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Abstract. In a competitive market relationships between telecommuni-
cations operators serving simultaneously over a certain geographical area
are diverse and motivated by very different business strategies and goals.
Such relationships ultimately yield distinct pricing portfolios depending
on the contractual affiliation of the user being served. Furthermore a key
role in the last decade is the concept of tethering (connection sharing)
which, when controlled by the operator, may help alleviating the con-
sumption of network resources in densely populated scenarios. In this
work we investigate the application of bi-objective heuristics for the de-
sign of Pareto-optimal network topologies leading to an optimal Pareto
between the revenue of the incumbent operators in the scenario and the
quality of service degradation experienced by the end users as a result
of tethering. Based on computer simulation this work unveils that such
a Pareto-optimal set of topologies is strongly determined by the market
relationships between such operators.
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1 Introduction

In the last years the telecommunication sector has witnessed an upsurge of the
number of operators concurrently offering services over the same geographical
area [1]. This sharp increase has been specially notable in the provision of mobile
services, mainly due to the liberalization of this market in several economies
and the decoupling between service deployment and infrastructure management,
the latter introducing the role of the so-called virtual operator [2]. As such,
virtual operators do not follow the conventional approach of acquiring a spectrum
license to deploy a mobile network and offer their services, but rather enter the
market by exploiting the infrastructure of incumbent operators to offer Over-
The-Top (OTT) services [3]. The coexistence of these market stakeholders with
traditional network operators lay the basis for a strongly competitive mobile
market analyzed from different techno-economic perspectives [4-9].



In this context the appearance of multiple virtual players in the telecommu-
nication market has grown at a significantly higher pace than the deployment
of new access infrastructure. Content providers and virtual operators have come
along with new mobile usage patterns by end users, who have increased their
demanded resources from the network as a result of lower prices of terminal
devices and the ubiquitous access to high-quality contents. According to Cisco
[10] an exemplifying growth of 74% in the global mobile data traffic has been
registered in 2015. The need for allocating resources to accommodate the chal-
lenging data explosion in mobile networks is what has pushed operators not only
to share not only infrastructure in terms of core and radio access networks (as
done by the aforementioned virtual operators), but also to explore opportunistic
methods that involve their users themselves.

To this end, traffic offloading refers to the family of mechanisms aimed at
minimizing the amount of information delivered over licensed communication
resources which among other strategies can be accomplished by opportunisti-
cally resorting to local wireless communication technologies and dynamic content
caching [11]. The criteria adopted in mobile traffic offloading can be very diverse,
from the most straightforward policies (i.e. the maximization of the end-user sat-
isfaction or the minimization of network operating expenses) to more elaborated
schemes dealing with energy consumption, offload /upload persistence or the so-
cial centrality of the user along its predicted mobility trace [12]. Disregarding
the criterion adopted to this end, the result is that traffic is shifted to oppor-
tunistically set inter-device networks.

In this paper we postulate that opportunistic traffic offloading can also pro-
vide interesting benefits when implemented between users of different mobile
operators. In particular our work can be framed in the context of user incen-
tives, by which users allow sharing their bandwidth for either offloading traffic of
the operator to which they are subscribed, or providing service to subscribers of
other operators. In this latter case incentives must be provided at two different
levels of the scenario: between different operators and from operators to those
subscribers from their client portfolio that should act as opportunistic relays and
share their resources. This manuscript will explore how such incentive agree-
ments impact on the Pareto trade-off between the quality of service delivered
to end-users and the costs incurred to implement such policies. In particular we
will resort to multi-objective heuristics to seek the set Pareto-optimal multi-hop
network configurations —i.e. which nodes should be promoted to relays— under
different incentive ratios among the operators. We will show that when operators
ally together by agreeing low resource sharing fees, their overall benefit increases
with respect to a competitive scenario with higher sharing fees. This increased
benefit, however, yields a degraded quality of service to the end-user which, in
a practical scenario, should be lower bounded in a per application basis. The
simulations results obtained from different scenarios and incentive policies will
be discussed so as to support these conclusions.

