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Abstract 

Alzheimer’s disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently 
largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, 
which states that the cause of AD is senile plaque formation by the Amyloid β peptide, and the 
formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by 
which to explain AD is based on the infection hypothesis. Much experimental and epidemiologic 
data support an involvement of infections in the development of dementia. According to this 
mechanism, the infection either directly, or via microbial virulence factors, precedes the formation 
of Amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, is beneficial at 
an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly 
with alterations to the innate immune system at both the peripheral and central levels. Infection 
results in neuroinflammation, leading to and sustained by systemic inflammation, causing eventual 
neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes 
are various body microbiome communities from the gut, mouth, nose, and skin. The infection 
hypothesis opens a vista to new therapeutic approaches, either by treating the infection itself, or 
modulating the immune system, its senescence, or the body’s metabolism, either separately, in 
parallel, or in a multi-step way. 

 

 

 

Key points: 

1. Experimental and epidemiologic data support an involvement of infections in the development 
of Alzheimer’s Disease (AD) and the sources of AD-involved microbes are various body 
microbiome communities from the gut, mouth, nose, and skin; 

2. The amyloid β peptide, possessing antimicrobial properties, is beneficial at an early stage of AD, 
but becomes detrimental with the progression of the disease; 

3. Infection results in neuroinflammation, leading to and sustained by systemic inflammation, 
causing neurodegeneration, and the senescence of the immune cells preceding the clinical 
manifestations; 

4. The infection hypothesis and the antimicrobial protection hypothesis of AD opens the way to 
new therapeutic approaches. 
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1. Introduction 

Presently Alzheimer’s disease (AD) is one of the most important public health concerns (1). It 
remains the most common cause of dementia in the world (1-4). Despite huge scientific efforts and 
amounts of money invested we still do not know what is the cause of this disease or more 
appropriately defined as a syndrome (5-7).  More than 1000 clinical trials have failed, and all 
ongoing attempts to identify treatment do not seem to be promising (8-10). The prevailing 
hypothesis to explain the pathomechanism(s) of AD puts the amyloid beta peptide (Aβ) at the 
center stage and is defined as the beta amyloid cascade hypothesis (11-13). All attempts to 
modulate by any means the concentration of Aβ in the patient brains have resulted so far in failure 
to improve the clinical status of patients suffering from any stage of AD. Thus, there is an urgent 
need to reconsider the causes of AD, which may and should lead to try to find new innovative 
preventing measures and treatments for AD (8-10). A new hypothesis has re-emerged which puts 
infection or microbial/microbiome challenge in the forefront of AD (5,14). 

AD is a chronic disease and the pathophysiological processes leading ultimately to its overt 
symptoms are starting decades before the clinical manifestations may appear, triggered by age 
related changes (20,21), such as immune system modifications, inflammaging (increased levels of 
proinflammatory cytokines without overt signs of any inflammation), increase in gut leakage and 
microbiome shift (dysbiosis), as well as the appearance of senescent cells in the gut and the brain, 
will all favors the development of AD (5,7). This makes it very difficult to cure but, in the 
meantime, this may convey hope as it can be prevented in the “incubation period” preceding the 
appearance of cognitive decline to avoid the full-blown disease, if appropriate predictive 
biomarkers can be discovered. It is also of interest that this whole development from the emergence 
of the first clinical symptoms (MCI) to full-blown AD takes about 10 to 15 years. This time may 
also be used to slow down the progression or even cure it if the cause(s) of AD could be found.  

2. What is the prevailing hypothesis and why it does not work? 

Since the description of AD by Alois Alzheimer of extracellular Aβ plaques and intracellular 
hyperphosphorylated tau deposition, called neurofibrillary tangles, and unrelated or only indirectly 
related to the formation of Aβ, have become the pathological hallmarks of AD (24,25). 

These findings gave rise to the amyloid hypothesis of AD. Since that time the majority of the AD 
scientific community has revolved around this hypothesis. Everything in AD research, clinical 
trials and ultimately in memory clinics has been oriented and driven by the Aβ hypothesis (27-29).  

However, the lack of a significant progress toward the mechanistic understanding of AD call for a 
revaluation of the Aβ cascade hypothesis. The amyloid hypothesis states that the production of Aβ 
from its amyloid precursor protein (APP) in neurons and astrocytes by β-secretase (BACE) together 
with presenilin-containing complex called γ-secretase is the primary cause of AD (30-32). Thus, 
formation of Aβ is the starting point that initiates all the other observed pathological phenomena 
associated with AD and culminates in the deposition of amyloid plaques in the brain (13). It also 
triggers the intracellular deposition of hyperphosphorylated tau. Both these phenomena (formation 
of plaques and of neurofibrillary tangles) result in neurodegeneration (synapse degeneration and 
then neuronal cell death) and, more importantly, neuroinflammation (33-39). It has subsequently 
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been found that AD has many different genetic risk (susceptibility) factors such as ApoEε4, TREM-
2, TOMM40 (40-46).  

However, as appealing as this hypothesis may appear, many observations made over decades have 
spoken against it. One of the most important, yet constantly overlooked details is that these 
hallmarks exist in the brain of 20 to 30% of non-demented healthy elderly, while in contrast almost 
identical proportion of patients suffering from AD do not have these hallmarks (5,47). Evidence 
suggesting a role for events preceding and precipitating deposition of Aβ-containing plaques 
emerged almost a decade ago from the laboratory of Dr Tanzi, who had demonstrated the anti 
microbial properties of Aβ and first described it as an antimicrobial protein (AMP) (48). These 
crucial observations were later confirmed by other laboratories finding that Aβ acts as AMP against 
many different microorganisms (49,50), which establishes the Antimicrobial Protection Hypothesis 
of AD. Moreover, several different microorganisms have been demonstrated in the brain of AD 
patients (51-62). Nevertheless, the most important argument against the Aβ hypothesis of AD 
origins from the failure, as already mentioned, of almost all trials which directly targeted Aβ 
accumulation through vaccination or monoclonal antibodies or its production by the beta secretase 
(BACE) inhibitors (63,64). An additional finding supports the antimicrobial role of Aβ generated 
in the brain, as a decrease in Aβ production with the emergence some type of infections in the brain 
occasionally occurred (65). Thus, based on these facts the infection hypothesis of AD pathogenesis 
was developed and slowly conceptualized and finally clearly published in a recent editorial (14). 
Other hypotheses aiming at explanation of mechanisms leading to AD have also been advanced 
(67-69). 

3. Other existing theories 

It should be mentioned that over the years a few researchers have promoted different ideas about 
AD etiology. Among them was the vascular hypothesis which appeared in the 90s (69).  A study 
in nuns (The Nun study) demonstrated that even if, pathologically, amyloid plaques could be 
detected in the brain, the clinical diagnosis of AD was established only when these lesions were 
accompanied by atherosclerotic lesions in the brain regardless of the age of the nun (70). Later it 
was shown that ischemia and shear stress were also able to generate the production of Aβ (71,72). 
These ideas, were integrated as risk factors for AD such as hypertension (73,74).  

