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Abstract. This paper describes a Big Data stream analytics platform developed
within the DEWI project for processing upcoming events from wireless sensors
installed in a truck. The platform consists of a Complex Event Processing (CEP)
engine capable of triggering alarms from a predefined set of rules. In general
these rules are characterized by multiple parameters, for which finding their opti-
mal value usually yields a challenging task. In this paper we explain a methodol-
ogy based on a meta-heuristic solver that is used as a wrapper to obtain optimal
parametric rules for the CEP engine. In particular this approach optimizes CEP
rules through the refinement of the parameters controlling their behavior based
on an alarm detection improvement criterion. As a result the proposed scheme
retrieves the rules parameterized in a detection-optimal fashion. Results for a cer-
tain use case — i.e. fuel level of the vehicle — are discussed towards assessing the
performance gains provided by our method.
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1 Introduction

Wireless Sensor Networks (WSN) have become an ubiquitous way of getting all sorts
of information in many application scenarios. Among the myriad of research initiatives
around technological advances on WSN, the DEWI (Dependable Embedded Wireless
Infrastructure) project aims to provide key solutions for wireless seamless connectivity
and interoperability in smart cities and infrastructures by considering everyday physical
environments of citizens in buildings, cars, trains and airplanes [1].

One of the specific industrial domains of the DEWI project is the automotive realm,
with an emphasis on trucks. There are at least two main reasons for incorporating wire-
less sensors within this specific class of vehicles: the fact that there are no wires to
connect imply savings in terms of installation time and cost of cabling. Moreover, the
replacement of wireless devices are performed in a much simpler, less invasive manner
that their wired counterparts. Indeed many studies highlight the key impact that the ex-
tensive use of WSN in the automotive realm can imprint on safety, maintenance, and
energy efficiency of the vehicle [11].



This paper focuses on a platform developed within the above project for analyzing
upcoming data streams from these sensors. Such a platform acquires and analyzes data
from fuel, water level, electric suspension and brake lining wear captured by means of
wireless sensors deployed at the corresponding parts of the vehicle. The information
from the GPS device installed in the vehicle is also sent to the platform. From the per-
spective of computation and processing the treatment of large volumes of data streams
(analyzing Big Data in motion) is nowadays an utmost necessity, and a large number
of technologies have emerged to carry out this task (e.g. [9]). The analysis performed
at the platform side consists of triggering different alarms when the level exceeds spe-
cific thresholds, when indicating a possible fuel theft from the truck or when the truck
rides over a bumpy road. In this context the technology selected for alarm detection in
the DEWI platform is one of the dominant technologies for stream processing, Com-
plex Event Processing. Unfortunately, the challenge underlying this specific rule-based
technology for stream processing is the appropriate configuration of its compounding
rules, which should ensure the efficient and accurate detection of alarms in the vehicle.

There are multiple papers in the literature which aim to optimize CEP technologies
in different aspects such as efficiency [14], performance [12], features [7, 13, 5] or spe-
cial application fields [10]. In order to settle an argument for our study, we build on
two of the above related works: [12] (complex event processing queries over real-time
RFID streams events) and [14] (improvement of pattern queries performance). Both re-
late to the improvement of CEP engine efficiency and performance, but in our case the
optimization is based on an improvement of the CEP rules and not on enhancing the
detection or event pattern matching optimization techniques themselves. There are also
scarce references dealing with the application of CEP techniques to vehicular scenarios
[6]. However, interestingly within the scope of this manuscript to the knowledge of the
authors there is no baseline literature where meta-heuristic algorithms are applied to
improve the event detection rules of CEP technologies or to optimize the CEP engine
itself. This paper covers this research gap by explaining a methodology for finding opti-
mal rules based on already acquired data that have been properly labeled as alarm or not
alarm by a technician using the DEWI platform. The method is based on the Harmony
Search (HS) algorithm [8], a meta-heuristic optimization procedure that permits to ef-
ficiently seek optimal parameters for the rules. We will show how this nature-inspired
solver can efficiently tackle the optimization of CEP rules by exploring its performance
when utilized for detecting sudden drops in the fuel level of the monitored vehicle.

