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Abstract

The events of the recent SARS-CoV-2 epidemics have shown the importance of social fac-

tors, especially given the large number of asymptomatic cases that effectively spread the

virus, which can cause a medical emergency to very susceptible individuals. Besides, the

SARS-CoV-2 virus survives for several hours on different surfaces, where a new host can

contract it with a delay. These passive modes of infection transmission remain an unex-

plored area for traditional mean-field epidemic models. Here, we design an agent-based

model for simulations of infection transmission in an open system driven by the dynamics of

social activity; the model takes into account the personal characteristics of individuals, as

well as the survival time of the virus and its potential mutations. A growing bipartite graph

embodies this biosocial process, consisting of active carriers (host) nodes that produce viral

nodes during their infectious period. With its directed edges passing through viral nodes

between two successive hosts, this graph contains complete information about the routes

leading to each infected individual. We determine temporal fluctuations of the number of

exposed and the number of infected individuals, the number of active carriers and active

viruses at hourly resolution. The simulated processes underpin the latent infection transmis-

sions, contributing significantly to the spread of the virus within a large time window. More

precisely, being brought by social dynamics and exposed to the currently existing infection,

an individual passes through the infectious state until eventually spontaneously recovers or

otherwise is moves to a controlled hospital environment. Our results reveal complex feed-

back mechanisms that shape the dependence of the infection curve on the intensity of social

dynamics and other sociobiological factors. In particular, the results show how the lockdown

effectively reduces the spread of infection and how it increases again after the lockdown is

removed. Furthermore, a reduced level of social activity but prolonged exposure of suscepti-

ble individuals have adverse effects. On the other hand, virus mutations that can gradually

reduce the transmission rate by hopping to each new host along the infection path can sig-

nificantly reduce the extent of the infection, but can not stop the spreading without additional

social strategies. Our stochastic processes, based on graphs at the interface of biology and

social dynamics, provide a new mathematical framework for simulations of various epidemic

control strategies with high temporal resolution and virus traceability.
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Introduction

Stochastic processes of epidemic spreading in human society comprise a specific type of critical

phenomena where the microscopic-scale interactions give raise to collective dynamics. Thus,

mathematical modelling approaches are necessary to understand the nature of the process and

control parameters that govern the transition from the micro- to global scale behaviours [1–3].

Recently, the critical phenomena in social systems have been researched using the concepts

developed in physics of complex systems and networks [4]. Some prominent examples are the

emotion spreading in online social networks [5–8], opinion dynamics [9], and constructive

engagement for the collective knowledge creation [10]. A detailed analysis of empirical data of

human activity online and related theoretical modelling [6, 11, 12] provided evidence that the

prominent dynamical mechanisms enabling these collective phenomena lie in the self-orga-

nised criticality [13–15]. The appropriate agent-based modeling of these social phenomena

[16] includes the individual emotional [5, 6] and cognitive properties [10] of the interacting

agents.

In addition to social dynamics, the epidemic spreading processes involve some essential

biological factors, such as the biology of pathogens, and certain health factors of individuals

and groups. Recent COVID-19 data [17] on the outbreak with the new SARS-CoV-2 virus are

an excellent example. In the absence of pharmaceutical interventions against the virus, social

and sanitary measures remain of primary importance for controlling the epidemics. In this

context, there are new traits to deal with, high latency times, rapid transmission, and the

potential of the virus to trigger SARS (severe acute respiratory syndrome), which is a medical

emergency. For a summary of COVID-19’s unique properties on pathogenic, epidemiological

and clinical issues, see [18, 19] and references therein. Statistically, about 20% of the infected

individuals need hospitalisation, some of whom (making about 13% of all infected) have mild

and moderate symtoms. However, 7% exhibit severe symptoms and need intensive care; they

can further differentiate such that 4.7% have clinical stage of illnesses, ending up with a high

fatality rate. Data from around the world confirm this overall picture with some regional varia-

tions [20–23]. On the other hand, about 80% of those infected show very mild clinical manifes-

tations or remain completely asymptomatic, so that they recover spontaneously after about

two weeks; this group of infected individuals often remains undetected and outside formal

health management procedures. Therefore, mortality statistics can serve as an indicator of the

actual number of infected individuals. The mortality rate ranges from 1.7% to 9% of registered

cases, depending on the country or region. In addition to organisational health issues, it is

hypothesized that such variations in clinical manifestations may be associated with the exis-

tence of different strains and potential genetic mutations of the virus [20, 24]. Theoretically, a

virus that jumps on a new host can trigger its evolutionary development in the direction of bet-

ter adaptation to human cells, which can make the pathogen progressively less aggressive

towards the host [25–27]. Such mutations of the virus would be highly desirable to mitigate

current epidemics. Currently, various possible mutations in the SARS-CoV-2 virus are being

observed, giving rise to an open hot topic of discussion among researchers [28–30].