Another theory, the mitochondrial cascade hypothesis authored by Swerdlow (76), has proposed 
that mitochondrial dysfunction resulting from aging, genetic predisposition or environmental 
factors results in the production of reactive oxygen species (ROS) which damage brain cell 
functions resulting in typical AD pathology. The mitochondrial cascade hypothesis, similarly, to 
the Aβ hypothesis, is not an alone-standing causative factor for neurodegeneration but requires 
internal or external stresses acting on various brain cells such as neurons, microglia and astrocytes. 
All infections stimulate ROS production and may interact directly with mitochondria perturbing 
mtDNA and mitochondrial homeostasis (fission, fusion, mitophagy) leading to mitochondrial 
dysfunction (68). Thus, this hypothesis can be easily integrated to the infectious hypothesis.  

3. What evidence supports the infectious hypothesis for AD? 
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There are numerous epidemiological and experimental discoveries that support that AD may be an 
infectious disease. Already many years ago, epidemiologic evidence has linked the treatment of 
Rheumatoid arthritis (RA) to the prevention of AD. McGeer et al (81) showed that RA patients 
who are receiving anti-inflammatory treatment develop AD much less often than others. This 
observation was confirmed by an updated Meta-Analysis from cohort studies (83). 16 cohort 
studies including 236,022 participants, published between 1995 and 2016, were included in this 
systematic review. Current evidence suggests that NSAID exposure might be significantly 
associated with reduced risk of AD, but again the need for prospective studies with individual 
NSAID is badly needed. Initially, this protection was suggested to be linked to the decrease in the 
neurotoxic effect of Aβ-induced neuroinflammation (82). However, more recently, RA was linked 
to the mouth bacterial pathogen P. gingivalis (83-87). Thus, the question may arise whether the 
treatment of RA inflammation which indirectly also decreased AD progression by reducing 
neuroinflammation could somehow treat the common root, namely an infectious origin. 

Epidemiologically, the first and strongest evidence was brought to the community by dentists (88-
91). They observed that people who suffer from periodontitis develop AD much more often than 
those who do not present this alteration in the mouth (92,93). Since these epidemiological 
observations there are numerous experimental data supporting the link between periodontitis 
induced systemic inflammation, oral dysbiosis and altered immune response and AD (94-104). It 
should be mentioned that some studies could not confirm these associations (105). Increased AD 
incidence was linked to the presence of biofilms produced by the cornerstone bacteria P. gingivalis 
(94), however recently other bacteria were involved such as Treponema denticola and Tannerella 
forsythia (95). The bacterial effect might be direct via entering to the brain by the olfactory bulb or 
indirect via their virulence products that stimulate the production of Aβ making structure 
resembling to biofilm in the brain called senile or amyloid beta plaques (79,89,91). Indeed, it was 
recently postulated that amyloid plaques are biofilms (95). This was recently supported by a study 
demonstrating the presence of one of the most important virulence factors, gingipain, in the brain 
of healthy and AD patients (61). This latter group showed also by qPCR the presence of P. 
gingivalis in the brain of healthy subjects as well as in the brain of patients suffering from AD (61). 
Our unpublished data also demonstrated by qPCR the presence of P. gingivalis in the AD brain 
(manuscript in preparation).   

Yet another bit of information associating the development of AD with bacterial infections is the 
role of calreticulin (CRT) and galectin-3 in the brain. The decreased expression of calreticulin in 
the neurons of AD patients was first demonstrated almost 2 decades ago (96). CRT is a 
multifunctional protein, which has since been associated with a chaperone function for the APP; 
thus, the more CRT is present in the neuron the more stable the APP becomes and less Aβ is 
produced resulting in its aggregates (plaques) (97). On the other hand, CRT production is 
upregulated by Aβ oligomers, at least in vitro (98). Serum levels of CRT are considered a negative 
biomarker of AD development and progression (99). This may make sense, as CRT has been very 
recently shown to be secreted also by activated macrophages and microglia and to act as opsonin 
facilitating the phagocytosis of bacteria invading the brain (albeit so far only in a rat model) (100). 
Thus, we could envisage/propose a schematics where an infection leads to production and release 
of Aβ which aggregates and upregulates the production and secretion of CRT which 
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binds/opsonizes bacteria for microglia-executed phagocytosis; thus, more intracerebral infection 
could lead to decreased levels of CRT (as it would be used up by opsonisation and phagocytosis). 

Very recently a study in Taiwan showed that those suffering from herpes simplex-1 (HSV-1) 
infection and treated with antiviral drugs will have reduced incidence of AD (101). This 
retrospective cohort study from Taiwan showed the 10‐year incidence of dementia in a group of 
8362 subjects aged 50 years or over who were newly diagnosed with HSV‐1 or HSV‐2 infection 
was 2.56‐fold greater than that in the control group (95% CI, 2.351–2.795;P< 0.001). More 
strikingly, anti‐herpetic medication reduced the risk of developing dementia by approximately 
91%. These results strongly support a potential causative link between HSV‐1 infection and AD, 
mainly in genetically susceptible subjects (45). This observation suggests that AD is linked 
somehow to viral infections (62,102-104). However, this still does not clearly demonstrate whether 
HSV-1 is the cause or the consequence of AD, but highly suggests that HSV-1 may be also involved 
in its pathogenesis. Interestingly, decades ago, Ithzhaki et al have shown experimentally that HSV-
1 DNA is present in the plaques of persons suffering from AD (52). This indicated that virus 
infection may play a role in the development of AD and that the secretion of Aβ may be a reactive 
phenomenon to control infection. It may have some antimicrobial peptide (AMP) effect or may be 
a general acute phase reaction to a strong stress as many other peptides in the organism during 
aggression, such as LL-37 are affected (105,106). Very recently the Lovheim group demonstrated 
in a large population-based cohort study supported by cross sectional and longitudinal results an 
association between HSV-1 carriage and declining episodic memory function, most interestingly 
among ApoEε4 carriers while the other alleles such as ε2 and ε3 did not show such association (46).  
Therefore, the Lovheim group (45,46) for the first time showed, that the host genetic background 
interacts with HSV1 carriage to increase the risk for developing AD in a prospective 
epidemiological material. The primary strengths of their studies include a large number of cases 
with closely matched controls from the same population, combined with thorough clinical AD 
diagnosis. These studies further confirmed the interaction between APOEε4 heterozygosity 
(APOEε2/ε4 or ε3/ε4) and HSV1 carriage which increased the risk of AD by approximately 
fivefold, whereas the presence of only one factor did not. A calculated GRS, based on nine 
additional risk genes (ABCA7, BIN1, CD33, CLU, CR1, EPHA1, MS4A4E, NECTIN2, and 
PICALM), also interacted with anti–HSV1 IgG for increased risk of subsequent AD. The present 
findings suggest that the APOEε4 allele and other AD genetic risk factors might potentiate the risk 
of developing HSV1- associated AD. These data could provide new insights into the possible 
mechanisms by which the genetic susceptibility of ApoE4 may be involved in the development of 
AD. Another very recent study in a cohort at Bordeaux in France further confirmed these 
relationships between ApoE4 and HSV-1 being a strong risk factor for AD development (107). 
This study further suggests a role for HSV-1 in AD development among subjects with a genetic 
susceptibility factor, the APOE4 allele (107). 

