords— artificial bee colony; noise-handling; temporal
difference Q-learning; reinforcement learning; sampling.

I. INTRODUCTION
The reliance of real world optimization problems on

evolutionary algorithms (EAs) has been widely observed over
the past decades. The real world system characteristic is
captured by the objective function of an EA, which is
optimized for ensuring optimal utilization of system resources.
However, the efficacy of the traditional EAs degrades with
creeping of noise in the measurement of input data of the real
world systems, primarily due to degraded sensor
characteristics and/or noisy ambience. Edging of noise in the
input measurement also induces inaccuracy in the assessment
of objective function value (often called fitness) of a
population member of an EA. Noisy fitness measurements of
quality (and poor) solutions deceive the evolutionary selection
operator by rejecting (and accepting) them over the
generations. Consequently, the traditional EA fails to track the
true global optimum in the presence of noise in the fitness
landscape. The intricacy of the problem increases with noise
of unknown stochastic distribution contaminating multimodal
fitness landscape. It has thus called the amendment of the
traditional EAs to overcome the illusive effect of noise. This
class of optimization algorithm devised to alleviate the
problem is referred to as noisy optimization [1], [2].

The well-known strategies used in noisy optimization
algorithms include sampling [3!9], effective estimation of
fitness [10], [11], dynamic population sizing [12], [13],
improved search dynamics [14], [15] and robust selection
operator [16], [17]. Among these, the most significant
stratagem is sampling, where the fitness of a solution is
periodically evaluated for a number of times, called sample
size. An aggregate measure of these fitness samples thus
obtained is used as the fitness estimate of the given solution.
The multiple fitness evaluation of a solution increases the
accuracy in its fitness assessment in the presence of noise of
unknown distribution.

Evidently, a large sample size ensures fitness accuracy but
at the cost of computational overhead. To overcome this
impasse, dynamic sampling policies are developed in the
recent past [3!9]. Among the existing strategies, sequential
sampling [3], progress based dynamic sampling strategy [4],
noise analysis selection [5], and optimal computing budget
allocation [6] need special mentioning. The major constraint
of the existing strategies is to overlook the level of
contamination of noise in the local neighbourhood of a
solution to determine its sampling requirement.

This issue has been addressed by the authors’ previous
works [7!9]. The variance of fitness estimates of a sub-
population surrounding the given solution is used to capture
the degree of creeping of noise in its local neighbourhood. It is
referred to as local neighbourhood fitness variance (LNFV).
Different monotonically increasing functional forms have
been used to model the relationship between LNFE and the
sample size required for a solution [7!9]. Experiments
undertaken reveal that a specific functional form cannot
guarantee optimal assignment of sample size to a solution for
all possible distribution of noise in the fitness landscape.

The paper proposes an alternative approach to bypass the
need of a particular functional form to determine the sample
size of a solution based on its LNFV. In addition to the LNFV,
the policy also adapts sample size based on the local
neighborhood fitness estimate (LNFE). The LNFV and LNFE
are jointly used to capture the noise-contaminated fitness
profile in the local vicinity of a solution. The reward and
penalty based reinforcement learning mechanism of temporal
difference Q-learning (TDQL) [18], [19] is used to prudently
assign sample size (similar to action of TDQL) to a solution
based on its local fitness profile, jointly captured by its

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

respective LNFV and LNFE (similar to states of TDQL). If the
assignment of a sample size n to a solution by the TDQL
increases LNFE (for maximization problem) and
simultaneously reduces the respective LNFV, the selection is
rewarded. Otherwise, the selection is penalized. These reward
and penalties are encoded in the Q-values which in turn guide
population of next generations to judiciously select their
sample sizes.

In the present work, the artificial bee colony [20] is
selected as the EA. The performance of the proposed noisy
single objective optimization algorithm, referred to as Q-
learning induced noisy bee colony (QLNBC), is compared with
four state-of-the-art techniques [21!24]. The proposed adaptive
sampling strategy is also used to replace the sampling policy
recommended in [25] and results in a new competitor in the
comparative framework, called extended QLNBC. The
comparative performance is analyzed with respect to function
error value metric while optimizing noisy versions of 28
CEC’2013 benchmark functions [26]. The benchmark
functions are contaminated with additive noise samples taken
from Gaussian [27], Poisson [28], Rayleigh [29], exponential
[30], and random distribution [31]. Experiments undertaken
reveal that the proposed realizations outperform other
algorithms in a statistically significant manner. The Wilcoxon
test, the Friedman and Iman-Davenport non-parametric tests
and the Bonferroni-Dunn post-hoc analysis [32] are undertaken
to arrive at the conclusion.

The paper is divided into six sections. Section II overviews
the traditional ABC and the TDQL algorithms. A brief outline
of the existing sample size adaptation policies is given in
section III. Section IV provides the noise handling mechanism
used to extend the ABC. Simulation results are reported in
section V. Section VI concludes the paper.

II. PRELIMINARIES

A. Artificial Bee Colony Algorithm
Artificial bee colony (ABC) [20] is a population-based

meta-heuristic algorithm. An overview of the main steps of the
ABC algorithm is presented next for maximization problem.
1. Initialization: ABC begins with a population P(t) of S, D-
dimensional real-valued solutions 1 2{ (), (), ..., ()}SZ t Z t Z t

! ! !
,

randomly initialized within the search bound of the given
optimization problem at generation t = 0. The fitness value

((0))ifit Z
!

of (0)iZ
!

is evaluated for i = 1, 2, …, S.
2. Employed Bee Phase: In this phase, a randomly chosen
parameter (j∈ {1, 2, …, D} of a solution �()iZ t

!
 is modified to

generate an offspring solution ()iZ t′
!

 following (1) for i = 1, 2,
…, S. The remaining D–1 components of ()iZ t′

!
are identical to

that of �()iZ t
!

.

, , , ,() () (() ())i j i j i j k jz t z t F z t z t′ = + × − (1)

Here �()kZ t
!

 is a solution selected randomly from
P(t)\ �()iZ t

!
and F represents the scale factor in ("1, 1). ()iZ t

!
 is

replaced by ()iZ t′
!

