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Abstract. In the last decade the interest around network caching tech-
niques has augmented notably for alleviating the ever-growing demand
of resources by end users in mobile networks. This gained momentum
stems from the fact that even though the overall volume of traffic re-
trieved from Internet has increased at an exponential pace over the last
years, several studies have unveiled that a large fraction of this traffic is
usually accessed by multiple end users at nearby locations, i.e. content
demands are often local and redundant across terminals close to each
other, even in mobility. In this context this manuscript explores the ap-
plication of multi-objective heuristics to optimally allocate cache profiles
over urban scenarios with mobile receivers (e.g. vehicles). To this end we
formulate two conflicting objectives: the utility of the cache allocation
strategy, which roughly depends on the traffic offloaded from the net-
work and the number of users demanding contents; and its cost, given
by an cost per unit of stored data and the rate demanded by the cached
profile. Simulations are performed and discussed over a realistic vehicu-
lar scenario modeled over the city of Cologne (Germany), from which it
is concluded that the proposed heuristic solver excels at finding caching
solutions differently balancing the aforementioned objectives.
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1 Introduction

Content caching and delivery leverage the storage capabilities and wireless inter-
faces of user terminals to store concurrently and redundantly accessed contents.
These functionalities are applied on the realistic assumption that a large per-
centage of such contents will be requested by nearby users in the near future. By
eliminating the need for retrieving such contents from the core network the traf-
fic low demand from the telecommunication operator can be contained, which
is crucial in light of recent forecasts around Internet stats with annual network
traffic volumes expected to score above the zettabyte in 2016 [1]. This strategy,



which finds its roots in the early stages of Internet (with local HTTP caches and
proxies becoming the de facto standard [2,3]), has reborn in the last years as
a means to reduce network traffic, bottlenecks, and user access latencies in 5G
networks [4-6]. In-network caching, which refers to the deployment of content-
driven caches through a given network, is one of the mechanisms that lie at
the core of the Information-centric networking (ICN) paradigm, which aims at
changing the Internet infrastructure from its traditional host-centric, connectiv-
ity based principle [7]. ICN envisages a network composed by named information
entities (i.e. contents) whose labels are irrelevant with respect to their location
over the network infrastructure. This radical swift involves that users consume
contents rather than resources, hence information entities embody the resource
unit around which users’ network operations are planned [8].

To this end, many different in-network caching strategies have been proposed
in the literature, each adopting different perspectives and approaches in regard
to the cooperation between caches, the criterion to cache a certain content or
the network topology over which such caches are deployed. The performance of
content-oriented networking has been studied under different application scenar-
ios, with recent yet scarce contributions analyzing the performance gains that
an information-centric network operation yields in vehicular environments [9—
11] and in general, mobility-based adhoc networks [12]. However, most previous
studies rely on very simplistic mobility assumptions such as a Manhattan grid
as the road layout and constant vehicle speeds, which oversimplify the network
model and do not capture properly the short-lived, spotty nature of the connec-
tivity in such a communication environment.

In this paper we analyze how multi-objective heuristics can be applied to the
allocation of cache profiles through the network on the assumption that travel
patterns of the vehicles demanding such contents have been inferred a priori
by predictive models. We find our motivation to address content caches at a
profile level in the dynamic essence of the vehicular scenario under analysis,
which makes it difficult to learn or predict user’s profiles in a file basis. In
particular our work will assess the Pareto trade-off between the utility of the
cache allocation strategy and its economical cost. On one hand, a quantitative
measure of the former optimization objective will be formulated as a function of
the coverage of vehicles, the number of vehicles demanding contents from cached
profiles and the effective duration of the caching session delivered to the users
under coverage. On the other hand, the economical cost of the cache deployment
will vary depending on the cached profile and the level of service — in terms of
number of simultaneously served users. Once the problem has been formulated
we will resort to multi-objective heuristics in order to determine the set of Pareto-
optimal caching strategies (namely, which profiles should be cached and served
in the scenario) differently balancing the aforementioned goals. The performance
of the proposed approach is discussed based on simulation results obtained from
a realistic vehicular environment deployed over the city of Cologne, Germany.

The rest of the manuscript is structured as follows: first Section 2 will pose
the notation and formulate the problem studied in this research work. Next, Sec-



tion 3 describes the heuristic solver designed to tackle the optimization problem
at hand. Section 4 presents and discusses the obtained simulation results and,
finally, Section 5 concludes the paper and describes several future research lines
of interest within the scope of this work.