Almost at the same time Miklossy and others have demonstrated the presence of other microbes, 
such as the spirochete Treponema burgdorferi, in blood, in cerebrospinal fluid and brain tissue 
(78,107,108). They also hypothesized that this bacterium may produce a biofilm that would 
constitute the amyloid plaque, protecting bacteria from various stress in the brain (109). Balin et 
al. have demonstrated the existence of Chlamydia pneumoniae in plaques (59). They later observed 
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that systemic infection with Chlamydia pneumonia in turn increased the occurrence of AD (60). 
All these data have converged to promote and justify the development of the infectious hypothesis 
stating that accumulation Aβ is not the primary cause of AD, but itself the consequence of infection. 
Aβ would then play its pathogenic role as stated by the amyloid hypothesis (5,110).  

Subsequently, the demonstration of Treponema in plaques reinforced the infectious hypothesis. In 
the sexually transmitted infection syphilis, caused by Treponema pallidum, the tertiary stage is 
accompanied by a particular dementia status (111). This occurs also in most cases several decades 
after the primary infection (112). This is a very important similitude as this makes plausible the 
role of a bacterium of the genus Treponema in the pathogenesis of AD. Furthermore, another virus, 
HIV, has been associated with neurodegenerative disorders (HAND) (113,114). This a 
neurodegenerative disorder related to HIV infection previously led to a severe form of dementia 
(115). Since the efficacious treatment of HIV by antiretroviral therapy (cART), the patients live 
much longer with the virus reaching old age; their neurocognitive disorder has become much milder 
in its clinical manifestations (116-118). In these patients HAND resembles the AD more and more, 
even including production of Aβ in response to the virus (119,120). Interestingly, HIV suppresses 
production of Aβ at early stages of the infection as a protection against the AMP role of Aβ which 
reinforces its AMP role (121). 

The latest microorganisms abundantly found post-mortem in the brain of AD patients are 
pathogenic fungi (122). The most important species were C. albicans and the Malassezia sp. 
(123,124). We do not know how fungi may be involved in the development of AD and this needs 
further investigations.  

All this experimental evidence points toward the involvement of microbes in the pathogenesis of 
AD (14). These results also indicate that it would be very difficult to identify one microorganism 
as the unique cause. It was suggested that AD is a polymicrobial disease (123,126). Nevertheless, 
one bacterium may to be more important than the others namely P. gingivalis. Its cornerstone role 
in periodontitis where it orchestrates the formation of biofilms could be duplicated in AD. In 
support of this theory, a recent paper found P. gingivalis virulence factor gingipain in the post-
mortem brain of AD patients (61). All the experimental data gathered so far suggest a causality 
between infections and AD (126). 

Before further describing the putative pathomechanism that could explain how microorganisms 
may induce AD, we will describe the changes in the immune system which is a necessary corollary 
to allow infection to promote AD development and may be target for future treatments. 

The innate and adaptive immune system in AD 

The immune system has the role to defend the organism against external and internal challenges 
(127,128). In many circumstances, the immune system may be activated for a longer period than 
necessary when a challenge is maintained for a long time or is reactivated from time to time (129). 
This means that inflammation which plays a beneficial role in acute infection may become chronic 
and detrimental to the host organism and even generate disease (129). 
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In the case of AD, neuroinflammation is a fundamental part of its pathogenesis (13,21,33,130-133). 
According to the amyloid hypothesis, neuroinflammation is generated and maintained chronically 
by Aβ (13). In the infectious hypothesis it is the result of the penetration of the microbes or their 
products into the brain and meant to help in the elimination of the aggression, at least at the 
beginning of the aggression (20). However, as infection becomes chronic, neuroinflammation also 
becomes chronic and destructive (49,50). Neuroinflammation in AD is characterized by microglial 
and astrocyte activation, inflammasome activation via NLRP3, complement activation and altered 
cytokine production shifted towards pro-inflammatory cytokines such as IL-1β, TNFα and IL-6 
(134). All these characteristic features of neuroinflammation may be found typically during 
infection also (135). 

Indeed, in AD, neuroinflammation is sustained mainly by the systemic and the local innate immune 
system. Systematically, the activated innate peripheral immune cells such as NK cells, neutrophils 
and monocytes are on the one hand able to cross the blood brain barrier and create destruction in 
the brain directly or on the other hand by their products such as the pro-inflammatory cytokines or 
chemokines which cross the blood brain barrier (BBB) and act on resident brain immune  innate 
cells such as microglia and astrocytes as demonstrated in humans and in animal models of sepsis 
(136-140). Furthermore, Bu et al have shown in an association study that the systemic infectious 
burden measured by anti-microbial antibodies increased the risk of AD (142). This study points 
again towards the polymicrobial nature of AD. Thus, peripheral infections, inflammation and stress 
were linked to microglial activation via the NFkB/NLRP3 pathway via pro-inflammatory cytokines 
(143-145). Together these data suggest that systemic immune activation has central effects and 
vice versa (91,146,96,97). 

The brain has a powerful innate system composed of microglia (brain macrophages), astrocytes 
and even neurons. They may destroy microorganisms or produce efficient anti-microbial peptides, 
the most important being the cathelicidin (LL-37) (147-149). Microglia, in response to stress 
(pathogen associated molecular patterns or damage-associated molecular patterns), develop an 
inflammatory response and secrete pro-inflammatory cytokines (147-149). Importantly, microglia 
may also modulate astrocyte reactivity by IL-1alpha, TNF and C1q, such stimulated astrocytes may 
acquire a pro-inflammatory A1 phenotype (150,151). These “good” innate cells may be turned into 
“bad” cells by several microbial products including LPS and gingipains, resulting in their 
dysfunction of eliminating invaders and decreasing the Aβ burden, in the activation of their 
senescence and in increasing their attack against neurons (134,152,153,104). In summary, under 
microbial pressure, the brain innate immune system deviates from a defensive to a killing role, 
resulting in neuroinflammation, senescence and neuronal death. Again, one trigger suspected to 
play a pathogenic role in AD are microbes and their products such as LPS. 

The demonstration by Soscia et al that the Aβ is an AMP gave a new impetus to the infectious 
hypothesis (48). They have tested Aβ against bacteria and fungi and found it more powerful than 
even LL-37. More recently others and we have demonstrated that like LL-37, Aβ may also 
inactivate viruses including HSV-1 (50), influenza (154), and retroviruses (121).  It was also shown 
that when HSV-1 infected them, neurons were able to secrete substantial amounts of Aβ which 
inhibited HSV-1 infection of other neurons (155). This indicates that Aβ is not only a pathological 
peptide as supposed originally but has a well-defined physiological role and is produced under very 
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well-defined conditions. Moreover, Aβ was more powerful than IFN type I. Recently, an interesting 
finding showed that Aβ may also have anticancer properties (156) as well as BBB repair properties 
(157). The most important cells producing Aβ are neurons and astrocytes. This is not surprising as 
the latter together with microglia play a crucial role in the brain host defense either clearing waste 
or secreting defensins (158,159).  

