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Abstract The Web of Data is widely considered as one of the major
global repositories populated with countless interconnected and struc-
tured data prompting these linked datasets to be continuously and sharply
increasing. In this context the so-called SPARQL Protocol and RDF
Query Language is commonly used to retrieve and manage stored data
by means of SPARQL endpoints, a query processing service especially
designed to get access to these databases. Nevertheless, due to the large
amount of data tackled by such endpoints and their structural complex-
ity, these services usually suffer from severe performance issues, including
inadmissible processing times. This work aims at overcoming this noted
inefficiency by designing a distributed parallel system architecture that
improves the performance of SPARQL endpoints by incorporating two
functionalities: 1) a queuing system to avoid bottlenecks during the exe-
cution of SPARQL queries; and 2) an intelligent relaxation of the queries
submitted to the endpoint at hand whenever the relaxation itself and the
consequently lowered complexity of the query are beneficial for the over-
all performance of the system. To this end the system relies on a two-fold
optimization criterion: the minimization of the query running time, as
predicted by a supervised learning model; and the maximization of the
quality of the results of the query as quantified by a measure of similar-
ity. These two conflicting optimization criteria are efficiently balanced by
two bi-objective heuristic algorithms sequentially executed over groups of
SPARQL queries. The approach is validated on a prototype and several
experiments that evince the applicability of the proposed scheme.

Keywords: SPARQL, query rewriting, Linked Open Data, ontology manage-
ment, multiobjective optimization.

1 Introduction and Motivation

It will be soon a decade since the so-called Linked Open Data (LOD) paradigm,
along with several related projects and initiatives, became the main technol-



ogy enabler for the expansion of the Semantic Web, whose raison d’être was
an intrinsic information technologies revolution centered on enriching the pub-
lished data and coping with the inherent inability of machines to understand
websites [1]. Over the last decade the increasing adoption of LOD led to the
development of a distributed mesh of globally interlinked knowledge capable of
providing a pioneering method to traverse the web and interpret its contents: the
Web of Data. This huge, distributed, diverse database is deployed on manifold
domains and a wide range of subjects such as government, libraries, life science
and media, among many others. It allows for the execution of exploratory and
selective queries over a enormous set of updated, comprehensive and pertinent
data. The prevalent semantic query language for these repositories is SPARQL,
which provides a full set of query operations and functionalities. Notwithstand-
ing, in order to fully unleash the Semantic Web potential SPARQL users are
forced to dominate the syntax of the SPARQL language. On this purpose the
community has devoted considerable research effort towards deriving sophisti-
cated yet friendly tools to help users properly exploit the vast amount of available
data and achieve a satisfactory performance in terms of accuracy. Under this ra-
tionale, the systems and engines where SPARQL endpoints are deployed have
become the primary target where to allocate specialized resources and intelligent
software procedures to enhance the quality of service commonly jeopardized and
called into question due to significant delays, specially when dealing with large
datasets [2].

The contribution of this research work gravitates on three main axes to
improve the performance of SPARQL systems: the performance prediction of
SPARQL queries prior to their processing, their relaxation and the planning of
run queues in processing engines. In the field of performance prediction there is
a large number of works in the field of the SQL query language for relational
databases, which have traditionally revolved around statistical or heuristics costs
estimation. In regards to the prediction of the query execution time, supervised
learning models have positioned themselves as the off-the-shelf estimators in
recent years (see e.g. [3, 4]). To the best of our knowledge there are very scarce
studies that extrapolate this acquired knowledge with relational databases to
the LOD repositories. The main difference between these two areas resides on
the absence of an schematic structure in the RDF standard, as well as on the
shortage of statistics of the datasets compounding the LOD environment. Jus-
tifiably, the current generation of SPARQL query cost estimation approaches
that inspire from those derived for relational databases have been proven to be
inadequate for the task of performance prediction. This is the rationale for the
brand new direction started in [3] and subsequently followed in [4,5] that resorts
to machine learning techniques to extract SPARQL performance metrics from
already executed queries. Despite the good predictive scores reported in these
references (with the latest work in [5] scoring an average R2 of 0.94 with Support
Vector Machines), we will show throughout this manuscript that there is still
room for improvement in terms of the learning model and the set of features.

Concerning the second aspect that can be leveraged so as to improve the
performance of endpoints, the optimization of SPARQL queries has hitherto



mainly focused on rewriting the query at hand based on different objectives,
such as the minimization of the execution time or the reduction of its struc-
tural complexity. We classify these studies into three categories depending on
the utilized optimization technique: cost-based [6–8], heuristics-based [9–11] and
machine learning techniques [12, 13]. Cost-based schemes suffer from the afore-
mentioned low availability of statistics in the LOD. Heuristic approaches assume
that structurally simple queries are in general less expensive, but this is not the
case in SPARQL due to the inference and variant extensional information con-
tained in a SPARQL arrangement. The work by Bicer et al. in [12] introduce the
concept of Relational Kernel Machines, which simplify the problem of extract-
ing features from the complex structure of semantic data and hence improving
näıve approximations based on Support Vector Machines. Likewise, in [13] long-
running queries (detected by predicting its computational costs) are relaxed by
applying a Genetic Algorithm (GA) based rewriting approach so as to yield a
faster rewritten query. In our work we will take a step further so as to consider
in the determination of the query relaxation policy the inherent Pareto trade-off
between the quality of the results returned by the query and the relative running
time with respect to its original version. This Pareto-optimal balance between
both objectives will be shown to be tractable via evolutionary multi-objective
heuristics.