In the traditional modelling approaches based on mean-field equations, the standard SIR

model [1] has been extended to take into account the above-mentioned features of the epi-

demic manifestation by distinguishing between four SIRU [31] or six SEIHR [32] infection

stages and groups involved. Acronymes indicate the initial letter of “Suspected”, “Infected”,

“Recovered”, extended by the groups of “Exposed”, “Undetected”, “Hospitalised”, that have

own co-evolutionary dynamics. Recently, due to the characteristics of COVID-19 disease, a

model has been extended to take into account eight different groups SIDARTHE [33]. These

models with a large number of phenomenological parameters that are adapted to the actual
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data, were able to describe the infection curve (increase in the cumulative number of infected

individuals) as well assess the effects of social isolation on the flattening of the curve [34]. A

new and promising line of research is opening up through the microscopic agent-based model-

ing of the epidemic processes [35]. These type of models are increasingly used for describing

several specific issues of COVID-19 like epidemics [36–41].

Respiratory droplets and contacts are considered to be the primary routes of transmission

of SARS-CoV-2 virus [42]. However, transmission via passive objects (fomits) as well as several

other mechanisms (aerosol and fecal-oral transmission) are also reported as highly possible

[18, 43–45]. In addition to hospital equipments, various passive objects can get contaminated,

e.g., by contacts or respiratory droplets of an infected individual and the infection can be trans-

mitted to a new host. This indirect transmission mechanism is becoming increasingly intriging

given the reported long survival time of the SARS CoV-2 virus on different surfaces [44, 45].

Indirect exposure to the virus and the large number of undiagnosed cases in current COVID-

19 epidemics underscore the importance of latent infection transmission as a new face of epi-

demic spreading. So far, this problem has remained outside the radar for standard modeling

approaches.

In this paper, we develop an agent-based model that adequately describes these latent trans-

missions of the infection at microscopic scale and the emergence of global patterns. The model

takes into account survival time of the virus and key personal characteristics of individuals,

such as susceptibility to the virus and exposure time, which are crucial for the process. We sim-

ulate an open system, where the agents are generated over time through social activity fluctua-

tions. As a proxy for social dynamics we use an empirical time series of fluctuations in activity

collected from online social networks, precisely a segment of MySpace [46]. Previous studies

show [8, 46] that these time series are reflecting compact off-line communities, and they

closely represent correlations of fluctuations in community-related activities. Moreover, these

time series have essential features of social dynamics, in particular persistent fluctuations with

a typical daily periodicity (circadian cycle) [8, 46]. Hence, the underlying social structure is

implicitly represented through temporal correlations and a variable intensity of time series.

Using long time series of the social activity with an hourly resolution, which determines the

time unit of the simulation step, our simulations span several weeks of real-time processes. In

the time window, which lasts up to fourteen days after its first appearance in the process, an

agent changes its state from “Susceptible” to “Exposed” and possibly “Infected”, followed by

either “Hospitalised” or “spontaneously-Recovered”, after which it is removed from the pro-

cess. During this period, an infected agent generates a number of viruses (contagious spots),

which remain infective for other agents within the virus survival time. The most susceptible

agents are likely to have severe symptoms; they are hospitalised and thus moved to a controlled

environment. Among the remaining agents, most are asymptomatically infected carriers of

viruses; thus, they contribute to the latent spread of infection within ongoing social dynamics

for a long period before their spontaneous recovery occurs.

The process is presented as a growing directed bipartite graph composed of infected agents

and viruses that they spread. This graph-based presentation allows us to identify the pathways

of infection that lead to each infected individual and the number of hops the virus has carried

from its origin to the current host. Note that chain interactions “host-virus-host” do not neces-

sarily imply a particular social relationship between the implicated hosts. This mathematical

framework enables us to simulate possible scenarios with the virus mutation. The development

of the network framework based on the stochastic process is essential also due to multifaceted

possible side effects and damages that the virus can have in a long run [19]. The simulated

high-resolution process revealed the features of dynamic feedback in different scenarios that

lead to altered course of the infection propagation. We determine the impact of the level of
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social activity with/out lockdown and exposure of each individual and the mutation of the

virus on the shape of the infection curves.