The rest of the paper is organized as follows: Section 2 provides an overview of the
platform by explaining its compounding modules: the wireless network within the truck,
the data acquiring platform and its Complex Event Processing (CEP) engine. Section 3
reviews the toy use cases and explain their implementation over CEP engines. The rule
optimization methodology is explained in detail in Section 4. Finally, we present and
discuss the results in Section 5, followed by Section 6 which concludes the work.

2 Platform Overview

The platform consists of three different elements: 1) the WSN, 2) the semantic mid-
dleware that receives the data from the sensors, and 3) the Complex Event Processing



(CEP) functionality, which analyzes their captured information, and that is integrated
with a sub module dedicated to the optimization of the definition of the rules. For test-
ing purposes a simulator has been also developed to emulate output data from WSN.
The output from the Complex Event Processing, namely, the computed alarms, is visu-
alized in a tool specially deployed for this purpose. The connection from the WSN to
the semantic middleware is currently done via TCP/IP connections, but other protocols
can be potentially supported.

We assume that the WSN is deployed on the tractor unit of a Volvo FH-16 truck,
whose trailer is not sensorized anyhow. Each of the deployed sensors measures a par-
ticular parameter for which it has been specially designed, along with their battery level
and temperature. The specific signals that are measured by this mesh of sensors are
brake lining wear (4 sensors), electronically controlled suspension level (another set of
4 sensors), the fuel tank level and the washer fluid level. All sensors label their mea-
sured samples with a timestamp, the last two bytes of the MAC address of the sensor
for identification purposes, other sensor specific measurements, the voltage level of its
battery and the value of its thermistor.

Fig. 1. Snapshot of the application tool to visualize the data from the sensors and the alarms.
The visualization area has several areas: on the top right there is a map to visualize the current
position of the truck, at the center there are icons denoting the level of alarm for each of the
sensors, including the level of its battery and thermistor, around the center display the values
acquired. Finally at the bottom of the visualization tool there is a text area where new EPL-coded
rules can be added to the CEP.

Aiming to assess the processing capabilities of the platform, a simulator has been
developed to replicate the behavior of these sensors and the GPS signal of the truck
in different scenarios. One of the scenarios emulates the normal use of the truck in
the Goteborg area in which the fuel level, the washer fluid level and the brake lining
wear decrease gradually over time, while the suspension sensor have small random
variations. Other scenario that can be simulated by means of the developed simulator is



the theft of fuel from the tank when the truck is stopped. This effect is replicated by a
sudden reduction of the tank level. The truck driving through a rough road with uneven
pavement is emulated by producing a high frequency and high amplitude random noise
added independently to each of the sensors attached to the suspension.

The CEP engine used in this project has been developed using the EsperTech li-
braries [2]. Some of the advantages of using a complex event processing rely on its
stream event management capabilities, the fact that it can analyze a massive amount of
information really fast (e.g. we have been able to analyze the information arriving from
over 10° simulated sensors per second) and without requiring to store any information
in a database. Other appreciated characteristics of CEP are its scalability and a rich
declarative language for behavioral configuration.

The CEP is configured to detect different alarms and to forward them upon being
triggered to a visualization tool for their output and inspection; a snapshot of the WSN
monitoring system to visualize these alarms can be seen in Fig. 1. In order to interpret
these alarms properly by the visualizer they are all defined to have a standardize data
structure. The alarm is composed by two strings and an integer within the range N[0, 6].
The first string denotes the last two bytes of the MAC address associated with the sensor
that triggers the alarm, the second string denotes the quantity associated to the alarm
(three have been considered: “sensor”, “thermistor” and “battery”), and finally an inte-
ger value denoting the level of alarm. The implementation of the rules which character-
ize the alarms defined in the previous paragraph is performed via the so-called Event
Processing Language (EPL), which is a standard SQL language with extensions in order
to provide aggregating functions, pattern matching, event windowing and joining.