The reminder of this paper is structured as follows: Section 2 will formulate
the optimization problem that models the offloading of traffic among operators,



which will be efficiently solved by means of the solution encoding approach and
heuristic solver described in Section 3 and subsections therein. The performance
of the overall scheme is analyzed and discussed in Section 4 based on computer
simulations. Section 5 ends the manuscript by drawing several conclusions.

2 Problem Formulation

This section presents key concepts and introduces the notation used throughout
the rest of the paper. Let us suppose an area of dimensions X .5 X Yinax, where
N different operators offer their services so that the n-th operator — where n €
{1,..., N} —has M (n) clients, i.e. each operator serves a total of M (n) users with
ZnN:1 M(n) £ M denoting the total number of users existing in the area. Each
operator will have a constant and circular coverage area with radius R(n), whose
limits fall within the previously defined area X .x X Ymax. Such operators are
connected to a backhaul station as shown in Figure 1. Nodes correspond to users’
devices (e.g. smartphones, tablets, etc) located at coordinates {(@m,Ym)}M_,,
each with its contracted services signed with operator O(m) € {1,...,N}.

Competition

Fig. 1. Diagram of the scenario with N = 3 operators and M = 12 users. In this
hypothesized situation user n = 2 is sharing his/her connection with users n € {1, 3,4},
which may (or may not) be clients of the same operator.

User devices are assumed to be equipped with at least two wireless network
interfaces such that one of them connects to Internet contents through the opera-
tor’s cellular base station (BS), whereas the other resorts to short-range wireless
protocols (e.g. WiFi or Bluetooth) to share its bandwidth with other users as
a tethering interface. All devices operate in full duplex mode so as to be able
to send data to the BS and receive data from other nearby nodes if tethering is
enabled. Users under service can be connected to the backhaul through three dif-
ferent ways, each characterized by diverse requirements regarding the perceived
quality of service and the cost for both the operator and the user/client:



1. Via the operator contracted by the user: in this case the node will be con-
nected directly to the operator with whom he/she has signed the contract.
In this case the quality of service delivered to the user is expected to be con-
tracted and ensured by the operator. For this rationale this direct connection
policy yields the highest cost C, for the operator among all the cases.

2. Via other third-party operator: in this second connection mode the node at
hand will access the backhaul via an external operator with whom he/she
has no signed contract. In this case a cost penalty must be taken into account
to model the market relation between the operators in the management of
each other’s clients. A parameter a = C,/Cg € [0,1] with n # n’ is defined
such that

— If a = 1 the relationship between operators is a market coalition, i.e. the
operational cost associated to the provision of services to any given user
is approximately the same disregarding the operator with whom the user
signed his/her contract (i.e. C\ = Cg).

— If a < 1 operators will be assumed to compete under a hostile market
relationship, namely, it will be significantly more costly for an operator
to serve its contracted clients through the premises of the other operator
than through its own network equipment.

3. Via tethering: in this last option a node will connect to its BS through the
tethered connection open by another user by virtue of the short-range wire-
less interface of his/her device. This case is expected to maximize the benefit
of the operator and the users: operators can serve the user via tethering at a
reduced cost Cr modeling an incentive paid to the user sharing his/her con-
nection, which is assumed to be lower than the cost C incurred when serving
the user directly. However, the relayed connection is assumed to degrade the
quality of service experienced by the tethered user in the form of processing
delays and/or reduced connection bandwidth. The relay node may represent
a client from the same operator or instead, belong to any other provider.