Finally, the third axis refers to the scheduling of run queues to organize and
coordinate query executions, around which our literature survey has identified a
single, recent yet relevant contribution for SPARQL endpoints [14]. In this paper
the authors explain that guaranteeing a consistently good quality of service in
SPARQL endpoints is a difficult task to accomplish, for which the use of an
scheduler is proposed to optimally manage the execution of queries in SPARQL
endpoints. We go one step beyond the simple schedulers explored in this reference
by proposing a novel approach in which we optimize the scheduling criterion
based on the previously mentioned SPARQL relaxation policies.

Our software system blends together the three aspects commented above to
improve the runtime performance of a SPARQL endpoint. The problem is that
many of the queries processed by such systems can not be executed within a
reasonable time for the user. To address this issue a bi-objective algorithm is
designed to obtain the optimal set of relaxation rules on this dataset without
disregarding the quality of the query result. By applying such a Pareto-optimal
set of relaxation rules the execution time of the queries is reduced while keeping
the quality degradation of their results to a minimum. Such rule sets can be
further exploited by implementing a set of processing queues in the SPARQL
endpoint, so that the optimization algorithm determines the adequate set of
relaxation rules, the allocation of queries over the pool of processing queues and
the execution order of the queries assigned to every queue. In summary, the
main goal of this paper is the design of a software system capable of enhancing
the performance of a SPARQL endpoint by combining optimized run queues,
adequate query relaxation policies and SPARQL query run time predictions.
Schematically the novel technical ingredients of this research work are as follows:



1. The derivation of new predictive features for the design of a runtime esti-
mator for SPARQL queries, which can be divided in query language algebra
and vocabulary features defining the terms of the query.

2. The design and implementation of a system based on run queues to improve
the performance of SPARQL endpoints, which to our knowledge is the first
one proposed in the literature.

3. A query relaxation optimization algorithm guided by two objectives: the
maximization of the query quality (quantified in terms of similarity) and the
minimization of the run time of the query.

4. The use of parallelizable evolutionary meta-heuristic solvers to the perfor-
mance improvement of SPARQL endpoints in the particular aspects of query
relaxation and run queue scheduling mentioned previously.

The rest of the manuscript is structured as follows: Section 2 overviews the
general architecture of the proposed system and formulates the optimization
problem that mathematically defines its operation. Subsections 2.1 and 2.2 delve
into the design of estimators for the query running time and quality on which
the aforementioned optimization problem is based. Next, Section 3 elaborates on
the meta-heuristic optimization algorithm designed to efficiently implement the
proposed system, including relevant aspects such as the solution encoding and
the design of the operators. Section 4 reports on the experimental evaluation of
the proposed scheme and conclusions are drawn in Section 5.

2 Architecture Overview and Problem Formulation

In this section we briefly introduce key concepts and notation used throughout
the rest of the paper. SPARQL is the standard query language for RDF. Let
I be the set of all IRIs (Internationalized Resource Identifiers), L be the set of
RDF literals, and B be the set of RDF blank nodes. These three infinite sets are
pairwise disjoint. An RDF triple is a tuple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L); s
is called the subject, p is the predicate, and o stands for the object of the triple,
respectively. An RDF graph is a finite set of triples. For the purpose of this
paper, a dataset D is an RDF graph. Given a dataset D, we refer to the set
voc(D) ⊆ (I ∪L) of IRIs and literals occurring in D as the vocabulary of D. We
use the words term or resource to refer to elements in I ∪ L.

The core of a SPARQL query is a basic graph pattern, which is used to match
an RDF graph in order to search for the required answers. A triple pattern is
a triple, without blank nodes, where a variable may occur in any place of the
triple. A graph pattern is an expression recursively defined as follows: 1) a triple
pattern is a graph pattern; 2) if P1, P2 are graph patterns, then (P1 and P2), (P1

union P2), and (P1 opt P2) are graph patterns; and c) if P is a graph pattern
and C is SPARQL constraint, then (P filter C) is a graph pattern. With these
definitions in mind, a query is defined by Q = (D, δ) where D is the dataset to
be used during the pattern matching and δ is the graph pattern of the query.