, if (())ifit Z t′
!

(())ifit Z t
!

.

3. Probability of Selection by Onlookers: This step is
concerned with assigning a high probability of selection to a
solution with better fitness for the subsequent step. In other
words, the selection probability of ()iZ t

!
 with fitness

(())ifit Z t
!

is calculated using (2) for i = 1, 2, …, S.

1
(()) (())

S
i i j

j
ps fit Z t fit Z t

=
= %

! !
 (2)

4. Onlooker Bee Phase: The q-th onlooker probabilistically
selects a solution ()iZ t

!
 ∈ P(t) based on psi and employs (1) to

generate a new solution ()iZ t′
!

. ()iZ t′
!

replaces ()iZ t
!

in the next
generation t+1 provided (())ifit Z t′

!
(())ifit Z t

!
. This step is

repeated for all onlooker bees with q = 1, 2, …, S.
5. Scout Bee Phase: This step deals with random re-
initialization of a population member (within predefined
search boundary) remaining unchanged for a predefined
number of generations, called ‘limit’.
6. Convergence: After each evolution cycle, steps 2 to 5 are
repeated until terminating criterion is satisfied.

B. Temporal Difference Q-Learning
Q-learning is a well-known member of the class of

reinforcement learning [18], [19]. In Q-learning, an agent at a
given state !i∈{!1, !2, …, !M} selects and executes an action "j
from a set of possible N actions {"1, "2, …, "N} and eventually
receives an immediate reward/penalty r(!i, "j) from its
environment. It helps the agent to learn a control policy to
reach a definite goal by increasing the possibility of its correct
response.

Let,
Q(!i, "j) be the quality factor of the state-action pair <!i,

"j> encoding the total reward that the agent acquires by
execution of an action "j at state !i.

#(!i, "j) be the transition function that returns the next state
!k∈{!1, !2, …, !M} of the agent due to execution of action "j at
state !i.

To ensure unbiased selection of actions in the initial phase,
equal Q-value is assigned to each state-action pair. At a
particular instant of Q-learning, the agent occupies a state
!i∈{!1, !2, …, !M}, consults the Q-values Q(!i, "l), for l = 1, 2,
…, N to select and execute an action "j ∈{"1, "2, …, "N}. The
agent consequently receives an immediate reward r(!i, "j) and
moves to the new state !k using #-transition rule. The Q-value
Q(!i, "j) is then updated based on the immediate reward r(!i, "j)
and the cumulative reward expected by the agent in subsequent
state-transitions from its next state !k. The currently updated Q-
value is used to guide the agent to judiciously select its actions
at state !(i) in subsequent instants. Now, the next state !k = #(!i,
"j) is considered as the initial state, and the steps of action
selection, receiving immediate reward, state-transition and Q-
value update are repeated forever.

Evidently, the reinforcement learning policy used to update
the Q-values plays the vital role to ensure the quality
performance of Q-learning. According to the classical Q-
learning, the updated Q value at state !i after execution of
action "j is given by (3).

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

(,) (,) max ((,),)

 = (,) max (,)

i j i j i j

i j k

Q r Q

r Q
α

α

τ α τ α γ δ τ α α

τ α γ τ α
′

′

′= +

′+
 (3)

Here, $ ∈ (0, 1] denotes the discounting factor used to
signify the importance of the cumulative future reward
max (,)kQ

α
τ α

′
′ . A factor of 0 implies an opportunist agent by

considering only the immediate rewards, while $ approaching 1
will make the agent strive for a long-term high reward.

The temporal difference Q-learning (TDQL) [18], [19] is a
modified version of the classical Q-learning. In TDQL, the
current Q-value at state-action pair <!i, "j> is also used to
update its value following (4).

(,) (1) (,)
 ((,) max ((,),)

i j i j

i j i j

Q Q
r Q

α

τ α β τ α
β τ α γ δ τ α α

′

← − × +
′× + (4)

The learning rate $ ∈ (0, 1) determines the degree of
dominance of the newly acquired reward over the old
information. Evidently, the agent stop learning with $ = 0,
while $ = 1 allows the agent to consider the latest information
only.

III. OVERVIEW OF EXISTING SAMPLING POLICIES
The primary objective of a noisy optimization problem is to

estimate the true fitness of a candidate solution when the
fitness landscape is contaminated with noise of unknown
stochastic distribution. The infiltration of noise in the fitness
measure of a quality solution may deprive it from promotion to
the next generation population. On the contrary, a true inferior
solution with deceptive noisy fitness value may occupy the
next generation population.

To avoid this camouflaged presence of noise in the fitness
measure of an offspring iZ ′

!
 (generated from its parent iZ

!

through employed/onlooker bee phase), its fitness ()ifit Z ′
!

is
repeatedly evaluated for ()in Z ′

!
times, called sample size. The

strategy is referred to as sampling. An aggregate measure of
the resulting ()in Z ′

!
number of fitness samples of ()ifit Z ′

!
is then

used as the effective fitness estimate ()ifit Z ′
!

[7!9]. The
accuracy of the estimate ()ifit Z ′

!
is ascertained from the fitness

variance ()iV Z ′
!

capturing the spread of ()in Z ′
!

samples of
()ifit Z ′
!

away from the fitness estimate ()ifit Z ′
!

 [7!9]. The
evaluations of effective fitness estimate ()ifit Z ′

!
and fitness

variance ()iV Z ′
!

are omitted here due to space constraint.
Interested readers may refer to [7!9] for the necessary
background.

Evidently, proper selection of sample size is an essential
step of noisy optimization problem to ensure accurate fitness
measures of population members. Authors’ previous works
[7!9] are concerned with adaptive sampling strategy where
each candidate solution iZ ′

!
 is assigned with a sample size

()in Z ′
!

based on noise-contamination level in its local

neighborhood (LN). As the true distribution of noise in the
fitness landscape is unknown, the fitness variance ()iZϑ ′

!
 of the

solutions in the LN of iZ ′
!

is used to model the noise-
contamination level in the respective LN. ()iZϑ ′

!
is referred to

as local neighbourhood fitness variance (LNFV) of iZ ′
!