The network operator n € {1,..., N} obtains its benefit as the difference
between the operational costs of providing service to its users and the monetary
income yielded by their contracts {£2,,}*_,. We simplify this cost as the sum of
the costs associated to the price of the resources needed to establish the connec-
tion directly to the BS (collected in C.), the price of serving a user through a
connection of any other operator (resp. Cg) and the cost of tethering a connec-
tion, in the form of an incentive C'r to the client owning the tethering device. If
we denote such a profit as B(n), we have that

B(n7 C) £ Z Qm - Cfgt(C)a (1)

meM (n)
where the total cost per user C%%({) is given by
Cra'(€) & CLI(¢(m) = D) + CeI(¢(m) = 0) + CrI(¢(m) =T), (2)

with I(-) as an auxiliary indicator function taking value 1 if its argument is true
(and 0 otherwise). In the above formulae ¢(m) € {D, 0, T} denotes the connection



mode (DIRECT, OTHER, TETHERED) of user m as per the description above. This
defined budget will encompass the first optimization goal tackled in this study
via the heuristic refinement of the vector of connection modes ¢ = {¢(m)}M_,.

When the user at hand is tethered through the shared connection of any
other user in the network, we will assume that the quality of service degrades in
the form of a processing delay. The delay severity will be modeled as a numerical
score whose value depends on 1) the number of hops from the user to the BS;
2) the number of simultaneously tethered users at the intermediate nodes that
compose the path from the user to the BS. This numerical score R(¢) will be
set by the topology of the tree network modeling the connections between the
underlying set of users and the BS deployed in the scenario, which in turn is given
by the choice of connection modes ¢ for the compounding nodes of the network.
This tree is rooted on the backhaul, with IV first-level nodes representing the BS
in the scenario, and intermediate/leaf nodes standing for the M users.

While other progression models for the delay can be assumed instinctively,
in this work we will compute R(() as the average of the transmission slots to be
waited by every node in the network in the best and worst cases. Assuming a
round robin scheduling policy among users tethered at the same device, the best
case stands for the case where node m transmits directly through a multihop
path to the BS without awaiting for any other’s transmission. The latter (worst
case) corresponds to the case when the node is scheduled for transmitting during
the last transmission slot of every intermediate tethered set of users until the BS
at hand. If M]™(n) denotes the number of users at level [ in the subtree rooted on
BSn e {1,...,N} such that > ,>" M (n) = M(n) and all nodes in M;"(n)
share the same parent node as m; and I(m) € {1,...,L7, .} (with n = O(m))
is the level at which user m is located in the aforementioned subtree, this score
particularized for BS n will be given as

Ly (BR(O £ RRQ) 1 §l<m>+M1<n> ) Mg (n)

(n)meM(n) 2 M — 2

R(nv C): M

namely, as the average between the number of hops between m and its BS (best
case) and the maximum number of scheduling slots that m should await for
transmission (worst case). Based on this definition, the problem tackled in this
paper can be formulated as the search for a K-sized set of optimal connection
modes {¢;}X | such that the Pareto trade-off between the operators’ revenue
and the quality of service experienced by the users is differently balanced, i.e.

{¢'} S =  arg  [max B(n,¢), minR(n,C)], 3)

¢e{p,0,T}M

which can be read as the maximization of the operators’ benefit and the mini-
mization of the delay experimented by the users. From an intuitive perspective
such optimization objectives are conflicting: in order to reduce operational ex-
penditures, an operator will prefer that their users share as much bandwidth as
possible via tethering and a favorable mechanism for incentives. Likewise, direct



connections will ensure a high quality of service for the users, but will go against
the business goal of the operator at hand. By solving the above optimization
problem the decision maker commanding the operator of the network can easily
trade one objective for the other as a function of the business priorities and the
contractual requirements established at the time. In the next section we will
describe the heuristic solver designed to efficiently deal with the above problem.

3 Proposed Solver

To solve the problem formulated in the previous section we will resort to a
multi-objective version of the Harmony Search (HS) algorithm, a music-based
meta-heuristic optimization method first presented in [13] as a result of the ob-
servation of the music improvisation procedure undertaken by musicians. When
seeking a perfect harmony musicians rely on both their memory of notes played
in the past and random pitch variations, which are emulated in a computer pro-
gram much alike crossover and mutation processes in Evolution are mimicked
in Evolutionary Algorithms. Notes played by the musicians represent the val-
ues of the optimization variables, which are iteratively refined by applying the
aforementioned operators until a stop criterion is met (e.g. a maximum num-
ber of iterations or a steady convergence of the fitness values along successive
iterations). The good performance scores obtained by this heuristic has been
evinced in many application scenarios [14], with several prior contributions in

the telecommunication domain [15-18].
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Fig. 2. Tree structure represented by the Dandelion string C = {6,2,4,9, 3,7, 6, 8}.