Finally, the platform includes a labeling tool that allows tagging captured data. With
the help of this tool a human technician can check, evaluate and properly review pre-
viously acquired data. These labels are crucial for the heuristic process described in
Section 4.

3 Use Cases

We have considered two different use cases in order to test the ability of the platform to
capture and analyze data and to assess the goodness of our rules optimization method-
ology. In the rest of this section we explain in detail the EPL rules for each of the
scenarios that we want to detect. These involve detecting any fuel theft, when the truck
drives along a rough road or when any of the sensor values changes above or below
predefined thresholds. All the rules that we present here select the structure of the alarm
that we mentioned above, two strings and an integer value, so they can be interpreted
by the visualizer.

3.1 Fuel Theft Detection
The detection of fuel theft is performed by the following EPL rule:

SELECT mac, ’sensor’, 4
FROM Sensor (mac="AAA8").win:length(10)
HAVING
max (sensorValue)-min(sensorValue) > 10 & sensorValue < avg(sensorValue)



This rule filters out the information arriving to the stream of data Sensor by the
MAC of the fuel sensor (i.e. MAC = “AAAS8”) and considers a data window of 10 mea-
surements. The alarm is triggered in this case if the difference between the maximum
and minimum values attained in the window is larger than ten units and the last mea-
surement is less than the average within the window. Basically this rule tries to capture
a sudden variation in the fuel level while the general trend is decreasing.

3.2 Bumpy Road Detection

In order to detect a road in bad shape the EPL rule reads:

SELECT mac, ’sensor’, 5

FROM Sensor

(mac in("AAA4","AAAS","AAAG","AAA7™)).
win:time(5 sec)

HAVING
(stddev(sensorValue,mac="AAA4") > 10 |
stddev(sensorValue,mac="AAA5") > 10 |
stddev(sensorValue,mac="AAA6") > 10 |
stddev(sensorValue,mac="AAA7") > 10)

In this case the MAC addresses that are considered are the ones of the electronic
controlled suspensions and what is measured is the standard deviation within a window
of 5 seconds of duration. If the standard deviation for any of those sensors exceeds 10
units the alarm is deactivated.

4 Rule Optimization Procedure

The data flow entering the platform is defined by F' = {f;}, with j € (-0, ...,0] and
fj € R denoting the sample obtained at time index j. We consider j to be negative, the
last obtained sample having index j = 0. In general the functions implemented in the
CEP engine are applied not to all the history of data but to a limited time window. At
a given time index j the time window w; considered is defined by the measurements
{fil; = fj=i} with i € [0, ..., W]. We also assume that the human operator has labeled the
inflow of data with its correspondent alarms {H;} such that:

1 if alarm should have been deactivated at time j,

H;= {0 else. M

Having a set of previously obtained data adequately labeled by {H;}, and a para-
metric family of rules, the aim of our study is to design a heuristic procedure to obtain
the parameters that fit best the alarms labeled by the operator. The method presented
here relies on the Harmony Search (HS) algorithm. The underlying philosophy behind
the general class of bio-inspired optimization algorithms (to which HS belongs) is to
modify the group of candidates by operators that mimic processes observed in Nature.
In these techniques candidate solutions compete, combine, mutate and evolve towards
regions of the solution space of progressively increased optimality [4]. HS [8] is encom-
passed in this broad field of bio-inspired optimization, and is motivated by the idea of
achieving harmony within the musical improvisation process undertaken by jazz bands.



Harmonies represent sets of variables to optimize, whereas the aesthetic quality of the
improvised harmony is given by the fitness function of the optimization problem at
hand. In the rest of this section we provide two particular examples, two different fam-
ilies of rules, of the method applied to the fuel theft use case.