2 Problem Formulation

According to the schematic diagram shown in Figure 1, we assume an urban
scenario S with N nodes {v,}Y_; representing vehicles with V2I (Vehicular to
Infrastructure) communication capabilities. It is assumed that a priori proba-
bilistic knowledge about the routes of the vehicles has been acquired by virtue
of soft-output predictive models (e.g. [13,14] and references therein), which can
be modeled as a spatial-temporal probability density distribution f{*(X,Y") such
that (X,Y) denotes geographical coordinates (e.g. latitude and longitude) and
Pyes [t (X,Y)=1Vne{l,..., N} and Vt € [T};, T5,,]. Here T}, and T7,
stand for the time instants in which vehicle v,, enters and leaves the scenario,
respectively. The coordinates for a given vehicle v, at time will be given by x,, (¢)
and y,,(t). A circular coverage model with radii r,, will be adopted.
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Fig. 1. Schematic diagram of the system model under consideration with () = 4 caches
distributed over the scenario, N = 17 vehicles and two cases highlighted: P # P2A (i.e.
content stored at cache ¢ = 1 is not that demanded by vehicle n = 2) and Py = P%
(content stored at cache g = 2 coincides with that requested by vehicle n = 7).

The occupant at vehicle v,, is subscribed to a certain content profile P2
from an M-sized portfolio P = {Py,..., P} designed and offered by the In-
ternet Service Provider (ISP) at hand. These offered profiles are characterized
by different resource levels demanded from the provider which, for the sake of
simplicity, will be defined in terms of their required download rate R, [Mb/sec].
For instance, profiles corresponding to high-definition video content will feature
high values of R,,, whereas other services such as news feeds and blogs might
correspond to content profiles with low values of R,,,. Furthermore, it is assumed
that each profile requires a minimum session establishment time T [sec], such



that the delivery of cached content is effective only after 7% seconds since the
vehicle demanding it entered the coverage area of the network cache from which
the cached content is retrieved. In regards to the network cache we will assume
Q locations {(z4,yq)}q=1 Over the scenario S at hand, each with coverage radii
rq [m] such that communication between vehicle n and cache ¢ can be possible
if the distance between both extremes at time ¢ fulfills

de q £ \/(.In(t) - xq)Q + (yn(t) - yq)2 < min{rn,rq}. (1)

Due to the need for data storage over network caches a cost of the overall
caching strategy will be modeled as a simple, linear cost per cached unit of data
Cunit [monetary units/Mb)]. By hereafter denoting the cached content at location
q€{l,...,Q} as PY € PU{0} — with 0 corresponding to the case when no
content is cached at location ¢, yleldlng no associated cost —, the overall cost
&(PV) of the caching strategy PV £ {PV} ~_, will be given by

Q
NIEDY TR Cunir, [monetary units], (2)

q=1

which will pose the first optimization goal of the problem tackled in this work.
The second objective function will evaluate the inherent utility of the caching
strategy PV as a function of several factors: 1) the rate of the cached profile,
whose contribution to the overall utility should be higher as more data are of-
floaded from the mobile network; 2) the matching between the content profile
of the vehicles within coverage of every network cache in the scenario and the
profile cached therein; and 3) the effective session duration, which is determined
by the overall time that every vehicle is within reach of the network cache pe-
nalized by the session establishment time of the cached profile to be retrieved.
Mathematically, this utility U(PV,T) can be quantified as

UPY,T) 2 ZRPVZI )(T;I N,qu;s;), (3)

where T}, denotes the total time during which vehicle n is within coverage of
cache g, i.e.

T<I & ZI g < min{rn,rq}) , (4)

and N represents the number of total encounters between cache ¢ and vehicle
n, which can be quantified by

T
Nrf)q £ ZI (dfl)q > min{rn,rq}) (dt'|r1 < mln{rn,rq}) (5)

with I(-) in the above formulae being an auxiliary indicator function taking value
1 if its argument is true (and 0 otherwise). By including the soft estimations



of the route followed by each vehicle in the network represented by the space-
temporal probability density function f;*(X,Y’), one obtains an estimation of the
expected utility of the caching strategy PV as E{U(PV,T)}, where expectation
is taken over the aforementioned distribution of the vehicles’ coordinates.

Based on the above notation the optimization problem undertaken in this
work can be conceived as the discovery of a K-sized set of caching strategies
{P""} that optimally balances — in the Pareto sense of optimality — both their
overall cost and utility over scenario S and a time horizon of duration 7. Math-
ematically,

{PY" W, = arg maxE{U(PV,T)}, min®(PV,T), (6)
Pv

where the cardinality of the search space is given by [P J{0}|9 = (M +1)9, i.e.
exponential with the number of network caches deployed and content profiles
defined by the service provider. In other words, the goal is to determine which
content profiles should be stored and served locally at caches ¢ € {1,...,Q}
such that the expected utility of these cached profiles for the scenario at hand is
maximum at a given cost level. Alternatively, {ka’*},iil represent the caching
strategies with minimal cost at different levels of expected utility. As explained
in the next section, the exponential search space from which solutions to the
above problem are drawn will be efficiently explored by a bi-objective HS solver.