In order to represent numerically the solutions to the problem in Expression
(3) (i.e. ¢) the Dandelion code will be used to represent the tree-like network
topology that jointly represents nodes connected to the backhaul under the three
connection modes {D,0, T} considered in this work. It is important to observe
that by evolving this tree the connection mode is determined depending on which
nodes result to be connected to each other. The Dandelion code is a bijective
mapping between a tree network topology of M + N + 1 nodes and an integer
string with length M 4+ N — 1. This code has several properties in terms of inher-
itance and locality that make it suitable for tackling tree optimization problems
by means of Evolutionary Algorithms [19], particularly in telecommunications
[20-22]. A brief explanation of the encoding and decoding processes is now given:

— Dandelion encoding: Given a tree on n nodes T' € I, usually in the form of
an adjacency list or connectivity matrix, with I3, denoting the set of possible
trees interconnecting n nodes:



Step 1: list intermediate nodes on the path from 1 to n in T'. Referring
to the example tree given in Figure 2, these are nodes 7, 3, 2, 6 and 4.
Step 2: find cycles in the list 7 by searching for limit elements, namely,
elements larger than any other to their right. Such elements for 7 in the
example list are 7, 6 and 4 and thus cycles are (7), (3,2,6) and 4.
Step 3: the array A¢ for tree T is constructed by filling its first row with
elements 2, 3, 4, ..., n — 1 and adding cycle-related information into its
second row, i.e.
23456789
Ac= [624—37——]'

Step 4: C;11 ==; for every i € [2,n — 1] and >, denoting x’s successor
relationship. Then, the Dandelion code C' corresponding to tree T is
given by the contents of bottom row of A¢.
23456789
AC_[62493768]' (4)

By looking at the complete A representation of the example, the Dan-
delion code of the hypothesized tree T is C = {6,2,4,9,3,7,6,8}.

— Dandelion decoding: this procedure produces a tree T' € I, as follows:

Step 1: a 2 x n — 2 matrix A, is built by inserting the integer set
{2,3,...,n — 1} in the first row and the elements of C in the second
row. For the exemplifying code C = {6,2,4,9,3,7,6,8}, A, is given as
per (4)

Step 2: define feo : [2,n — 1] — [1,n] such that fo(i) = C; for each
i € [2,n — 1]. Note that fc(i) corresponds to the i-th position C; of the
code.

Step 3: cycles associated to fo are computed as {Z1, Zs, ..., Zr}. In the
example 3 cycles, namely (2 6 3), (4) and (7), are obtained. Provided that
b denotes the maximum element in Z; (with [ € {1,...,L}), cycles are
then reordered such that b; is set as the rightmost element of Z;, and that
by > by if I < I'. In words, cycles are circularly shifted so that the largest
element is the rightmost and sorted so that cycle maxima decreases from
left to right. In the example this step yields {Z3, Z1} = {(7), (326), (4)}.
Step 4: a list 7 of the elements in {Z1, Zs,...,Z1} is composed in the
order they occur in the cycle list, from the first element of Z; to the last
entry of Zp,, i.e. m = {(1)(7)(326)(4)(10)}.

Step 5: the tree T € I, corresponding to C' is constructed by arranging
a set of n isolated nodes labeled with the integers from 1 to n. A path
from node 1 to node n will be constructed by traversing the list 7 from
left to right. An edge will be included between nodes i and C; for every
i € {2...,n — 1} not occurring in . The tree corresponding to the
Dandelion code C = {6,2,4,9,3,7,6,8} is the tree given in Figure 2.

The compounding steps of the proposed bi-objective HS solver are as follows:



1. Initialization: a pool of ¢ solutions with lengths M + N — 1 is initialized
uniformly at random from the alphabet {2,..., M + N}, which are evaluated
according to the objectives as per (3).