4.1 2-Parameter Rule

The first example considered in this work is an extension of the rule introduced in
Section 3.1 with 2 parameters. Specifically we consider the rule #{; at time index j as:

I if (max {fi} - min{fi} > 1) and f; < B{fidic, -

win-{. 1

otherwise,

@)

where y € R[0,max{f;}) and 8 € (0,...,1] are the parameters to be optimized. We
assume the processing window length W; to be fixed and equal to 10. Note that the rule
introduced in Section 3.1 fits into this family with 8 = 10 and u = 1. The optimization
process of this rule relies on the maximization of the F; score [3]:

FI£2FP - R/P+R) 3)
where P and R are the precision and the recall given by
P:l‘p/(l‘p"'fp),ﬂz tp/(tp+f;’l) 4)

with 7, being the number of true positives (alarms that have been properly captured by
the rule), f,, the false positives (number of times that the rule has predicted an alarm
erroneously) and f, is the number of false negatives (ratio of occurrences when the rule
does not declares any alarm and there is one). These can be expressed as:

b= |Hi=1&H =1, f,=|[#=1&m=0}, f=|[H;=0&H; =1}, &
where |-| denotes set cardinality. The F; score can be thought of as a weighted aver-
age of P and R. Alternatively, depending on the particular application of the rule, a
different fitness function can be used such as the maximization of the precision P, the
minimization of the recall R or any other metric suited to the detection requirements of
the specific scenario under scope.

4.2 Pattern Correlation Rule

We will consider a different family of rules in our second example. In this case the aim
is to compare the incoming flux of data F' with a pattern A (f) modeled as

w
ﬂ(l):Zai-é(t—LAt), ©)
i=0



where ¢ (7) is the Dirac’s delta function and we assume that the number W of parameters
a; agrees with the size of the CEP processing window. We will consider «; € [0, ..., 1],
therefore A (¢) € [0, ..., 1]. The rule family can be written in the following way:

LAt W S, (- o) <
(}.{j: , 1 Ziewj ﬁj @i SE€ (7

0, otherwise,

where € has an small value. In this case 7 fires and alarm whenever the pattern function
A is close to the transformed incoming flux {f;};c,,;. We consider that { f;};c,,; are related
to {fi}iew; by the transformation:

Al = afilj+b if (1/a) = maxie,, ({fi}) — minie,, ({fi}) > p, @)
W 0 otherwise,
with b = —a - mine,,; ({f:})- This transformation is realized in order to normalize the

incoming flux to the range [0, ...1] and therefore to remove the dependence on the actual
range of F. In order to accommodate small disturbances in the incoming flux we have
included a parameter u > 0. The rule defined by Expression (7) compares the shape of
the incoming flux with the shape of the pattern A as long as the variation of F is larger
than y in a particular processing window.

As it is explained in Section 4.1, we could fix € to a particular value and use the F;
score as the maximization criterion to find the pattern function parameters {«;}. Instead
we choose to find {@;} by minimizing the distance of A to the transformed incoming
flux whenever the alarm should be deactivated. The resulting fitness function to be
minimized can be written as

elad) = > H; > (fl;-ai) . ©)
J

iEw;

The benefit of using this particular equation for the fitness is that as a byproduct the
befitted € to be used in Expression (7) can be estimated by computing

e =max | H; )" (7l - a) . (10)

IEW’/'

where @; are the values that minimize (9). Note that, in general, by minimizing (9) we
minimize €. On the other hand (9) has a remarkable caveat: it does not consider the
behavior when H; = 0, which implies that if the pattern A realized by {«;} is found
in the data when H; = 0, & will not penalize those values. In other words f}, is not
considered at all in finding {@;}.