.
Intuitively, a large (or a small) ()iZϑ ′

!
indicates a large (or

small) degree of intrusion of noise in the LN of iZ ′
!

demanding
a large (or small) sample size ()in Z ′

!
. This in turn balances the

trade-off between the degree of accuracy in the fitness estimate
and the runtime.

The sample size ()in Z ′
!

is modeled as a monotonically non-
decreasing function of ()iZϑ ′

!
in the existing works [7!9].

Symbolically,
() (())i in Z g Zϑ′ ′=
! !

. (5)
Here g(.) denotes the monotonically non-decreasing

function used to predict sample size ()in Z ′
!

based on LNFV
()iZϑ ′
!

. Different forms of g(.) have been adopted in [7!9].
The existing approaches suffer from two limitations.
First, the methods predict sample size of an offspring iZ ′

!

based on its LNFV only, ignoring the varying convexity of the
fitness landscape of its LN. Specifically, for a maximization
problem, if iZ ′

!
falls in an LN with large fitness estimate, a large

()in Z ′
!

is required to guarantee the true quality of iZ ′
!

.
Otherwise, a small value of ()in Z ′

!
is used to reduce the runtime

overhead. Hence, the first aim of the present work is to predict
sample size ()in Z ′

!
of iZ ′
!

jointly based on its LNFV ()iZϑ ′
!

and
local neighbourhood fitness estimate (LNFE) ()iZµ ′

!
.

()iZϑ ′
!

and ()iZµ ′
!

jointly capture the fitness profile of the LN of

iZ ′
!

. Mathematically,

() ((), ())i i in Z g Z Zϑ µ′ ′ ′=
! ! !

. (6)
Second, the judicious selection of the functional form g(.)

greatly influences the efficacy of the sampling strategy. A
specific functional form of g(.) being biased to the nature of
stochastic distribution of noise in the fitness landscape, may
not always predict the appropriate sample size required for all
possible stochastic distribution of noise. This gridlock has been
overcome here by employing TDQL-induced adaptive
sampling policy which detours the need for a specific
functional form of g(.).

IV. PROPOSED METHOD
This section elaborates the steps used to employ the TDQL-

induced adaptive sampling policy.
1. Local Neighborhood Formation

The first step is concerned with dividing the search space
into a number of local neighborhoods (LNs). First, for each
candidate solution, we compute the following composite
measure

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

1 1

() ()() 1
() ()

i i
i S S

j j
j j

fit Z ZZ
fit Z Z

ϑφ
ϑ

= =
% %

. /
0 1
0 1= − ×
0 1
0 12 3

! !!
! ! (7)

for i = 1, 2, …, S. For a maximization problem, more the
fitness measure (.)fit and small the fitness variance %(.), small
is the composite measure &(.). The entire population is then
sorted in ascending order of their respective composite
measures. The candidate at the top most position of the
sorted population P is selected as the first local
guide 1,lgZ

!
of the first LN !1. The LN !1 with local

guide 1,lgZ
!

is formed by the sub-population lying within
the hyperspace bounded by 1, 1,[% ,%]l hZ Z

! !
, where

 1, 1, 1,1,
1 21 2% { % , % ,..., % }lg lg lgl

DDZ z z z z z z= − − −
!

 (8.a)
 1, 1, 1,1,

1 21 2% { % , % ,..., % }lg lg lgh
DDZ z z z z z z= + + +

!
 (8.b)

and &zj= (zj

h –zj
l)/S for j = 1, 2, …, D. (8.c)

Here, zj

l and zj
h respectively denote the minimum and

maximum search boundary along the j-th dimension for j
= 1, 2, …, D. To construct the second LN !2, the
solution at the top most position of the sorted list
{P"!1} is recorded as the second local guide 2,lgZ

!
. The

subordinates of 2,lgZ
!

lying within 2, 2,[% ,%]l hZ Z
! !

(following (8)) are included in the second LN !2.

This is repeated until each member of P is assigned
to an LN and finally, the D-dimensional search space is
segmented into a number of LNs. Let the number of LNs
thus identified in the current generation be denoted by C.
2. Fitness Estimate and Fitness Variance in Local

Neighborhood
The fitness profile of each LN (discovered in the last step)

here is characterized by the effective fitness estimate and the
fitness variance of their constituent population members,
however, with different weights. Let j

lZ
!

be the l-th member of

the j-th LN !j with its effective fitness estimate ()j
lfit Z
!

 for l
= 1, 2, …, |!j|. Moreover, let 'l j be the average of effective
fitness estimates of all population members of !j, however
excluding ()j

lfit Z
!

. Mathematically,

1,
()

1

j
j

k
k k lj

l
j

fit Z
ξ = ≠=

−

%
!

!

!

 (9)

for l = 1, 2, …, |!j|. Next, we determine the weight of
()j

lfit Z
!

, given by

()exp ()j j
l l lw fit Z ξ= − −

!
 . (10)

The design philosophy is based on the supposition that
larger the value of ()j j

l lfit Z ξ−
!

, greater is the degree of

disagreement between effective fitness estimate of j
lZ
!

and

other members of LN !j, indicating possibility of ()j
lfit Z
!

to
be noisy. Thus its significance towards calculation of LNFE of
the entire LN !j must be reduced by assigning a small weight
wl. It is apparent from (10) that with an increase in

()j j
l lfit Z ξ−
!

, wl tends to be reduced to zero. After

evaluating the weights 0 < wl < 1 for all members of !j for l =
1, 2, …, |!j|, we obtain the local neighborhood fitness
estimate (LNFE) of LN !j, say µj, as

 ()
1 1

()
j j

j
j l ll

l l
w fit Z wµ

= =
= ×% %

! !!
. (11)

Finally, the local neighborhood fitness variance (LNFV)
of LN !j is computed following (12).

2

1 1
(())

j j
j

j l j ll
l l

w fit Z wϑ µ
= =

. / . /
0 1 0 1= −0 1 0 1
0 1 0 12 3 2 3
% %
! !!