3 Proposed Algorithm

The bi-objective network caching problem posed in Expression (6) can be effi-
ciently approached using the Harmony Search (HS) algorithm, a meta-heuristic
solver first proposed in [15] and applied thereafter to a plethora of optimization
problems arising in diverse disciplines such as Energy [16-18], Telecommuni-
cations [19, 20], Manufacturing [21,22] and Data Mining [23, 24], among many
others [25]. The search heuristic embodied in the HS algorithm is inspired by
the music improvisation procedure and the progressive enhancement of the im-
provised melodies by musicians when pursuing aesthetically pleasant harmonies.
From a computational standpoint the algorithm relies on a numerical solution
encoding strategy, on which a set of operators is defined in a similar way to
those featured by other meta-heuristic techniques from Evolutionary Computa-
tion and Swarm Intelligence [26]. In particular HS maintains a K-sized pool of
candidate solutions or harmonies which are iteratively pushed towards regions of
potentially higher optimality by virtue of the aforementioned operators. These
operators emulate the memory-based and random pitch criteria by which musi-
cians in practice vary their played notes (namely, optimization variables) until
a stop criteria is met, e.g. a maximum number of improvisations Z is reached.
For the problem at hand harmonies will encode a possible caching strategy as
a ()-sized vector of integer numbers {{X(’;}?:l}i{:l such that X} € {0,1,..., M}
correspond to the index of the cache profile proposed to be stored at cache ¢ €
{1,...,Q}in harmony k € {1,..., K}. A null value (i.e. Xg = 0) reflects the case



where no profile is allocated to the cache. Profile indices are sorted in increasing
order of their bandwidth requirements R,,, sorting of utmost relevance for the
effectiveness of the vicinity-based PAR operator explained in what follows. In
regards to the HS flow diagram depicted in Figure 2 three are the operators that
are applied to the harmonies contained within the memory for each iteration:

— Harmony Memory Considering Rate, controlled by a probabilistic parameter
HMCR € [0,1] that sets the likelihood that the newly improvised value for
a given note X/ is drawn from the values {X7,..., X 1 X1 . XK}
taken by the same note in the other K — 1 harmonies in the memory.

— Pitch Adjusting Rate, driven by the probability PAR € [0, 1], establishes the
probability that the value of a given note X(f is replaced with any of its
neighboring values in its corresponding alphabet {0,1,..., M}, i.e.

max{X} — Z,0} with probability 0.5PAR,
XF+ ¢ min{XF¥ + Z, M} with probability 0.5PAR, (7)
X 5 with probability 1-PAR,

where Z is the realization of a uniform discrete random variable with support
N[1, A\] (with A denoting bandwidth).

— Random Selection Rate, whose controlling parameter RSR € [0, 1] sets the
probability that the new value for a given note X, (’; will be drawn uniformly
at random (i.e. without any neighborhood consideration) from its corre-
sponding alphabet. This is equivalent to the PAR process with Z uniformly
distributed over Z[—X}, M — X}

Non-dominated .
sorting & filtering RSR

Initialization

Yes
Fitness evaluation @ HMCR —* PAR

E{U(X",T)} No

O(X*,T)
Return estimated front

Fig. 2. Flow diagram of the proposed meta-heuristic solver.

These operators are sequentially applied to each note of the candidate solu-
tions stored in the pool of harmonies. Once applied over the entire set of notes,
the fitness functions defining the bi-objective caching criteria formulated in Sec-
tion 2 — namely, E{U(X* T} and &(X*,T), with X* & {XF ... 7X(’fg} =PV
— of the newly improvised solutions are evaluated. Based on the values of the
objective functions for both the new harmonies and those from the previous
iteration the entire set of 2K harmonies are ordered and filtered following the



well-known Pareto dominance ranking and crowding distance criterion. To be
concise, each solution is assigned a numerical score equal to its dominance level
(namely, 1 for the best, non-dominated subset of solutions, 2 for the second best
level, and so forth). Once all solutions have been ranked, a second criterion hing-
ing on the sum of distances to the closest harmony along each metric drives the
ordering among the solutions within a certain dominance level: as such, those
solutions featuring large crowding distances are preferred rather than those with
small distances to their neighboring individuals in the Pareto space. Once this
second ordering has been performed only the best K solutions are kept in the
pool of harmonies for the next iteration.