The role of Aβ as an AMP has since been tested in many animal and experimental models. It was 
shown in a murine model of Salmonella enterica and S. typhimurium infection that endogenous as 
well as exogenous Aβ could prevent infection in the brain (160,161). These authors hypothesized 
that the mechanism of action of Aβ is by formation of amyloid aggregates (plaques) using the 
microbial surface (162). This led to the formulation of the “antimicrobial protection hypothesis” 
(80). However, they never linked biofilm formation to plaque formation as had been hypothesized 
by Miklossy (57). Together these data again strongly support the notion that Aβ is a newly 
recognized member of the large AMP family combatting infections in humans.  

All these findings provide answer to why would evolution promote, even select for, an enzymatic 
system (β- and γ-secretase) if the result had no pro-survival value and – as believed - was only 
detrimental (leading to AD). Now, based on the convincing observations described above, we can 
say that generation of Aβ has a clear pro-survival role. 

The adaptive immune system also showed important changes in AD (163). Naïve T cells decreased 
and CD8+ memory T cells increased. This situation is identical to what is observed during normal 
aging and to chronic infections, independent of age, such as CMV infections (164,165). This 
suggests that just like the innate immune system, the adaptive immune system is also chronically 
stimulated and its capacity to fight infections is not always efficient (166). Thus, the immune 
system shows similar properties in AD patients to those found in many other chronic infectious 
diseases with, of course, specificities related to its typical to its localization in the brain.  

Furthermore, this constant stimulation of the immune system via what is called inflammaging, 
results in the exhaustion of the immune cells resulting in an increase of cellular senescence which 
is also evident in microglial cells (167). This cellular senescence, via the senescence associated 
secretory phenotype (SASP) further supports and amplifies the notion of inflammaging (168-171). 
SASP of microglia and astrocytes is sustained by the activation of two main intracellular 
inflammatory pathways which are intimately linked with the NFkB and the inflammasome 
pathways (172-174). The NOD receptor pathway via NLRP3 mediates the production of IL-1beta, 
IL-18 and caspase-1 which increase in AD brains. Moreover, IL-1beta has been shown to contribute 
to the permeability of the BBB favoring the passage of microorganisms and their by-products 
(7,175,176). These pathways may not only induce senescence but also what is called pyroptosis 
which is an inflammation triggered programmed cell death, especially in microglia (177).   

The all of the body systems and cells, the immune system necessitates substantial amounts of 
energy in order to function properly (178). There are two ways to generate ATP from glucose: the 
aerobic glycolysis (converting glucose to lactate) or the oxidative phosphorylation (OXPHOS). 
Very reactive cells even in the presence of oxygen chose the aerobic glycolysis as a very rapid way 
to generate energy. Not only healthy cells or organs e.g. brain (179) use aerobic glycolysis, but also 
malignant cells (180). Microbes and even LPS may convert cells to the use of aerobic glycolysis 
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(181). Not only this gives energy advantage to the immune cells, but also the produced lactate may 
react with its receptor GPR81 to generate more ATP used by neurons (182). The capacity to use 
aerobic glycolysis for energy production is decreased in aged and senescent cells. Thus, microbes 
have a dual, opposing role in energy metabolism; on one hand they stimulate cells to the 
reprogramming and on the other hand favor the mitochondrial OXPHOS impairing neuronal and 
immune functions (183-185).   

What is the pathomechanism microorganism(s) use to cause AD? 

We suggest two pathways for microbes to induce AD that are not mutually exclusive.  

The first involves direct migration of the microorganisms to the brain via the olfactory bulb and 
crossing the permeabilized blood brain barrier (BBB) composed mainly of astrocytes, endothelial 
cells and pericytes (186,187). For a long-time the brain was considered a privileged organ as it was 
protected by a well sealed BBB, however it has been shown that even at the early stage of AD the 
BBB becomes more permeable (188). This also may occur during the process of aging (189) as 
well as during systemic inflammatory responses elicited by microbial infections such as viruses, 
bacteria with or without direct brain infection (190,191). Microbes have evolved to be able to make 
the BBB permeable partly by subverting pericytes and/or endothelial cells by inducing either their 
apoptosis or by using the complement system receptor 3 (CR3) to their advantage to make their 
way to the brain (192-194). The neurons would respond by producing Aβ and try to destroy the 
invasive microbes (48-50). In the meantime, the microglia and astrocytes are also stimulated and 
produce antimicrobial peptides, pro-inflammatory cytokines, free radicals, and proteases to destroy 
the microorganism (159,197,198). Moreover, the complement system is activated, and this favors 
phagocytosis (199). Finally, the adaptive immune system is also activated either to produce 
cytotoxic effector CD8+ T cells or antibodies via B cells (200). Thus, in a normal situation, the 
invading microorganism may be totally eliminated or imprisoned in biofilm, seen as plaques, which 
protect the microbial community from destruction (95). This process may occur, during the decades 
preceding clinical manifestations of AD, and many reactivation or reinfection cycles may lead to 
chronic neuroinflammation and plaque deposition resulting in massive neuronal death. 

Another non mutually exclusive pathway may be the passage not of the entire microorganism but 
only its virulence factors such as LPS, gingipains, extracellular RNAs, arginine deiminase 
(61,201,202,101,103,104) or other. These substances may occur permanently in the organism and 
originate from any of the microbial communities/reservoirs of the organism such as gut 
microbiome, mouth, or neurobiome (203-207). These microbial products or metabolites may 
mediate their deleterious actions by being incorporated in extracellular vesicles (EVs) (208). 
Indeed, many microorganisms including P. gingivalis are also able to release EVs containing 
gingipain, fimbriae which will modulate intestinal permeability as well as the function of the innate 
immune system thus favoring an inflammatory status (209,103,210). In this way these by-products 
will stimulate the immune system with the production of inflammatory mediators which will 
chronically induce the same processes as the direct presence of the microorganism itself (211,212). 

As mentioned, these microbes or their virulence products may originate from various microbial 
reservoirs in the body. The most important microbial reservoir in humans is in the gut, which leads 
to the notion of the gut-brain axis. This means that there is a constant communication between the 
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gut and the brain and vice versa during the whole life (210-213). Indeed, the direct presence of 
microbes and/or their by-products have been demonstrated in the brain of AD patients, but 
interestingly also in the brain of healthy aged subjects, hence the notion of neurobiome (61). The 
studies of the gut microbiome in aged people showed a tendency towards an increase in Gram-
negative bacteria (214) which was also shown in MCI patients (215). This becomes even more 
problematic when the immune system manifests some maladaptation with aging which permits the 
clinical development of AD through the translocation of microbes which are normally commensal 
(dysbiosis) (216-218) and are contained within the gut by the local immune system inducing a 
tolerogenic state (219). It has also been demonstrated that dysbiosis of the gut microbiome may 
promote various inflammatory disorders which have provoked microglial activation during the 
development of AD (220-223). Thus, this suggests that the gut microbiome or better, its dysbiosis, 
is involved in regulating microglial activation and neuroinflammation in AD. 