 . (12)

Once we obtain µj and %j for all neighborhoods j = 1, 2, …,
C in a particular generation, the normalized LNFE µj-norm ∈ [0,
1] and LNFV %j-norm ∈ [0, 1] of !j are computed using (13) and
(14) respectively for j = 1, 2, …, C.

1

C
j norm j k

k
µ µ µ−

=
= % (13)

1

C
j norm j k

k
ϑ ϑ ϑ−

=
= %

(14)

3. Design of Q-Table
The proposed adaptive sampling policy accesses a three-

dimensional Q-table to determine sample size of a solution
from the pool {2, 3, …, N} where N denotes the maximum
sample size. The solution is assigned to a state-pair in the Q-
table based on its normalized LNFE and LNFV. The first
dimension of the Q-table represents the possible set of M
states of population members based on their normalized LNFE
µnorm, denoted by {!1(1), !1(2), …, !1(M)}. Similarly, the
second dimension of the Q-table {!2(1), !2(2), …, !2(L)}
encodes L possible states of the candidate solutions based on
their normalized LNFV %norm. The columns of the Q-table
denote uniformly quantized values of the sample size {2, 3,
…, N}, to be used for the periodic fitness evaluation of a
solution.

The state !1(m) ∈ {!1(1), !1(2), …, !1(M)} represents
normalized LNFEs in the range [(m – 1)/M, m/M) while the
state !2(l) ∈ {!2(1), !2(2), …, !2(L)} symbolizes normalized
LNFVs in the range [(l – 1)/L, l/L). In other words, a candidate
solution Z

!
, belonging to the LN !j, is assigned to a state-pair

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

<!1(m), !2(l)> if the corresponding normalized LNFE µj-norm ∈
[(m – 1)/M, m/M) and the respective normalized LNFV %j-norm
∈[(l – 1)/L, l/L) for m ∈ {1, 2, …, M} and l ∈ {1, 2, …, L}.
The component Q(<!1(m), !2(l)>, ") of the Q-table denotes the
Q-value correponding to a sample size "∈{2, 3, …, N} at a
specific state-pair <!1(m), !2(l)> for m ∈{1, 2, …, M} and l
∈{1, 2, …, L}.
4. Identification of Local Neihborhood of an Offspring

Next, the employed/onlooker bee phase of ABC is
employed to generate an offspring iZ ′

!
from its respective

parent iZ
!

. To determine sample size for periodic fitness
evaluation of iZ ′

!
, its LN !j is identified for k ∈{1, 2, …, C},

by finding out the local guide ,k lgZ
!

 with the minimum
distance from iZ ′

!
among all C local guides.

5. State-pair Assignment of a Trial Vector
The normalized LNFE µk-norm and LNFV %k-norm are used to

assign iZ ′
!

 to a specific state-pair in the Q-table. If µk-norm ∈ [(m
– 1)/M, m/M) and %k-norm∈ [(l – 1)/L, l/L), iZ ′

!
is assigned to the

state-pair <!1(m), !2(l)> for m∈{1, 2, …, M} and l∈{1, 2, …,
L}.
6. Adaptive Selection of Sample Size using Temporal

Difference Q-Learning
Once iZ ′

!
is assigned to a state-pair <!1(m), !2(l)>, for

m∈{1, 2, …, M} and l∈{1, 2, …, L}, the TDQL is employed
to select a sample size from {2, 3, …, N} based on the Q-
values Q(<!1(m), !2(l)>, ") for " = 2, 3, …, N. The reward and
penalty obtained during the selection of sample size " at state-
pair <!1(m), !2(l)> in the previous generations are used to
adapt the Q-values Q(<!1(m), !2(l)>, ") in the subsequent
generations. If Q(<!1(m), !2(l)>, ") # Q(<!1(m), !2(l)>, "/) for
"/ = 2, 3, …, N, it signifies that the selection of particular
sample size " was rewarded many times before in the
evolution process. The learning experience thus selects the
sample size ()in Z ′

!
= " with the highest Q-value. The

probability of selection of ()in Z ′
!

= " from the pool {2, 3, …,
N} at the state-pair <!1(m), !2(l)> is given by

 1 2

1 2
2

((), () ,)
(, ,)

((), () ,)
N
Q m l

p m l
Q m l

α

τ τ α
α

τ τ α
′=

=
′%

 (15)

for m = 1, 2, …, M and l = 1, 2, …, L. To maintain adaptation
and learning in all Q’s present in all possible state-pairs, the
Roulette-choice strategy [19] is employed for selection of
sample size. The strategy selects a sample size " from the pool
{2, 3, …, N} for an offspring iZ ′

!
 at state-pair <!1(m), !2(l)> if

the following condition holds where rand(0, 1) denotes a
random number uniformly distributed in (0, 1).

1

1 1
(, ,) rand(0,1) (, ,)p m l p m l

α α

α α
α α

−

′ ′= =
′ ′≤ ≤% % (16)

7. State-Transition
The sample size ()in Z ′

!
= " selected for iZ ′

!
in the last step is

used for its periodic fitness evaluation, effective fitness
estimate ()ifit Z ′

!
and fitness variance ()iV Z ′

!
, using the

approaches proposed in [7!9]. The evaluated
()ifit Z ′
!

and ()iV Z ′
!

are now used to evaluate the new
normalized LNFE and LNFV of !k, the LN of iZ ′

!
, using (11)-

(14). Let the currently obtained values of normalized LNFE
and LNFV be denoted by cur

k normµ − and cur
k normϑ − . If

cur
k normµ − ∈ [(x – 1)/M, x/M) and cur

k normϑ − ∈ [(y – 1)/L, y/L), for
x∈{1, 2, …, M} and y∈{1, 2, …, L}, then iZ ′

!
is assigned to

the new state-pair <!1(x), !2(y)> from its old state-pair <!1(m),
!2(l)>. Symbolically,

1 2 1 2((), () ,) (), ()m l x yδ τ τ α τ τ= (17)

8. Reward and Penalty based Update of Q-Table

If cur
k norm k normµ µ− −> (for maximization problem) or

cur
k norm k normϑ ϑ− −< , the selection of sample size " ∈ 2, 3, …,

N at the state-pair <!1(m), !2(l)> is rewarded with the
respective reward, given below.