1 The model

An external input drives the system—a time series of social activity st, which introduces new

agents in the process and sets the time t; the resolution is one hour and the total length is tmax.

Thus the total number of agents is S ¼
Ptmax

t¼1
st. The process is visualised as an evolving bipar-

tite graph with a growing number of nodes and edges. Two types of nodes are the agent nodes

representing humans (Hnode), and virus nodes representing contagious spots (Vnode). They

are connected via directed edges from Hnode! Vnode! Hnode oriented in the direction of

infection transmission. Besides its ID and the creation time, each Hnode possesses several

other properties that can influence the process: the agent’s state (“Uninfected”, “Infected”,

“Hospitalised” and “spontaneously-Recovered”); the individual susceptibility to infections, h-

factor, which is fixed by the creation of the node as a random number hi 2 [0, 1], as well as its

exposition time Ti
e 2 ½1;Te�, where Te is the maximum exposition time in hours. Besides, we

define the virus-host gv variable, which keeps track of the number of hops of the virus from its

origin (the first infected node in the system) up to the current Hnode. A new Vnode can be

produced at every time step by an active carrier (infected agent) proportionally to the severity

of its infection, which is measured by its susceptibility; the virus node remains active for a

fixed number of hours Tv. Over time, an agent can experience the transition from the “Unin-

fected” to “Infected” state, followed by one of the possible scenarios, depending on the agent’s

susceptibility level, hi. Precisely, the highly susceptible agent (whose hi> 0.8) is likely to have a

severe illness, and its state will change to “Hospitalised” after a random period between two

and seven days. Meanwhile, the less susceptible agents (hi� 0.8) represent the asymptomatic

cases that will stay mildly infected and unreported until eventually reaching the state “sponta-

neously-Recovered” after fourteen days. After changing its status to “spontaneously-Recov-

ered”, an agent is removed from the dynamics. Similarly, we remove the agent when its status

has changed from “Infected” to “Hospitalised”; even though the hospitalised individuals can

transfer infection, e.g., when the so-called nosocomial transmission (via health-care objects)

occurs, it takes part in a controlled hospital environment. Meanwhile, the free active virus car-

riers who take part in the social dynamics primarily contribute to the latent infection transmis-

sion. See schematic flow in Fig 1.

The simulations start with one infected agent, placed on the active carriers list Hactive. At

each step, an agent in the Hactive list can produce a new Vnode with a probability proportional

to its susceptibility factor hi. In this way, we take into account different infectiousness of symp-

tomatic and asymptomatic individuals, which is in agreement with the average viral loads mea-

sured in the upper respiratory tract for mild and severe courses of the disease [47, 48]. Thus,

more susceptible agents, who are likely to have severe symptoms, can spread viruses more

often than those who are barely ill. The fluctuating time series introduces st new uninfected

agents at each time step t. By creating an agent, we identify its creation time ti as current time t
and fix its individual susceptibility factor hi and the exposition time Ti

e. The agent is placed on

Hexposed list where it remains for Ti
e hours exposed and can get infected by currently active

viruses with the infection rate λt. Apart from the agent’s susceptibility factor, the infection

transmission rate λt depends on several factors and fluctuates in time, as explained below, see

Eq (1). Once infected, the agent is removed from the list of exposed agents and placed to the

list of active carriers Hactive. We keep the identity of the virus that infected the agent and

update the number of hops that the virus passed till that infection event occurs (the virus gen-

eration gv). The time step ends up with revising the contents of each list. The difference
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between the current time and the node’s time ti is computed for each node on a given list.

Then the node is removed according to the criteria described above. The detailed program

flow is described in the S1 File.