2. Harmony improvisation: a new set of solutions is created from the previous
set of harmonies by applying three stochastic operators: Harmony Memory
Considering Rate (HMCR), Pitch Adjustment Rate (PAR) and Random
Selection Rate (RSR), each driven by probabilistic parameters Payvcr, Prar
and Prsr, respectively. We embrace the seminal definition of these operators
proposed in [13] and extended in [23].

3. Fitness evaluation and memory update: the fitness values of the newly pro-
duced solutions is obtained and compared with those of the previous ones. As
we deal with a bi-objective optimization problem a non-dominated sorting
criterion based on dominance rank and crowding distance (similar to the one
embedded in the well-known NSGA-II evolutionary solver [24]) is selected.
Only the first ¢ solutions in the list of harmonies ordered by front rank (first)
and crowding distance (second) will be kept for the next iteration.

4. Termination: steps 2 and 3 are repeated until a number of iterations Z set
beforehand are completed.

4 Experiments and Results

In order to assess the performance of the proposed solver when addressing the
bi-objective optimization problem stated in (3), two different scenarios have been
created with two operators providing services over the same geographical area.
The relation between both operators is defined by « as explained in Section 2. In
all cases the area is 50 x 50 with a density of 20 nodes/users per operator. Values
of the coverage radii {R(n)}2_; have been dynamically adjusted in order to
provide service to at least 95% of the deployed users. Parameters of the HS solver
are set to ¢ = 30, Pamcr = 0.5, Ppar = Prsr = 0.1 and Z = 500 iterations,
with results averaged over 5 Monte Carlo experiments for each scenario. Incomes
from service contracts are assumed to be (2, = 1200 Vm € {1, ..., M}, whereas
costs are fixed to C,, = 1000 (direct connection), Cr = 600 (tethering incentive)
and Cg = C./a € {1000,10000}. (i.e. @« € {1,0.1}). Regarding the latter it is
important to note that o = 1 will emulate a coalition market agreement between
operators, whereas a = 0.1 will correspond to a competitive market environment.

Table 1. Statistics of the obtained Pareto front estimations.

min B(n, ¢)|max B(n, ¢)|min R(n, {)|max R(n, )
Coalition (o = 1) 4000.00 8800.00 10.43 884.98
Competition (a = 0.1)| 4400.00 8400.00 10.43 724.12

The discussion focuses on Figure 3 and the statistics summarized in Table 1.
As can be inferred from these obtained results, the income for the operators is
lower for the case when both implement a hostile pricing policy — i.e. a low a —



to provide services to external users. One would expect that this reduced profit
would come along with a remarkable improvement in terms of quality of service
for the end users (i.e. lower values of R(n,()). So do the obtained values for this
metric, but differences with respect to the coalition case are only found in its
maximum value. Therefore, from these results it can be concluded that for the
simulated scenarios, a coalition scenario between service providers is favorable
for increasing their average benefit whenever the degradation of the quality of
service is admissible under the contractual conditions of their users.
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Fig. 3. Pareto Fronts trading average benefit for the quality of service offered to users
under coalition and competition between operators.

5 Concluding Remarks

This manuscript has elaborated on analyzing the impact of different pricing
agreements between service operators on the Pareto trade-off between their net
income and the quality of service offered to their users. We have formulated this
scenario as a bi-objective optimization problem, which relies on modeling the
connection from users to the operators’ network equipment as a tree graph that,
in addition, accommodates the possibility of the operator to tether connections
under incentive mechanisms. This graph is evolved towards Pareto-optimal con-
figurations differently balancing quantitative metrics of the aforementioned opti-
mization goals. The evolution is implemented efficiently by a heuristic solver that
iteratively refines candidate solutions represented by means of the so-called Dan-
delion code, which possesses interesting features for evolving tree networks via
crossover and mutation processes. Preliminary simulation results have evinced
how such objectives behave when operators agree on a soft pricing policy for
user roaming or, alternatively, impose hostile costs when processing users from
any other counterpart.
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