If and cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −> ≥

1 2((), () ,) cur
k norm k normr m lτ τ α µ µ− −= − . (18.a)

If and cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −≤ <

1 2((), () ,) cur
k norm k normr m lτ τ α ϑ ϑ− −= − . (18.b)

If and cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −> <

1 2((), () ,) () ().cur cur
k norm k norm k norm k normr m lτ τ α µ µ ϑ ϑ− − − −= − + − (18.c)

If and cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −≤ ≥ , then the

selection is penalized with

1 2((), () ,)r m l Kτ τ α = − (19)

with K as a positive constant value, however, small.
The corresponding Q-value is then updated with

1 2 1 2

1 2 1 2

((), () ,) (1) ((), () ,)
 (((), () ,) max ((), () ,)
Q m l Q m l

r m l Q x y
α

τ τ α β τ τ α
β τ τ α γ τ τ α

′

← − × +
′× +

(20)
Update the normalized LNFE and LNFV of !k as

 and cur cur
k norm k norm k norm k normµ µ ϑ ϑ− − − −← ← . (21)

V. EXPERIMENTS AND RESULTS
A. Benchmark Functions and Performance Metric

Noisy versions of 28 single objective benchmark functions
proposed in CEC’2013 [26] are used here to compare the
performance of the QLNBC algorithm with its contenders in

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

the presence of noise (in the fitness landscape) following
Gaussian [27], Poisson [28], Rayleigh [29], exponential [30]
and random [31] distribution. Function error value (FEV) is
considered as the performance metric for the comparative
analysis. For a particular benchmark function f, FEV is
represented by

*() medFEV f f f= − (22)

where fmed denotes the median of the best fitness values
obtained by an algorithm over R runs (say 50) and f*
represents the true optimum value of f. Smaller the FEV,
better is the performance of an algorithm.
B. Comparative Framework

The comparative framework is formed by considering a
few widely popular noisy single objective optimization
algorithms (NSOOAs), including learning automata induced
noisy bee colony (LANBC) [21], memetic for uncertainties
DE (MUDE) [22], subset based LA incorporated particle
swarm optimization (LAPSO) [23], and noise tolerant genetic
algorithm (NTGA) [24]. In the present work, the sampling
strategy of extended LANBC [25] is replaced with the
proposed TDQL induced adaptive sampling policy while
keeping other strategies embedded in extended LANBC
unchanged. The new contender algorithm thus developed is
referred to as extended QLNBC henceforth and is regarded as
new member of the comparative framework.
C. Results and Performance Analysis

Comparative performance analysis of the proposed
algorithms (QLNBC and extended QLNBC) with their
contenders is undertaken in this section. The performance
analysis is carried out for all possible noise distribution in the
fitness landscape. However, a few results are reported for
space restriction.

The median FEV values obtained by all seven contenders
over 50 independent runs are reported in Table-I with
corresponding interquartile range (within parenthesis). Noise
samples taken from zero mean Gaussian distribution of
variance 0.57 are used to additively contaminate the
benchmark functions to test the accuracy of the algorithms.
Statistical significance of superiority of one algorithm over
others is assessed by Wilcoxon rank sum test [32] with a
significance level of 0.05. The test is undertaken between the
best algorithm (providing the minimum median FEV value)
and the rest and the respective p-value thus obtained is
reported in the third bracket for each benchmark instance.
Here NA denotes not applicable cases of comparing the best
algorithm with itself. The null hypothesis is concerned with
statistically equivalent performance of the best algorithm and
each of the remaining contenders. The null hypothesis is
rejected on obtaining the corresponding p-value less than
0.05.

It is evident from Table-I that extended QLNBC
outperforms its contenders in 19 cases out of 28 benchmark
functions. Out of these 19 cases, 17 cases reveal statistically
significant superiority of the extended QLNBC to its
contenders. In case of f10 and f15, extended QLNBC
marginally outperforms extended LANBC, though not
significantly. However, extended QLNBC is outperformed by
extended LANBC in case of f13 and f23. QLNBC supersedes
its extended version for f20. The performance difference is
however statistically insignificant. For f01!f03, f17, f19 and
f26, both extended QLNBC and extended LANBC achieve the
same accuracy. The interquartile range obtained by extended
LANBC for f17 and f19 is however more than that of
extended QLNBC. Similar performance of QLNBC and its
extended counterpart is also noted for f01 and f02.

TABLE I-A: FEVS OF NSOOAS IN PRESENCE OF ZERO MEAN GAUSSIAN NOISE (OF VARIANCE =0.57) IN FITNESS LANDSCAPE f01 TO f08

Functions Ext. QLNBC Ext. LANBC QLNBC LANBC MUDE LAPSO NTGA

f01
0.00e+000 0.00e+000 0.00e+000 0.00e+000 1.89e-007 2.13e-007 3.95e-007

(0.00e+000) (0.00e+000) (0.00e+000) (0.00e+000) (1.25e-008) (3.31e-008) (6.16e-008)
NA NA NA NA [3.86e-005] [1.94e-005] [4.30e-006]

f02
0.00e+000 0.00e+000 0.00e+000 5.67e-004 7.95e-004 1.27e-003 1.61e-003

(0.00e+000) (0.00e+000) (0.00e+000) (5.56e+001) (1.24e+002) (9.09e+002) (1.10e+004)
NA NA NA [1.45e-003] [3.91e-004] [5.48e-006] [2.28e-006]

f03
0.00e+000 0.00e+000 7.21e-003 7.90e-003 1.08e-002 6.69e-002 1.48e-001

(0.00e+000) (0.00e+000) (8.33e+001) (1.64e+002) (2.16e+002) (2.51e+002) (2.68e+002)
NA NA [4.86e-002] [4.83e-002] [4.50e-002] [1.53e-002] [6.47e-003]