The transmission rate λt varies in time and depending on the actual contact between the

agent and the virus; apart from a constant (empirical value) λ0 it is given by

l
i;v
t ¼ l0ð�t þ 1ÞhigðgvÞ : ð1Þ

The impact of the current fluctuation of the number Va(t) of active viruses, i.e., ϕ = dVa(t)/dt/
Ha(t) is normalised by the active number of carriers Ha(t), which represents the upper limit of

the new viruses at that instant of time. In addition, the infection rate is proprotional to the

individual susceptibility hi of the agent in question. As stated above, our network framework

allows us to follow the sequence of the virus transmission along the chain of infection events,

see Fig 2, the virus generation gv. Thus, we can consider the impact of hypothetical virus muta-

tion along the chain. For this scenario, we note that by passing through a new agent node, the

virus gv increases by one starting from gv = 1 at the first infected individual. We assume that its

sufficient weakening can be described as g(gv) = 2/(1 + gv). Alternatively, we simulate the case

without the mutation, i.e., by fixing the factor g = 1. The developed methodology readily allows

the analysis of other scenarios as well.

Results

In the simulations, we fix the parameters λ0 = 0.23, Tv = 4 hours, the hospitalisation (2-7 days)

and spontaneous recovery time (14 days) as well as the threshold susceptibility h = 0.8 accord-

ing to the reported empirical data from SARS-CoV-2 epidemics, described in Introduction. By

differentiating between the mutation (“gen”) and non-mutation (“g1”) scenarios, we change

the maximum exposition time Te and control the intensity of the social dynamics (average

number of new uninfected agents) by choosing the corresponding time series. We compute

the time-evolving number of created agents and virus nodes, the edges between the infected

Fig 1. Different groups of agents and transition between them. In the simulation time window between the addition

of agents through social dynamics time series and their removal by either spontaneous recovery or hospitalisation, are

schematically indicated: “Susceptible” (S)! “Exposed” (E)!”spontaneously- Recovered” (sR) or! “Hospitalised”

(H). For completeness, further differentiation of the “Hospitalised” group to “Intensive-Care” (IC), “Recovered” (R)

and “Deceased” (D) groups are shown in the darker square on the lower right corner; these latter subgroups do not

contribute to the dynamics studied in this work.

https://doi.org/10.1371/journal.pone.0241163.g001
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agents and viruses, the effective transmission rate, the number of active carriers and the num-

ber of active virus spots, as well as the number of exposed and the number of infected individu-

als per time step. We also determine the cumulative number of infected, hospitalised and

spontaneously recovered individuals for tmax = 1364 hours (56 days). Furthermore, we simu-

late the lockdown scenario with two types of social dynamics for the total period of 1680

hours, and a lockdown–recovery scenarios for tmax = 3044 hours. These results are presented

in the following three sections.

Infection transmission network and sampled quantities

In Fig 2, we show a part of the bipartite network that embodies the infection transmissions

during the first three days. Agents (blue nodes) are enumerated by order of appearance (addi-

tion to the network), starting from the first infected agent. Along with the outgoing links from

each agent node, we have Vnodes (pale colour) that were emitted by the agent during its active

infectious period. Some of the Vnodes, shown in red colour, appear to infect another agent

along the red edge. Meanwhile, the majority of other Vnodes are no longer infectious, exclud-

ing recently posted ones, which are still infectious and can change the colour to red by con-

necting with a new uninfected agent. Given that an agent can become infected only once

during the period of interest here, the actual network has a tree structure; thus, the uninfected

Hnodes remain disconnected from this graph (not shown).

Following the creation of new agents from a given time series st, we sample several time-

dependent quantities, as shown in Fig 3 and in the following figures. We determine the time

fluctuations in the number of infected and exposed agents, the number of active carriers and

active viruses (see a sample data in S1 Text), as well as the cumulative infectious curve and the

number of spontaneously recovered and hospitalised agents. Notably, in Fig 3, we describe the

differences between the cases with and without virus mutations, meanwhile, the input time

series and the other parameters (λ0 = 0.23, Te = 24 and Tv = 4 hours) are kept the same. In Fig

4, we show how the effective transmission rates vary in these two cases. Even though the

Fig 2. Zoom-in the directed bipartite network. Hnodes (blue) and created by them Vnodes (pale) within the first 72 hours (λ0 = 0.23, with mutations). Infection

transmission occurred through virus nodes, which are indicated by red colour, in the direction of the edge. The amount of Vnodes emitted by one Hnode is

proportional to its susceptibility factor and the duration of its stay among active carriers. Among white Vnodes are recent ones that still can infect a new exposed

agent; otherwise, each Vnode is non-infective four hours after its appearance.

https://doi.org/10.1371/journal.pone.0241163.g002
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number of exposed individuals is practically the same, the number of infected ones per hour is

smaller in the case with virus mutations than without mutations, leading to the two different

cumulative infection curves in the panel (B). A similar difference then occurs in the fractions

of hospitalised and spontaneously recovered cases, as shown in the panel (C). Computing the

temporal variations in the number of active carriers (infected agents) and the number of active

viruses nodes completes the picture. As shown in panel (D), these quantities are significantly

higher in the case without mutations. It should be stressed that, given Eq (1), the fluctuations

in these quantities have dynamical feedback to the effective transmission rate. We note that

the obtained infection curves can be fitted by logistic function with different parameters, see

more in the following section.