Another important axis for the development of AD could be the mouth-brain axis involving mainly 
P. gingivalis (224,225). P. gingivalis produces various virulence factors such as LPS, flagella and 
toxic proteases called gingipains (226). The LPS may activate astrocytes and transform them to the 
proinflammatory A1 phenotype by stimulating TLR-4 (227). Gingipain have been found in the 
brain of healthy subjects and AD patients and proposed to be involved in the pathophysiology of 
AD (61). In periodontitis these virulence factors mainly gingipains (lysin-gingipain and Arginine 
gingipain A/B) have been shown to play a role in host colonization, inactivation of the host immune 
response, iron and nutrient acquisition (228,229). Gingipains may also activate various innate 
receptors such as TREM1, TREM2, TLR-4, CR1 and NLRP3 (230-233) which may result in the 
activation of the inflammasome (234). This activation in turn facilitates plaque formation and may 
amplify the inflammatory reaction via release of ASC specks (235,236). Interestingly, the 
activation of this inflammasome results in pyroptosis which eliminates the cell infected by P. 
gingivalis and limits replication of this bacteria (237). Furthermore, this phenomenon does not 
always require the presence of live P. gingivalis but released gingipains may penetrate cells and 
have similar effects (238,239). These processes involving the mentioned receptors, the 
inflammasome, and P. gingivalis or its gingipains will ultimately kill neurons, favor amyloid 
plaque deposition and IL-1β release. This will further help to permeabilize the BBB. Gingipains 
are also able to cleave IgG1 and IgG3 mainly by gingipain K and in this way the adaptive branch 
of the immune defense of the organism can be compromised (240,241). Another important 
virulence factor of P. gingivalis is peptidylarginine deiminase (PPAD) which catalyzes the 
citrullination of both bacterial and host proteins (242,243). PPAD helps P. gingivalis evade 
destruction by neutrophils by impairing phagocytosis and bacteria induced NETosis (242). 
Furthermore, when PPAD citrullinates cationic antimicrobial peptides such as LP9, it efficiently 
neutralizes them. Gingipains can also deactivate them by proteolytic degradation (244,245) which 
may be followed by PPAD citrullination of exposed arginine residues. All of these products from 
P. gingivalis help it to evade from both the innate and adaptive immune system. It is of note that 
direct the role of P. gingivalis and its products in the development and progression of AD, even if 
they have been found in human brain of AD patients, will require further studies.  

Inflammaging is sustained by the disbalance between the innate and adaptive immune systems 
together with the senescence of the cells constituting the CNS including neurons, microglia and 
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astrocytes. This concomitant process of inflammaging, programmed cellular senescence and 
dysbiosis further favors the leakage of the gut resulting in the passage of bacteria (pathogenic 
and/or commensal) (251) and their products into the brain including those which may contribute to 
AD such as the curli (252).  

One other recently described phenomenon which can lead to sustained neuroinflammation is the 
mechanism of trained innate immunity (253). This process captures the constant inflammatory state 
seen in the innate immune system during aging, AD and other chronic diseases (129). Once 
monocytes have been activated, any new unrelated stimulation will result in higher response from 
these cells (254). This is a sort of memory of the innate immune system resulting in the maintenance 
of a basic constant activation in cells like microglia in which will likely contribute to constant 
neuronal destruction.  

All these experimental results point to the fact that Aβ is deposited in the brain decades before the 
clinical manifestation of AD suggesting that AD is related to a chronic mutually sustaining 
inflammatory processes in the central nervous system and in the periphery as a result of a long-
lasting antimicrobial response culminating in plaque deposition (20.80,255,256). 

Whatever the pathway that microorganisms employ to cause AD, better understanding of these 
processes could suggest new innovative strategies to prevent or intervene in the progression of AD. 

What are the possible interventions targeting the prevention or cure of AD? 

The obvious treatments which come to mind are treatments by specific agents aiming at containing 
or direct elimination of the mentioned microorganism such as antivirals, antibacterial and 
antifungal products. In the case of viruses, the most relevant would seem to be the antiviral drugs 
penetrating the BBB which are very effective even in herpes viral encephalitis such as Valacyclovir 
(104,257,258). Unfortunately, we do not know which virus exactly, when and how may cause AD 
(and, as mentioned above, rather assume that the cause is prolonged and polymicrobial) it may be 
very difficult to determine when, how, and in what dose to use them (103). Nevertheless, each time 
that we have an infectious burst such as herpes labialis or herpes genitalis or zoster, we should treat 
the patients most vigorously whatever their age. If we consider data from the Taiwanese study 
mentioned above, each of these treatments should decrease the incidence of AD. Other viruses may 
also be involved and so we will have to discover antiviral agents to control them. 

Are there any direct trials targeting any stages of AD with antiviral treatment? In fact, there is one  
ongoing, one which has been just finished and some may be actively planned (103). This is due to 
the uncertainty of the mechanisms causing AD by viruses. Another factor is knowing at what time 
to treat. Considering the long “incubation period” of AD it would be logical to treat any viral 
infection at any time when its manifest itself which would have a great advantage to decrease the 
deleterious effect not only on the immunobiography/inflammaging but also on the chronicity of 
such an accumulation of several infectious burden. Of course, one of the best periods would be 
when memory problems are starting in the subjective memory complaint and mild cognitive 
impairment (MCI) stages. In this way we could assess whether this treatment at least retard the 
progression towards AD.  Logically, a pulse repeated intervention would be needed, but this will 
have to be demonstrated. The advantage of valacyclovir and related drugs is that they have very 
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few side effects even in elderly subjects. The epidemiological study from Taiwan seems to indicate 
that it could be a rewarding intervention. 