5 Experiments and Results

In order to test the methodology we have considered the fuel level data shown in Fig.
2. The data represents approximately 2600 captures of the level of the fuel tank. For
J € [-2600, —1700] normal operation with a small decrement of the level is shown. At



Jj = —1700 and ~ —1650 there are two sudden reductions which are labeled by an alarm
(in red), after the second reduction again normal operation occurs. Two more alarms are
labeled happening at j * =900 and = —400. Refueling can be noted at j ~ —1300 and
~ —=350.

100 F=ms | —r S
80 108

60 106 _

40 5= I 04
20 102

0 M 10

-2500 -2000 -1500 -1000 -500 0O
J
Fig. 2. Data obtained from the wireless fuel sensor f; and the labels H; denoting the fuel theft
events. In these data 4 alarms can be distinguished. While a sudden decrease of the level of fuel
occurs, these correspond to fuel theft events. In between the normal usage, small decrements of
the level by the normal use of the truck can be noted plus two instances when the tank is refueled.

5.1 2-Parameter Rule

We have used the previous data in order to obtain the best parameters S and u. An
example of how the HS optimization process converges is shown in the left side of
Fig. 3 where it can be observed how the fitness & goes to 1 as the iterative process
evolve and the parameters reach some values in the solution space. One of things that
is worth mentioning is the fact that there is no single solution in the solution space,
actually we found that there exits a range of solution for this particular problem. The
HS optimization process obtains a different solution depending on the initial random
values choose for the parameters. In order to obtain a sense of the solution space we
have performed thousands of HS optimization varying randomly the initial parameters.
The region of the solution space can be hinted in the right subplot of Fig. 3 8 x u €
R (0.887,0.99994) x R (1.003,20.9993). The average number of iterations to attain a
fitness of 1.0 is equal to 60 + 1.

5.2 Pattern Correlation Rule

In this case we use the same set of data to optimize the fitness derived for the pattern
correlation rule. If we assume that in normal operation the level of the fuel does not
decrease, the optimal solution corresponding to decreasing jumps in the fluid level cor-
responds to {a[}?:() =1 and {a'[}Z: + = 0. Despite unrealistic it is logical to assume that
the parameters for a real solution (meaning that in normal operation the fuel decreases
smoothly) approach these values. The results for a single solution are presented in Fig.
4. Note that the HS optimization process takes a significant larger amount of iterations
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Fig. 3. On the left, an example of how the fitness & {3, u} converge to 1 (in red against the left axis)
and the parameters § and p (green and blue against the right axis) reach a point in the solution
space. For a given set of training data the actual values obtained for the parameters depend on the
initial seed used for the HS optimization process. On the right hand side there is a collection of
solutions in the u — 8 space giving hints of the range of the solution space.

to converge, ~ 8000 iterations to reduce the fitness 3 orders of magnitude. The actual
values that we found for {a;} corresponds to:

{a/i}Z:O ={0.976,0.995, 0.968, 0.963,0.991, 0.050, 0.040, 0.041,0.074, 0.026}, (11)

which qualitatively agree with the logic inferred from the ideal solution.
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Fig. 4. Convergence of the fitness & ({«;}) (in red and against the left axis) to 0 and the {«;} (other
colors and against the right axis) to their solution values.

6 Conclusion

In this paper we have presented a platform that enables analyzing data originated in
sensors within a truck tractor unit for the fuel level, the washer fluid level, the suspen-
sion and the brake lining wear. The platform is capable of detecting different complex
alarms as proven using the data streamed by the simulator for several toy examples. A
procedure to find optimal parametric rules based on HS optimization has been devel-
oped which has been tested for the fuel theft use case using two different families of
parametric rules and different fitness functions, proving itself useful.



The next step within the project involves completing the connection of the actual
sensors installed within the truck to the platform. Moreover a key ingredient in working
with real signals will be to analyze the real signals and to develop machine learning
algorithms capable of the finding the specific patterns which characterize the scenarios
that want to be detected. Steps are already being taken to complete the overall system.
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