f04
5.17e-005 1.05e-004 3.62e-004 3.74e-003 5.01e-003 6.84e-003 1.26e-002

(2.99e-005) (7.83e-005) (5.22e-004) (6.30e-004) (9.01e-004) (1.13e-001) (1.64e+000)
NA [3.01e-003] [2.67e-003] [2.41e-003] [3.04e-004] [1.23e-004] [2.73e-005]

f05
0.00e+000 1.51e-008 9.05e-008 1.99e-006 2.16e-006 1.47e-005 5.16e-005

(0.00e+000) (4.82e-004) (1.34e-003) (3.48e-003) (3.84e-003) (4.55e-003) (5.61e-003)
NA [4.74e-005] [1.67e-005] [4.61e-007] [4.24e-007] [4.09e-007] [1.14e-007]

f06
1.55e+001 2.86e+001 3.10e+001 3.83e+001 4.05e+001 4.08e+001 4.27e+001
(6.65e-006) (7.48e-002) (1.45e+000) (3.02e+000) (6.46e+000) (7.38e+000) (9.04e+000)

NA [1.43e-003] [1.23e-004] [4.10e-005] [1.95e-006] [1.56e-006] [2.30e-007]

f07
3.71e+000 3.43e+001 3.56e+001 3.75e+001 4.48e+001 4.78e+001 6.37e+001

(3.25e+000) (5.72e+000) (6.69e+000) (9.16e+000) (9.18e+000) (9.71e+000) (1.10e+001)
NA [1.10e-003] [3.17e-005] [2.40e-005] [1.33e-006] [7.97e-006] [7.52e-007]

f08
2.08e+001 2.09e+001 2.10e+001 2.10e+001 2.10e+001 2.10e+001 2.10e+001
(2.96e-002) (3.58e-002) (4.23e-002) (4.64e-002) (4.65e-002) (5.19e-002) (6.20e-002)

NA [3.56e-002] [1.47e-002] [1.03e-002] [5.38e-003] [5.15e-003] [4.93e-003]

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I-B: FEVS OF NSOOAS IN PRESENCE OF ZERO MEAN GAUSSIAN NOISE (OF VARIANCE =0.57) IN FITNESS LANDSCAPE f09 TO f28

Functions Ext. QLNBC Ext. LANBC QLNBC LANBC MUDE LAPSO NTGA

f09
1.16e+001 1.66e+001 3.40e+001 4.37e+001 4.90e+001 4.98e+001 5.05e+001

(1.27e+000) (2.27e+000) (2.29e+000) (2.46e+000) (2.86e+000) (3.33e+000) (3.60e+000)
NA [5.94e-002] [5.57e-002] [5.07e-002] [4.18e-002] [1.48e-002] [9.40e-004]

f10
5.14e-008 5.35e-004 7.55e-004 5.14e-003 1.25e-002 1.75e-002 2.57e-002

(4.12e-005) (7.22e-002) (1.19e-003) (3.64e-003) (1.15e-002) (1.28e-002) (1.37e-002)
NA [5.10e-002] [2.36e-004] [3.02e-006] [2.59e-006] [3.22e-006] [3.03e-007]

f11
7.88e-001 3.27e+000 5.50e+000 5.74e+000 7.43e+000 1.54e+001 1.69e+001

(1.27e-003) (4.21e-002) (9.88e-002) (1.21e-001) (3.21e-001) (1.92e+000) (2.59e+000)
NA [2.97e-003] [1.26e-003] [3.42e-004] [3.35e-004] [9.09e-005] [3.95e-006]

f12
9.72e+000 2.69e+001 4.20e+001 6.63e+001 8.55e+001 9.65e+001 1.32e+002

(1.86e+000) (2.78e+000) (7.71e+000) (9.46e+000) (2.09e+001) (2.27e+001) (3.26e+001)
NA [3.41e-004] [2.50e-004] [1.86e-004] [2.47e-005] [2.02e-006] [3.05e-007]

f13
8.05e+001 4.55e+001 9.26e+001 1.41e+002 1.48e+002 1.84e+002 1.96e+002

(7.92e+000) (2.68e+000) (1.89e+001) (1.99e+001) (2.27e+001) (3.07e+001) (3.37e+001)
[9.93e-003] NA [9.78e-003] [2.20e-004] [1.79e-004] [2.99e-004] [2.78e-005]

f14
1.37e+001 2.06e+001 2.75e+001 2.19e+002 5.38e+002 7.48e+002 7.90e+002

(5.73e+000) (8.55e+000) (1.03e+001) (7.45e+001) (1.83e+002) (2.65e+002) (4.48e+002)
NA [4.91e-003] [3.79e-003] [1.57e-004] [1.46e-005] [4.52e-006] [7.25e-006]

f15
1.09e+003 2.18e+003 2.28e+003 4.36e+003 6.35e+003 6.47e+003 7.42e+003

(2.83e+002) (3.67e+002) (4.32e+002) (4.38e+002) (5.31e+002) (5.51e+002) (6.30e+002)
NA [5.47e-002] [4.39e-002] [6.97e-003] [4.97e-004] [5.84e-005] [3.89e-006]

f16
3.84e-001 7.84e-001 1.07e+000 1.46e+000 1.63e+000 1.72e+000 2.12e+000

(3.21e-002) (4.23e-002) (1.68e-001) (1.96e-001) (2.03e-001) (2.35e-001) (2.81e-001)
NA [1.26e-003] [5.16e-004] [4.89e-004] [3.22e-004] [5.01e-005] [5.33e-006]

f17
4.36e+001 4.36e+001 5.07e+001 5.40e+001 5.65e+001 6.55e+001 7.37e+001
(2.58e-003) (3.17e-002) (4.10e-001) (1.12e+000) (1.77e+000) (2.37e+000) (4.29e+000)