As the infection network in Fig 2 shows, the infection path can be followed forwards along

with the directed links via red virus nodes. It appears that the number of agents that get

infected from a given previously infected one varies from agent to agent, as it is shown in the

bottom panel of Fig 4. Averaging over the infected agents in a given period, we get the values

< k>nni that are larger than one, see the legend. Note that this is a quantity similar to what is

in the epidemiology literature known as “R-factor” [49, 50]. Our network presentation of the

process clearly shows that the R-factor is given by the relative ratio between two successive lay-

ers of the Hnods. Recently, studies have shown that the reproduction rate is a local measure

with a limited predictive value, see the discussion and the empirical data analysed in [49–51].

Influence of social dynamics and exposure times on the course of the

infection curve

To assess the impact of the intensity of social dynamics to the infection curve, here, we simu-

late the scenarios with the social lockdown, which is modelled by another time series; a repre-

sentative example is shown in the top panel in Fig 5. Specifically, starting with a moderately

high social activity (we use the same time series as in Fig 3), the process lasts for six weeks,

then the input time series is changed. Here we chose another empirical time series

Fig 3. Comparative simulations for virus mutations (“gen”) and without mutations (“g1”). Results are for the same social dynamics–time series st depicted in

panel (A). Time fluctuations of the number of exposed agents and the number of infected agents per hour, panel (A), and the corresponding infectious curves–the

cumulative number of infected agents, panel (B). Fits according to the logistic function (parameters shown in the legend). The cumulative number of

spontaneously recovered and hospitalised agents are shown in panel (C) and the respective fluctuation of the number of active carriers and active viruses, in panel

(D). In panels (C) and (D), the infection curves from panel (A) are shown by dotted lines, for comparison.

https://doi.org/10.1371/journal.pone.0241163.g003
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(corresponding to the negative-emotion activity in MySpace data set [46]), which exhibits

about four times smaller intensity but also almost absent correlations (the Hurst exponent is

close to 0.5). Some simulation results are shown in the main panel of Fig 5 for the case with the

mutations. These results reveal how the reduced social activity leads to an effective flattening

of the infection curve, in qualitative agreement with the overall empirical data. (For easier

comparison, the parameters are such that the initial part of the bottom curve corresponds to

the lower curve in panel (B) of Fig 3). However, the plateau level results from the course of the

entire curve from the beginning of the infection. In this way, the impact of social lockdown

depends on other factors that are built into the infection process before the intervention. In

this figure, we further demonstrate how the increased exposure time of the agents leads to the

increased level of the plateau, with other parameters fixed. In the following Fig 6, we show

comparative results with/out mutations and two different lockdown scenarios, while keeping

the exposure fixed.

Fig 4. Effective transmissibility. Top: Transmission rate λt vs time t for the case with the virus mutations (full, red curve) and without mutations (dashed, black

curve) for λ0 = 0.23 corresponding to the course of the process in Fig 3. Bottom: Related to these transmission rates, the number of infected followers knni of a given

Hnode i indicated along the horisontal axis. For clarity, only the first 2000 nodes are shown.

https://doi.org/10.1371/journal.pone.0241163.g004
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To predict the extent of the infection [33, 49, 52], the course of the infection curve is stan-

dardly fitted by the sigmoid (logistic) function

IðtÞ ¼ K
1þme� rt

1þ ne� rt
: ð2Þ

The parameter K is the so-called “carrying capacity”, and r is the rate by which the curve

reaches it, while the parameters m and n relate to the beginning and position of the inflexion

point. The rationale behind the occurrence of this functional form (and the related derivative,

the bell-like function of the infection rate curve) lies in the very nature of the infectious spread-

ing in a given population size, a fraction of susceptible individuals that will be infected. In the

beginning, the infection spreads to ever-larger number having practically unlimited resources.