Devanand in his paper of 2018 (103) mentions a phase II, proof of concept, randomized, double-
blind, placebo-controlled, 18-month treatment trial of 130 patients (65 valacyclovir, 65 placebo) 
with mild AD (MMSE range 20–28) who test positive for antibodies to HSV1 or HSV2. 
Valacyclovir dose will be 2–4 g daily. The dose range was stated safe and is known to lead to CNS 
penetration with high CSF levels which should increase the chance of efficacy. The hypotheses 
were that, in comparison with patients treated with placebo,  patients treated with valacyclovir will 
show a smaller decline on the Alzheimer’s Disease Assessment Scale-Cognition 11-item scale 
(ADAS-Cog11; cognitive measure; 0 to 78 weeks) and the Alzheimer’s Disease Cooperative 
Study-Activities of Daily Living scale (ADCS-ADL; function measure; 0 to 78 weeks). The authors 
state that if the trial will be successful, they will continue with a phase III trial. Indeed, there is a 
trial registered as ClinicalTrials.gov Identifier NCT03282916. This plans to use Valacyclovir in 
MCI/AD patients to establish whether this treatment will restore or decrease cognitive functions. 
We should wait for the results of these trials in the forthcoming years, more specifically in 2022. 
Another study the VALZ-Pilot study (NCT02997982) investigated the effects of Valaciclovir 
treatment in individuals with Alzheimer's disease or Mild Cognitive Impairment of Alzheimer's 
Disease Type. This study enrolled 36 persons for 4 weeks treatment then followed them for another 
12 months. The study has been just finished in March 2020 and no results are still available. It will 
be interesting to have the results to plan larger phase III studies. A study (Apovir study) used 
Apovir (Apodemus AB in Solna), a combination of the experimental anti-enterovirus agent 
pleconaril, originally developed to treat the common cold, and the hepatitis C treatment ribavirin. 
This was reported at the CTAD conference in Barcelona (2018) as a 2a phase clinical trial including 
69 people with mild AD with Apovir or placebo for nine months. There was a very drop our rate 
because of side effects. However, it seemed that the ADASCog improved by three points. Once 
the treatment finished both groups progressed with the same rate. These data were not yet 
published. There are no currently other ongoing clinical trials with antivirals for Alzheimer’s 
disease.  

 

It is worthwhile to mention that several antibiotics were tried to treat or at least to slow down the 
progression in prodromal as well as in mild to moderate AD (266-). The most used antibiotics in 
these clinical trials were the doxycycline, minocycline and rifampin. In a clinical trial Loeb et al 
(2004) used oral doxycycline at 200 mg and rifampin 300 mg daily for 3months in prodromal and 
mild to moderate AD. The end point was Standardized Alzheimer's Disease Assessment Scale 
cognitive subscale (SADAScog) at 6 months. This trial concluded that there were no major adverse 
events and therapy with doxycycline and rifampin may have a therapeutic role in patients with mild 
to moderate AD however the mechanism could not be established as it seemed unlikely to be due 
to their effect on C. pneumoniae. A few years later Molloy et al (267) published the DARAD trial 
using the doxycycline and rifampin for treatment of AD.  This was a multicenter, blinded, 
randomized, 2 × 2 factorial controlled trial, set at 14 geriatric outpatient clinics in Canada for 12 
months. The results did not confirm the results of the study published by Loeb et al (266) instead 
there was a significant deterioration in SADAS-cog over time with both rifampin and doxycycline 
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in comparison with placebo. Another recent clinical trial with minocycline reported by Howard et 
al (268) used an experimental device of 1:1:1 in a semifactorial design to receive minocycline (400 
mg/d or 200 mg/d) or placebo for 24 months. This clinical trial also found that minocycline did not 
delay the progress of cognitive or functional impairment in people with mild AD during a 2-year 
period and also found that 400 mg of minocycline is poorly tolerated in this population.  These 
contradictory results can be explained by the fact that antibiotics target directly the infectious 
agents which may not be present at the stage of the disease when they were used. Also, the 
differences in the patient selection as well as the period of administration, the various cognitive 
outcomes may also can explain the differences. Furthermore, as it was recently published by 
Balducci and Forloni (269) doxycycline which crosses the BBB has given compelling pre-clinical 
results in mouse models of AD against Aβ oligomers and neuroinflammation. However, by 
targeting β-amyloid oligomers as many other trials did its effect my be really not efficacious at 
these stages of the disease. Another interesting questioning is the relationship between microbiota, 
AD and dysbiosis. Recently a review discussed this relationship (270) raising the possibility that 
broad-spectrum antibiotics can greatly affect the composition of the gut microbiota, reduce its 
biodiversity, and delay colonization for a long period after administration which suggest that the 
action of antibiotics in AD could be wide and even opposite, depending on the type of antibiotic 
and on the specific role of the microbiome in AD pathogenesis. All these antibiotics modulate also 
the neuroinflammation however neuroinflammation may be somehow protective at some stages 
rather than the only cause for neurodegeneration (270). More studies at different stages of AD are 
warranted to assess the exact role of antibiotics in the treatment of AD. No tentative for fungi 
treatment has been initiated, but Aβ-like products could be envisioned. 

It is well known that P. gingivalis is almost impossible to destroy by conventional antibiotics. Two 
other possibilities exist which would neutralize the virulence factors of these microorganisms. In 
animal studies recently developed COR286, Cor271and COR388 have been shown to protect 
animals from neurodegeneration, decreased the P. gingivalis load and also decreased the burden of 
Aβ (61). One small molecule is under clinical trial by Cortexime to neutralize gingipain (61). The 
second strategy involves vaccination of individuals with virulence factors (266-269). Trials of 
vaccines to prevent or cure periodontitis are currently envisioned (270). We should wait to the 
conclusion of these studies to see whether by targeting the virulence factors we can prevent or 
decrease the progression of AD.  Of course, there are other virulence factors which could be 
targeted from any of the microorganism. In the meantime, in the future another possibility would 
be the use of peptoids (short peptides) which were shown to be very effective anti-microbial 
substances in vitro and in mice (68,259,260). Furthermore, in this line other antimicrobial peptides 
like LL37 may be used (261,262). Recently it was demonstrated to be an effective agent against S. 
aureus biofilms (263), and so may also be useful against other biofilms such as those created by P. 
gingivalis besides their very short half-life. The cytotoxicity properties of LL37 may limit its 
effective use (264,265). Nevertheless, new engineered peptides may be developed. 

However, it should also be noted that considering the polymicrobial nature of AD one anti-
microbial agent might not be enough to treat this disease. A combined multi-target designed 
treatment should be envisaged.  
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There may be other possible treatments. The immune system may also be influenced by an anti-
inflammatory treatment in a pulse form in later life or as soon as any chronic inflammatory disease 
manifests itself in the organism. The modulation by probiotics may also be imaginable to maintain 
the health of various microbiomes in the organism. Recently a large epidemiological study showed 
that Bacteroides species were less represented in AD patients suggesting that manipulation of the 
microbiota may be highly beneficial for AD (271). Recently, a bioengineered curli was used as a 
restorative therapy for the intestinal barrier (272). Curli patterned on bacterial models may promote 
tolerance against certain bacteria in the intestinal tract. They act by inhibiting instead of stimulating 
the TLRs (TLR2 and TLR4) (273).  

Furthermore, immunotherapy as in the case of cancer may also be possible. Indeed, microbes have 
also been shown to pervert T cell co-receptors to decrease immune activation and evade detection 
(274). In this context it is worthwhile to mention that P. gingivalis is able to subvert PD-1, to further 
escape the host immune response (275).   