4 Experiments and Results

In order to assess the performance of the bi-objective heuristic solver explained
in the previous section a vehicular scenario comprising realistic mobility traces
over the city of Cologne (Germany) has been considered. A total of N = 13682
vehicles are deployed in this simulation scenario, which depart from and arrive at
different spots of the city during a time horizon of T' = 3600 seconds (from 8:00
to 9:00 AM). In order to shed more realism over the simulation the performed
experiment utilizes the set of mobility traces released by TAPAS-Cologne [27], an
initiative of the German Aerospace Center (ITS-DLR) to realistically reproduce
urban vehicular traffic in this city. Caches are assumed to be located at the
@ = 247 cellular base stations deployed in the city, which have been retrieved
from public German databases as of 2012, and made available by the same
initiative. Coverage radii are set to r,, = 200 and ry = 1000 meters for all vehicles
and base stations, respectively. As for the cached content M = 5 profiles will be
considered to model diverse cached services by means of different bandwidths
{R}5,_1 = {0.01,0.1,0.2,0.5,1} [Mb/sec]. The unitary cost per cached Mb is
set to Clypit = 100 monetary units. The minimum session time for the content
profiles will be given by {T<¢}M_, = {0,0.05,0.1,0.15,0.25} [sec]. Without loss
of generality a perfect estimation of the route followed by each vehicle will be
assumed to reduce the computational complexity of the optimization algorithm:
in this regard it should be noted that when dealing with soft estimations of the
route followed by a car the caching optimization procedure would be identical,
the difference being that the utility would require averaging over both space and
time domains as per (6). The HS solver is configured with a pool of K = 100
harmonies, HMCR = 0.7, PAR = RSR = 0.1, A = 1 and a total of Z = 200
iterations. These parameters have been tuned via offline simulations over a value
grid (not shown due to lack of space).

The obtained results are summarized in Figures 3.a through 3.d, which depict
the estimated Pareto front by the proposed HS solver along with three different
solutions differently balancing the optimization criteria: utility and cost of the
deployment. As we can observe, the caching strategies highlighted in the Pareto
front span from the minimum-utility, minimum-cost region to solutions favoring
high utility values at higher cost penalties. Intuitively one should expect that



the former corresponds to a caching strategy where a large fraction of the caches
located at the base stations do not store any content profile (especially those in
the outskirts of the city to minimize the impact of the lack of caches), whereas
the latter should feature a relatively higher number of high-rate cached profiles,
mostly located in the city center where more vehicular traffic occurs.
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Fig. 3. (a) Estimated front by the bi-objective HS solver after Z = 200 iterations; (b)
Network cache (solution) of point A in the estimated front; (c) point B; (d) point C.

This prior intuition gets confirmed through the obtained plots. To begin with,
the cache deployment in Figure 3.b corresponds to Point A, namely, an strat-
egy with minimum cost and consequently the lowest utility along the estimated
Pareto front. It can be noticed that the deployment sets no contents in most
caches through the urban scenario, while those activated by the caching solution
concentrate around the city center and serve contents with generally low rate
demands. As the strategy becomes less restrictive in terms of costs not only the
set of cached contents is larger in terms of cardinality (i.e. more network caches
with stored profiles are included in the strategy), but also are such strategies
more diverse and sparsely distributed over the city, as Figure 3.c clearly shows
for an intermediate solution in the Pareto front (Point B). Finally, Figure 3.d
depicts the deployed caches associated to Point C, i.e. an strategy with no cost
requirements and a maximal utility for the demands of the deployed vehicles. It



can be observed that in this third example empty caches are kept to a minimum,
with a large concentration of high-rate content profiles cached over the scenario.

5 Concluding Remarks and Future Research Lines

This work has capitalized on the paramount need for efficient mechanisms to
optimally allocate network caches in urban environments so as to keep data
traffic redundantly retrieved from nearby locations to their minimum. In this
regard a novel formulation of the cost-efficient deployment of network caches
over mobility-based scenarios has been proposed, which models both the coupling
between the demanded content from the vehicle and the served profile by the
network cache, but also the delay penalty due to the session establishment of
the service at hand and the cost associated to the storage of the requested
content. To efficiently solve the formulated problem in a centralized manner a
heuristic technique based on a bi-objective version of the HS algorithm has been
designed and put to practice over a realistic urban scenario. The Pareto-optimal
caching strategies estimated by the proposed heuristic method meet the intuition
and span a wide portfolio of caching options, which pave the way towards new
formulations of this problem accounting for finite capacity constraints at the
caches and/or mobile caches enabled at the vehicles.
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