When the accelerated growth reaches the maximum infection rate (the inflexion point of the

infectious curve), the process starts experiencing the limited space: the number of potential

susceptible individuals that are not yet infected is reducing. Consequently, the infection rate

starts decreasing while the cumulative number of infected cases asymptotically approaches the

final capacity K.

Fig 5. Moderate social dynamics with a lockdown. The fluctuations of social activity st (top panel) and corresponding infection curves It vs time t for different

range of exposure times, indicated in the legend (bottom), for the case with virus mutations.

https://doi.org/10.1371/journal.pone.0241163.g005
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Moreover, all simulations demonstrate that lowering the intensity of social dynamics, even

if for a small factor such as natural day-night fluctuations, will affect the process, but with a

delay. A particularly considerable lockdown comes in effect only with a ten days delay, cf. Fig

5. A closer investigation reveals, see Fig 6 that, after the lockdown, the number of exposed

agents starts decreasing, reaching the corresponding lower level after the period comparable to

Te. Then the number of active carriers takes about a week to ten days longer to reduce and

adjust to the lockdown dynamics. The number of active viruses follows this curve with a small

delay (4 hours).

Predicting the course of events after lockdown is lifted

In the literature, the impact of the imposed social lockdown during COVID-19 pandemics has

been investigated from several different angles. For example, apart from economic issues,

diverse social and psychological factors have been reported [53], which manifest in altering the

social dynamics after a particular lockdown is lifted. In this context, our model allows us to

simulate different scenarios. Notably, Fig 7 presents the results where we simulate the impact

of the social activity after the 4-weeks lockdown, meanwhile keeping all other parameters at

Fig 6. Impact of the social dynamics preceding a lockdown. Top: Infection curves for high-intensity dynamics and lockdown after week 4, and low-intensity

dynamics with the lockdown after week 6; two lines in each case are the scenarios with/without virus mutations. Fits according to the logistic function (see text).

Bottom: Temporal fluctuations of the number of exposed agents and the number of carriers and the number of active virus spots corresponding to the infection

curves in the top panel.

https://doi.org/10.1371/journal.pone.0241163.g006
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the same level. In one case, a moderate social activity takes part, which also does not have

prominent dynamical correlations (here, we amplified the time series that characterises the

lockdown). In the other scenario (“back-to-normal”), we use the same time series as in the

period before the lockdown and continue the process for another eight weeks. Note that this

time series contains a reasonable level of dynamic correlations, as explained above. For com-

parison, we also simulate the situation without lockdown keeping the original level of the social

activity for the period corresponding to 16 weeks of real-time. The results showing the course

of the infection curve are given in the central panel of Fig 7. The driving social dynamics time

series and the corresponding number of exposed agents for the scenario without lockdown are

shown in the top panel and for two scenarios with the lockdown, in the bottom panel of Fig 7.

These results reveal that the infection curve increases after the lockdown in all cases, but the

Fig 7. Simulations of exiting scenarios. Central panel: Infection curves It vs time for the extended period with the naturally fluctuating social dynamics, curve

(1), and for two scenarios with the lockdown intervention followed by moderate-intensity dynamics (2) and “back-to-normal” scenario (3). Periods before,

during, and after lockdown are indicated as I, II, III. The fluctuating intensity of the susceptible st and exposed et agents corresponding to the case (1) are shown in

the top panel, and to the curves (2) and (3) in the bottom panel. The last part of the signal st in the case “back-to-normal” corresponds to the second half of the

signal in the top panel.

https://doi.org/10.1371/journal.pone.0241163.g007

PLOS ONE Latent infection transmissions in SARS-CoV-2 epidemics

PLOS ONE | https://doi.org/10.1371/journal.pone.0241163 October 23, 2020 11 / 16

https://doi.org/10.1371/journal.pone.0241163.g007
https://doi.org/10.1371/journal.pone.0241163


increase rate is low for the case of moderate social activity. In the “back-to-normal” case, the

increase is much faster even if compared to the corresponding segment of the curve “1”, but

slower than at the beginning of infection process before the lockdown. Fitting the segment III

of the curve gives the overall capacity which is still lower than the projection from the fit of the

curve “1”. It is also essential to notice that the curve “1” has a different course from the possible

extension driven from fitting its first part (see black dotted line). We can conclude that even

small fluctuations that lower the social dynamics st (see top panel) can, through the above-

described feedback mechanisms, affect the course of the infection curve, thus reducing the

overall projection of the infection.