Of course, other general supportive therapies which may reinvigorate the immune system, making 
the microbiome healthier through nutrition, exercise or the administration of ketone bodies may be 
envisaged. Modulation of dysbiosis by any means may alleviate the burden of neuroinflammation 
and microglial activation. In this line, a very recent study by Nagpal et al (276) used modified 
Mediterranean-ketogenic diet (MMKD) to modulate the gut microbiome in subjects with MCI. 
Their data suggested that in MCI patients, the gut microbiome has specific characteristics and 
MMKD can modulate the gut microbiome and metabolites in association with AD biomarkers such 
as Aβ in the CSF (276). However, these authors did not perform any cognitive tests so their 
observations remain to be validated at the clinical level. The group of Cunnane using a Medium 
chain triglyceride ketogenic diet showed an improvement in the executive functions of MCI 
patients, however its effect on the microbiome was not studied (277). In vitro studies showed that 
exposure of human macrophages to short chain fatty acid butyrate may increase macrophage 
antimicrobial activity through histone deacetylase 3 (HDAC3) inhibition (278). In small studies in 
China targeting gut dysbiosis, GV-971 (mixture of acidic linear oligosaccharides) reversed 
cognitive impairment by decreasing neuroinflammation (279). This could be related to its antiviral 
properties.  

If we consider the role of senescent cells (SASP) in the pathogenesis of AD related to infection, 
inflammation, altered autophagy and mitophagy, one obvious treatment would be to eliminate these 
cells, as it has already been suggested as an anti-aging treatment (280,281). Indeed, in this context, 
ciprofloxacin has been shown to modulate the accumulation of senescent DNA in SASP and, as 
such, played a senolytic role (282). Further trials would be warranted to confirm this effect. Another 
molecule which may act as a senolytic is rapamycin which targets the inhibition of mTOR 
(283,284). Furthermore, recent studies have demonstrated that mTOR inhibition resulted in the 
restoration of the intestinal barrier damaged by P. gingivalis (285,286). Interestingly, lithium has 
been shown also to modulate mTOR and GSK3beta which protect the intestinal barrier by 
decreasing EC senescence as well as the integrity of the BBB (287). In this way, manipulation of 
mTOR may become a multi-effect treatment eliminating senescent cells, restoring integrity of the 
gut barrier and restoring altered gut microbiota occurring with aging (288). 
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Another molecule, azithromycin, an anti-P.gingivalis macrolide antibiotic has also mTOR 
modulating properties and has also senolytic effects and may be useful in AD treatment (289,290). 
Concomitantly, other known antibiotics, such as minocycline and rifampicin, aside from inhibiting 
the NLRP3 pathway may facilitate the removal of senescent cells (289,291). Thus, the use of 
antibiotics that double as senolytics links infection, inflammation and cell senescence which are 
accentuated by external and internal factors such as aging.  

Thus, an obvious means to treat the infectious pathomechanism of AD would be the modulation of 
NLRP3 activation. This was shown in the case of fluoxetine, a selective serotonin reuptake 
inhibitor (292). Indeed, a recent trial showed that fluoxetine has been able to decrease the 
progression from MCI to AD (293). Along the same line of evidence, since defective mitochondria 
stimulate the NLRP3 pathway, the elimination of these defective mitochondria by increasing 
mitophagy may also be an effective therapy. Interestingly, some antibiotics such as tetracycline 
seemed to be able to increase mitophagy in AD (294). Obviously direct inflammasome inhibitory 
substances may also have a therapeutic role in AD. Among the most promising, as already 
mentioned, are short chain fatty acid (295).    

Another interesting therapeutical approach may stem from observations showing that the glucagon-
like peptide -1 (GLP-1) has been shown to facilitate immune tolerance (296,297) and may be 
upregulated by LPS stimulation. This generated the suggestion that GLP-1 may behave as an AMP 
(298). Moreover, GLP-1 seemed to inhibit the development of A1 inflammatory astrocytes (299). 
This has led to a new trial in AD using a well-known drug used in type 2 diabetes, liraglutide, 
which is a GLP‐1 receptor agonist (300).  

Yet other group of molecules which may be considered in AD therapy targeting the infection 
hypothesis at its origins are iron chelators (301). Iron is essential for bacterial growth; thus, its 
chelation may enhance body defenses and diminish the microbial load. Moreover, recently, iron 
has also been shown to contribute to cell senescence (302) via stimulation of the mTOR pathway 
and inhibition of mitophagy (303). Thus, iron chelators such as deferoxamine are mTOR inhibitors 
(304). A natural in vivo iron-chelator, lactoferrin, has been shown to bind LPS and thus to 
deactivate NLRP3 (305). It has also been demonstrated to be an AMP with anti-P. gingivalis 
activity (306,307).  So lactoferrin could become a powerful treatment for AD (308,309-311).  

New developments may include in the future mitochondria targeted small molecules such as 
MitoQ, Mdicvi-1, SS31 which have proved to be efficient in preventing mitochondrial dysfunction 
and restoring mitochondrial homeostasis in cell cultures and in experimental animals, however 
there use alone or in combination in humans awaits clinical trials (309). In addition to iron 
chelators, mito-modulators have also been proposed to counteract the dysfunction of mitochondria 
in AD that has possibly been induced by microbial by-products such as gingipains. The 
overproduction of ROS associated with infection and microglia stimulation may be targeted by 
endogenous antioxidants such as reduced glutathione (GSH) (310) as well as by exogenous 
antioxidants which are found in various nutrients as well as in diets such as the Mediterranean diet 
(311). 

However, the most rewarding treatment would be prevention. In this way we can imagine that 
vaccines against the microorganisms that are involved may be developed. An agent capable of 
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destroying biofilms would also be a major breakthrough to treat the mouth microbiome and as such 
prevent AD.  

Can we learn from “Why” to find “How” to prevent or treat? 

While various interventions are possible, we still have not identified the reason(s) why a pathogen 
would migrate to the brain. Understanding the events leading to pathogenic migration and 
colonisation of the brain should help developing prophylactic strategies to reduce AD onset. The 
direct relationship between amyloid plaques and presence of pathogens in the brain has not been 
firmly established despite strong circumstantial evidences. We do know that amyloid plaques are 
also present in individuals with no Alzheimer’s disease. Similarly, individuals with atherosclerotic 
plaques are not all equal towards calcification and blood vessels disruption. This strongly suggests 
that pathogen migration to the brain may be independent of amyloid plaque formation per se. Is it 
then possible to prevent this migration? Would that be enough to prevent the onset of Alzheimer’s 
disease? The contribution of ApoE isoforms in the susceptibility to AD can also be due to the fact 
ApoE4 facilitates entry to the brain (312). Burgos et al. (313) have found that a humanized mice 
models expressing human ApoE4 have high levels of HSV1 in the brain compared to ApoE3 
humanized mice, while no difference was observed in viral load in other organs. A systematic study 
of other pathogens would be necessary to understand the array of pathogens that ApoE4 carrier 
may be susceptible to. Other mechanisms such as crossing the blood brain barrier have been put 
forward. Lachenmaier et al (314) demonstrated T. gondii to modulate gene expression of brain 
endothelial cells to promote its own migration through the blood–brain barrier. This is likely to be 
happened via Trojan cells with a CD11b+CD11c+/- phenotype of antigen-presenting cells. The 
same applies to Toxoplasma gondii which was shown to develop a low metabolic activity (315) 
upon entry to the central nervous system. This fine balance that may also exist for a series of other 
pathogens located in the brain may be disrupted during an acute event. The current concepts and 
data would imply that brain from individuals with no Alzheimer’s disease are free of pathogens. 
However, it is very likely that research will lead and considering recent experimental data has 
already led (61) to the discovery of a brain symbiotic ecosystem where a restricted type of 
microorganisms can survive without inducing a pathology (neurobiome). Is this because of an 
efficient complex immune-pathogens interaction specific for the brain environment? Therefore, a 
trigger is needed to disrupt this fine equilibrium as it is occurring in the gut when the well-arranged 
balance between microbes is disrupted and results in dysbiosis. Which acute stress or repetitive 
acute stresses may be responsible for the activation of the metabolic switch leading to pathogen 
proliferation and subsequent sequelae is presently largely unknown. This will require intense 
research. Few possibilities exist (i) brain inflammation associated with microvasculature defects 
(ii) severe gut dysbiosis associated with leakage sensed in the brain (iii) acute infectious disease 
(iv) major organ failure leading to transfer of biological reserves from the brain to the 
corresponding organ/system. Independently of the cause, understanding the brain symbiotic 
ecosystem (neurobiome/neurodysbiosis) and its regulation will enable to better control the events 
associated with AD onset. 