NA NA [6.95e-003] [9.15e-004] [5.02e-005] [3.47e-005] [2.84e-007]

f18
6.60e+001 1.09e+002 1.26e+002 1.30e+002 1.48e+002 1.53e+002 1.67e+002

(1.17e+001) (1.33e+001) (1.61e+001) (2.87e+001) (3.33e+001) (3.64e+001) (4.48e+001)
NA [1.27e-002] [5.24e-002] [6.73e-004] [2.10e-004] [2.77e-004] [2.58e-005]

f19
2.13e+000 2.13e+000 3.38e+000 3.42e+000 3.84e+000 3.89e+000 4.33e+000
(2.91e-001) (3.51e-001) (4.69e-001) (4.89e-001) (6.74e-001) (7.24e-001) (7.96e-001)

NA NA [1.26e-004] [3.20e-005] [3.39e-006] [1.08e-006] [8.63e-007]

f20
1.89e+001 1.91e+001 1.40e+001 1.91e+001 1.94e+001 2.01e+001 2.05e+001
(4.44e-001) (5.39e-001) (3.86e-001) (5.84e-001) (6.55e-001) (7.85e-001) (7.96e-001)
[5.54e-002] [3.91e-003] NA [3.41e-004] [2.75e-004] [2.01e-004] [1.36e-005]

f21
2.28e+002 2.38e+002 2.45e+002 2.96e+002 3.72e+002 5.08e+002 6.30e+002

(1.07e+001) (4.03e+001) (1.83e+002) (2.27e+002) (2.73e+002) (2.88e+002) (3.25e+002)
NA [3.03e-004] [1.01e-004] [6.27e-005] [5.42e-005] [1.17e-006] [8.20e-007]

f22
2.43e+001 2.79e+001 4.37e+001 2.79e+002 3.38e+002 5.70e+002 5.97e+002

(1.46e+001) (2.57e+001) (4.07e+001) (4.93e+001) (2.66e+002) (3.55e+002) (3.61e+002)
NA [2.62e-003] [1.01e-003] [6.66e-004] [6.49e-005] [3.03e-007] [1.41e-007]

f23
1.85e+003 8.04e+002 2.91e+003 6.51e+003 7.23e+003 8.25e+003 8.79e+003

(3.63e+002) (3.26e+002) (5.35e+002) (5.52e+002) (6.52e+002) (7.36e+002) (8.98e+002)
[1.48e-002] NA [1.07e-003] [1.11e-004] [1.00e-005] [2.41e-006] [3.16e-007]

f24
2.23e+002 2.26e+002 2.36e+002 2.80e+002 2.82e+002 2.84e+002 3.07e+002

(2.23e+000) (5.53e+000) (9.34e+000) (1.18e+001) (1.40e+001) (1.70e+001) (1.95e+001)
NA [5.60e-003] [5.53e-003] [1.25e-003] [3.75e-005] [2.21e-005] [4.29e-007]

f25
2.25e+002 3.01e+002 3.05e+002 3.14e+002 3.26e+002 3.37e+002 3.60e+002

(3.97e+000) (8.01e+000) (1.01e+001) (1.05e+001) (1.21e+001) (1.47e+001) (1.83e+001)
NA [4.89e-005] [4.60e-005] [2.98e-005] [9.21e-006] [2.77e-006] [7.83e-007]

f26
2.28e+001 2.28e+001 1.92e+002 2.40e+002 2.49e+002 2.65e+002 2.78e+002

(3.68e+000) (3.68e+000) (2.38e+001) (3.83e+001) (5.88e+001) (6.71e+001) (9.08e+001)
NA NA [5.17e-003] [2.47e-004] [2.07e-005] [2.05e-006] [9.50e-007]

f27
3.91e+002 6.87e+002 9.19e+002 9.27e+002 9.56e+002 1.12e+003 1.38e+003

(3.85e+001) (9.80e+001) (1.36e+002) (1.38e+002) (1.39e+002) (1.76e+002) (1.88e+002)
NA [4.15e-003] [2.42e-003] [2.61e-004] [1.37e-005] [9.96e-006] [1.93e-006]

f28
3.83e+002 4.22e+002 4.30e+002 4.38e+002 4.58e+002 4.58e+002 5.55e+002
(1.65e-004) (3.55e-001) (2.03e+001) (8.67e+001) (3.57e+002) (4.17e+002) (4.36e+002)

NA [4.11e-003] [2.20e-003] [1.55e-003] [5.97e-004] [2.85e-005] [3.90e-005]

VI. CONCLUSION
The paper proposes a novel approach to utilize the benefit

of the reinforcement learning (RL) technique to judiciously
assign sample size to solutions for their periodic fitness
evaluation in a noisy fitness landscape. The sample size is
determined based on the noisy fitness profile in the
surrounding of the solutions. The fitness estimate and fitness

variance of a sub-population surrounding a solution are used to
capture the fitness profile in the local neighborhood of the
given solution. The proposed approach detours the requirement
of any specific functional form to model the relationship
between the sample size of a solution and its noisy local fitness
profile. TDQL is selected here as a RL mechanism to assign a
small (and a large) sample size to a solution in a more (and a
less) noisy zone, captured by its LNFE and LNFV.

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

A relative comparison of the proposed algorithms
(QLNBC and extended QLNBC) with five state-of-the-art
algorithms reveals that the proposed algorithms outperform
most of their competitors with respect to FEV metric. Noisy
versions of a set of 28 CEC’2013 benchmark functions have
been used to arrive at the foregoing conclusions. Additive
noise samples taken from Gaussian, Poisson, Rayleigh,
exponential and random distributions are used to realize the
noisy versions of the benchmark functions. The Wilcoxon
rank-sum test, the Friedman and the Iman-Davenport non-
parametric tests are undertaken to affirm the statistical
significance of the reported results.

REFERENCES
[1] P. Rakshit, A. Konar, and S. Das, “Noisy Evolutionary Optimization

algorithms-A comprehensive survey,” Swarm and Evolutionary
Computation, vol. 33, 2017, pp. 18-45.

[2] Y. Jin, and J. Branke, “Evolutionary optimization in uncertain
environments-a survey,” IEEE Transactions on Evolutionary
Computation, vol. 9, no. 3, 2005, pp. 303-317.

[3] A. D. Pietro, Optimising evolutionary strategies for problems with
varying noise strength, Ph. D. Thesis, University of Western Australia,
2007.