Discussion and conclusions

We have designed an agent-based model with the high-resolution dynamics of infection pro-

cess that explicitly observes the survival time of viruses and personal properties of individuals

who produce them. We simulate an open system which is driven by social dynamics of the

involved agents, and represented by a growing bipartite graph with the agents and viruses

nodes. Considering the actual SARS-CoV-2 epidemics, the model adequately takes into

account latent infection transmissions by asymptomatic virus carriers as well as indirect trans-

missions that can occur, for example, through contaminated surfaces during the virus survival

period. These processes comprise a significant part of infection transmissions by each agent

occurring in the time window which can last up to two weeks since the agent enters the system

through social dynamics until it spontaneously recovers or otherwise moves to a controlled

hospital environment.

The developed mathematical formalism with the infection network makes it possible to

trace a path along which the virus hops over different hosts before infecting a particular indi-

vidual. It thus allows us to model potential mutations of the virus along its evolution path. The

results revealed the key components of this biosocial stochastic process that significantly influ-

ence the course of infection spread and the predictions of outcomes. Specifically, we have

found that:

• The intensity of social dynamics in conjunction with the individual susceptibility of each

agent is crucial for the latent infection transmission. Hence, a lockdown measure becomes

effective, but with a typical delay. The simulated process with a high temporal resolution

uncovers the underlying mechanisms at work. Lowering the social activity level gradually

reduces the number of exposed individuals until it reaches the level of new social activity;

with a delay, it causes a decrease in the number of active viruses carries and the number of

active viruses that they produce. The opposite trends occur by lifting the lockdown measures.

Depending on the renewed social activity, the outcome can be lower than in the case of the

process without lockdown. In particular, in the “back-to-normal” situation, the final projec-

tion of the number of infected is still smaller or comparable with the original one. However,

it can be reached after a much more extended period. It is interesting to point out that much

smaller, natural fluctuations in social dynamics (such as day-night or workdays vs weekends)

that appear periodically, as in our time series, can have profound effects on lowering the

slope of the infection curves.

• The exposure time of each individual, is another factor that can considerably increase the

course of the infection curve even with a low or moderate social activity level. Thus, modify-

ing the exposure time of individuals or groups is an additional essential characteristic to be

considered in conjunction with social dynamics measures.
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• Virus mutations scenarios towards gradually reducing the transmission rate can slow down

the growth of the infection curve. Even though these virus mutations are favourable, they

have no potential to stop the spread of infection without additional social strategies.

A new mathematical framework, developed in this work, provides a robust tool for the

analysis of biosocial processes in SARS-CoV-2 like epidemics. Its essential new ingredients

are high-resolution dynamics, open system, and the network-assisted process presentation.

Meanwhile, the traditional mean-field equations and most agent-based models in the litera-

ture have limiting factors due to the fixed size of the system. On the other hand, given the

infection-network representation in our model, we do not consider direct physical distance

and mobility patterns of the agents. This fact is a limiting factor for some applications of the

model, for example, to describe specific geographical locations and spaces with different

social groups involved (see a different study in [35, 41, 54]). Instead, the social dynamics

that drive the system in our model can be varied. It represents cumulative activity participa-

tion, originating from different communities and social events. Considering the biology

aspects, we have neglected possible temporal variations of the viral load of a host (besides its

constant susceptibility factor), which might affect the impact that a particular host has in the

process. With sufficient empirical data (current studies [47, 48, 55] are for symptomatic

individuals), a modification of the model can take into account the appropriate profile of the

viral load for each infected agent. Moreover, possible extensions of the model are to include

a specific set of connections of each agent, a kind of ego-network, and modified transmission

rates inside it. Consequently, a more heterogeneous pattern of the exposure times can

emerge. However, such non-random distribution of the exposure time per agent could not

significantly influence its impact to the global features of the epidemics found in this work.

To reveal the nature of the underlying stochastic process, here we have simulated the infec-

tion spreading from a single source. In the meantime, the spreading from different sources

or different times, which may increase the slope of the infection curve, can also be consid-

ered. Lastly, as we already mentioned, the issue of SARS-CoV-2 virus mutations is an open

problem that has received increasing attention of researchers in different fields [28–30]. The

infection network presentation allows us to model different ways of how particular virus

strains (virus-host interaction) change over time. These aspects of stochastic biosocial pro-

cesses, among others highlighted here, could represent a compelling direction for further

research.
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