Searching for new directions in Drug Discovery 
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The National Alzheimer’s project act by world leaders mandates a plan, which articulates the 
ultimate goal of preventing or effectively treating AD by the year 2025 (316). To propose a possible 
pathway, it is important to put into perspective past failures, discuss novel opportunities and 
understand the feasibility of delivering a drug by 2025. Several decades of research on competing 
hypotheses for explaining the cause of AD (e.g. Cholinergic (317), Amyloid (318), tau (319), 
Glucose synthase kinase 3 (320), inflammation (321)) led to the development of drugs that reached 
clinical trials but failed. Despite billions of euros spent worldwide on drug development and 
clinical trials based largely on animal modelling, these have repeatedly failed to translate into 
effective interventions (322). Under these hard-to-accept empirical observations it is imperative to 
consider alternative hypotheses (e.g. infection hypothesis) but also to consider drug development 
and research strategies that shy away from transgenic animal models that do not recapitulate human 
AD.  

Indeed, recent technological leaps in stem cell research have led to ground-breaking development 
of lab-grown human mini-brains, which reproduce the hallmarks of AD (323,324). This alternative 
model allows for testing of various in-vivo based hypotheses and extract correct and complex 
information. Combining these advances to the infection hypothesis of AD, as well as antimicrobial 
protection hypothesis of AD (161,325) provide clear targets and framework for novel AD drug 
designs. Indeed, since Aβ is a powerful antimicrobial peptide that targets and neutralises AD 
pathogens, then it is reasonable to consider the development of a cocktail of novel and more 
powerful antimicrobial peptides (AMPs) based on Aβ template. To achieve these ultimate goals, 
we envisage a multi-stage closed-loop framework between in-silico drug screening and drug testing 
in mini-brains as follows. First, data mining in existing databases (e.g. CAMP) and antimicrobial 
activity prediction via rational design (326) should generate analogues with improved activity. 
Second, state-of-the-art molecular simulations should be employed to determine the mechanism of 
action of Aβ against AD pathogens. Third, by combining information gained from step 1 and 2, 
and with further determination of physical-chemical descriptors of the generated analogues and 
Aβ, these can be used to train and screen potential AMP candidates via advanced machine-learning 
drug discovery softwares.  

This final stage should involve testing against user-desired property (e.g. IC50), as well as, 
multiomics analysis. In this way AMP sequences can be ranked in terms of the desired property 
and those of poorest quality are rejected, allowing a new population to be selected. Note that 
biofilm experiments in neural tissue based on multiomics data from patients and deceased frozen 
brains can be recreated in mini-brains and tested. Moreover, modern high-throughput technologies 
enable rapid and efficient simultaneous acquisition of multiomics data in the course of a single 
experiment (327). This is significant since it departs from traditional experimental studies, which 
are usually carried out to isolate the effects of a single mechanism and not to investigate the 
interactions of many mechanisms. This leads to a set of results that are conflicting, difficult to 
interpret or understand the interactions of the underlying mechanisms leading to the pathogenesis 
of a disease. The observables of such modelling approach could in principle be integrated with 
drug discovery process and therefore lead to a systematic and holistic screening of AMPs with 
high-therapeutic efficacy against AD pathogens. Therefore, novel biological models and 
experimental approaches, as well as multiomics acquisition devices provide unique opportunities 
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to study and accelerate drug development in the context of novel hypotheses of AD by coupling it 
to advanced data analysis and state-of-the-art in-silico drug screening. Moreover, this proposed 
pathway has the potential of reducing the overall cost of drug development. 

Conclusion – perspectives 

It seems clear that it will be difficult to find one exquisite pathogen to explain the whole spectrum 
of AD in the spirit of infection hypothesis. From the experimental data already acquired it seems 
that we should think instead about a causative polymicrobial community which affects the 
immune/inflammatory reactions in the brain and in the periphery, and which interacts with various 
factors such as genetics, environment and age. Thus, more properly, AD may be considered a 
complex syndrome. Obviously, future treatments (and/or prevention) of AD will not be one simple 
molecule but a multimodal complex treatment. This will combine most probably anti-microbial, 
senolytic and anti-inflammatory agents with pro-mitophagy treatments. In this way, prevention and 
even treatment of AD will most probably become feasible. Many clinical investigations and trials 
will be necessary before we can arrive at this stage. 
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Figure 1 

Possible intervention checkpoints according to the infection hypothesis. This figure depicts 
the various putative players in the development of Alzheimer’s disease considering the infection 
hypothesis as well as the individual future target for intervention. 

Aβ: amyloid beta peptide; AD: Alzheimer’s disease; BBB: blood brain barrier; PRR: Pattern 
recognition receptors; SASP: Senescence associated secretory phenotype.  
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Table 1 

The most frequently involved microorganisms in AD  

Viruses HSV-1 
 HIV 
 HHV-6 and HHV-7 
Bacteria Borrelia burgdorferi 
 Treponema denticola 
 Chlamydia pneumoniae 
 Porphyromonas gingivalis 
Fungi Candida albicans 
 Malassezia furfur 
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Table 2 

Potential interventions 

Targeting directly microoganisms Antiviral agents 
 Antibacterial agents (antibiotics) 
 Antifungal agents 
Immune modulating treatment Vaccination 
 Anti-inflammatory treatment 
 Checkpoint inhibitors 
Cell biological treatment Senolytics 
 Antimicrobial peptides 
 Iron chelators and mito-modulators 
Supportive treatment Probiotics/prebiotics 
 Ketone bodies 
 Nutritional support 
 Physical exercise 

 

 

 

 

 

 