[4] F. Siegmund, A. H. C. Ng, and K. Deb, “Hybrid dynamic resampling for
guided evolutionary multi-objective optimization,” in Proceedings of
Evolutionary Multi-Criterion Optimization, Springer International
Publishing, 2015, pp. 366-380.

[5] G. Iacca, F. Neri, and E. Mininno, “Noise analysis compact differential
evolution,” International Journal of Systems Science, vol. 43, no. 7,
2012, pp. 1248-1267.

[6] C. H. Chen, J. Lin, E. Yücesan, and S. E. Chick, “Simulation budget
allocation for further enhancing the efficiency of ordinal
optimization,” Discrete Event Dynamic Systems, vol. 10, no. 3, 2000, pp
.251-270.

[7] P. Rakshit, A. Konar, S. Das, L. C. Jain, and A. K. Nagar, “Uncertainty
management in differential evolution induced multiobjective
optimization in presence of measurement noise,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 44, no. 7, 2014, pp.
922-937.

[8] P. Rakshit, and A. Konar, “Differential evolution for noisy
multiobjective optimization,” Artificial Intelligence, vol. 227, 2015, 165-
189.

[9] P. Rakshit, and A. Konar, “Extending multi-objective differential
evolution for optimization in presence of noise,” Information Sciences,
vol. 305, 2015, pp. 56-76.

[10] H. Kita, and Y. Sano, “Genetic algorithms for optimization of uncertain
functions and their applications,” in Proceedings of SICE Annual
Conference, vol. 3, 2003, pp. 2744-2749.

[11] L. T. Bui, H. A. Abbass, and D. Essam, “Fitness inheritance for noisy
evolutionary multi-objective optimization,” in Proceedings of the 7th
Annual Conference on Genetic and Evolutionary Computation, ACM,
2005, pp. 779-785.

[12] K. C. Tan, T. H. Lee, and E. F. Khor, “Evolutionary algorithms with
dynamic population size and local exploration for multiobjective
optimization,” IEEE Transactions on Evolutionary Computation, vol. 5,
no. 6, 2001, pp. 565-588.

[13] H. G. Beyer, D. V. Arnold, and S. M. Nieberg, “A new approach for
predicting the final outcome of evolution strategy optimization under
noise,” Genetic Programming and Evolvable Machines, vol. 6, no. 1,
2005, pp. 7-24.

[14] C. K. Goh, and K. C. Tan, “An investigation on noisy environments in
evolutionary multiobjective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 11, no. 3, 2007, pp. 354-381.

[15] Rahnamayan S., H. R. Tizhoosh, and M. Salama, “Opposition-based
differential evolution for optimization of noisy problems,” in

Proceedings of IEEE Congress on Evolutionary Computation, 2006, pp.
1865-1872.

[16] J. Branke, and C. Schmidt, “Selection in the presence of noise,”
in Proceedings of Genetic and Evolutionary Computation, Springer
Berlin Heidelberg, 2003, pp. 766-777.

[17] B. L. Miller, and D. E. Goldberg, “Genetic algorithms, selection
schemes, and the varying effects of noise,” Evolutionary Computation,
vol. 4, no. 2, 1996, pp. 113-131.

[18] T. Mitchell, “Machine Learning”, McGraw Hill, 1997.
[19] P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L. C. Jain, and

A. K. Nagar, “Realization of an Adaptive Memetic Algorithm Using
Differential Evolution and Q-Learning: A Case Study in Multirobot Path
Planning,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 43, no. 4, July, 2013.

[20] B. Basturk., D. Karaboga, “An artificial bee colony (ABC) algorithm for
numeric function optimization,” in Proceedings of the IEEE Swarm
Intelligence Symposium, 2006.

[21] P. Rakshit, A. Konar, and A. K. Nagar, “Learning Automata Induced
Artificial Bee Colony for Noisy Optimization,” in IEEE Congress on
Evolutionary Computation, 2017, pp. 984 - 991.

[22] E. Mininno, and F. Neri, “A memetic differential evolution approach in
noisy optimization,” Memetic Computing, vol. 2, no. 2, 2010, pp. 111-
135.

[23] J. Q.Zhang, L. W. Xu, J. Ma, M. C. Zhou, “A learning automata-based
particle swarm optimization algorithm for noisy environment,” in IEEE
Congress on Evolutionary Computation, 2015, pp. 141-147.

[24] H. Jang, R. Choe, and K. R. Ryu, “Deriving a robust policy for container
stacking using a noise-tolerant genetic algorithm,” in ACM Research in
Applied Computation Symposium, 2012, pp. 31-36.

[25] P. Rakshit, A. Konar, and A. K. Nagar, “Modified selection and search
in learning automata based artificial bee colony in noisy environment,”
in IEEE Congress on Evolutionary Computation, 2019, pp. 3173-3180.

[26] J. J.Liang, B. Y. Qu, P. N. Suganthan, and A. G. H. Díaz, Problem
definitions and evaluation criteria for the CEC 2013 special session on
real-parameter optimization, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou, China and Nanyang Technological
University, Singapore, Technical Report 201212, 2013.

[27] G. E. P. Box, and M. E. Muller, “A note on the generation of random
normal deviates,” The annals of mathematical statistics, vol. 29, 1958,
pp. 610-611.

[28] D. E. Knuth, Seminumerical Algorithms, The art of computer
programming, vol. 2, 1981.

[29] W. Hörmann, J. Leydold, and G. Derflinger, “General principles in
random variate generation,” in Automatic Nonuniform Random Variate
Generation, Springer Berlin Heidelberg, 2004, pp. 13-41.

[30] G. Marsaglia, and W. W. Tsang, “The ziggurat method for generating
random variables,” Journal of Statistical Software, vol. 5, no. 8, 2000,
pp. 1-7.

[31] J. Bolte, Linear congruential generators, Wolfram Demonstrations
Project.

[32] J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, 2011, pp. 3-18.

Authorized licensed use limited to: JADAVPUR UNIVERSITY. Downloaded on January 06,2021 at 07:58:22 UTC from IEEE Xplore. Restrictions apply.