Figure 1 shows an overview of the proposed system, which is conceived as
an intermediate manager between the users submitting their queries and the



pool of parallel processing queues that compound the SPARQL endpoint. Sev-
eral modules can be found in this diagram: first it is important to remark that
the relaxation policies and the mapping to processing queues are optimized at
the level of previously clustered query groups, so that queries within the same
cluster undergo the same relaxation rules and are assigned to the same process-
ing queue. This cluster analysis module is based on the methodology presented
in [15] that follow these steps: data generation mimicking an input data source,
query log mining, clustering and SPARQL feature analysis. As a result P query

sets {Qp}Pp=1 = {{Qnp}
Np

n=1}Pp=1 (clusters) are produced with Qnp = (D, δnp ).
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Figure 1: Overview of the proposed architecture assuming P = 3 query pro-
files {Qp}3p=1 and Z = 3 processing queues at the endpoint. The lower part of
the plot corresponds to the processing stages that are performed off-line based
on a historic record of queries submitted to the endpoint, whereas the upper
part illustrates the entire relaxation and scheduling procedure applied to a new
incoming query submitted to the endpoint.

Prior to its online working regime the SPARQL endpoint must decide the
set of relaxation policies, the queue and the priority within the queue for each
of such clusters. Let fr(Q) be the generic definition for a relaxation rule, drawn
from a R-sized vocabulary F = {fr(Q)}Rr=1 of possible relaxation operators. It is
important to note that fr(Q) may only impact on a certain triple (s, p, o) within
Q or, instead, involve more terms within its expression. Three kind of rules have
been considered in the setup:

1. Deletion rules, which consist of eliminating a triple (s, p, o), filter, terms,
union and/or optional clauses from the query.

2. Addition rules, which add a restrictive clause to the query, e.g. a limit oper-
ator.

3. Hierarchical rules, by which a term of the query is substituted by its descen-
dant or ascendant in the ontological hierarchy of the queried dataset.



The complete list of possible rules F is sorted by their estimated degree of
degradation on the results of the relaxed query. Under this notation Fp ⊆ F will
denote the sequence of relaxation operators that will be applied to the queries
belonging to cluster p, whereas Qn,′p will denote the relaxed version of query Qnp
after the application of the rules in Fp.

The determination of {Fp}Pp=1 will be done under a twofold criteria: we seek
to optimally balance the impact of the relaxation policy on the average running
time and quality of the results associated to the query; the more relaxed the query
Qn,′p is, the faster it will be executed at the endpoint, but the less precise the
returned results will be with respect to the original, unrelaxed query Qnp . Such
objectives will be represented by two functions T (Qn,′p , Qnp ) and P (Qn,′p , Qnp ),
both ∈ [0, 1], corresponding to the relative running time and quality of the
relaxed query Qn,′p w.r.t. Qnp . In mathematical terms the relaxation module in
Figure 1 seeks, for each query profile Qp, a group of policies F∗p composed by

several relaxation rule sets {F∗,mp }Mr
m=1 such that

F∗,mp = arg
Fp⊆F

min
1

Np

Np∑
n=1

T (Qn,′p , Qnp ),max
1

Np

Np∑
n=1

P (Qn,′p , Qnp )

 , (1)

subject to Qn,′p being the query resulting from the successive application of the
relaxation rules f ∈ Fp to Qnp . For each m ∈ {1, . . . ,Mr} a different set of rules
F∗,mp balances differently both fitness objectives when applied over the reference
query profile Qp. Subsections 2.1 and 2.2 will elaborate on the estimation of the
value for T (Qn,′p , Qnp ) and P (Qn,′p , Qnp ) prior to the execution of the query itself.

Once such Pareto estimations have been produced off-line for each query
profile, the scheduler module exploits this information to determine 1) which
processing queue should be assigned to an incoming query associated to a certain
cluster p ∈ {1, . . . , P}; 2) which relaxation policy should be applied to the query
among those in F∗p; and 3) the execution order of the queries (i.e. their priority)
in the case several of them are assigned to the same queue. Without loss of
generality computing power differences between processing queues are assumed
to yield factors {τz}Zz=1 (with τz ∈ (0, 1] and Z denoting the number of queues)
such that the time taken by queue z to process Qnp is reduced by 100 · τz %.
The queue allocation to be decided at this module will be denoted as a non-
surjective, non-injective mapping function λ : {1, . . . , P} 7→ {1, . . . , Z}, such
that λ(p) will stand for the queue to which the queries associated to profile
p ∈ {1, . . . , P} will be forwarded. Priorities within queue z ∈ {1, . . . , Z} will
be denoted as a real-valued variable αp ∈ R such that if λ(p) = λ(p′) (i.e.
profiles p and p′ are assigned the same processing queue), the queries in profile
p will be executed first if αp ≤ αp′ . Conversely, if αp > αp′ queries belonging to
cluster p′ will be granted a higher execution priority level than those in p. The
criterion to determine the optimal mapping λ♦(p), relaxation policies {F♦

p }Pp=1

and priority factors α♦ = {α♦
p }Pp=1 at the scheduler module will again rely on

the aforementioned time-quality Pareto trade-off, but incorporating a subtle yet
relevant aspect: queries within the same processing queue interact in terms of



their completion time, i.e. both the relative order of queries within a given queue
and the different processing capabilities of the queues themselves are meaningful
for the overall evaluation of the average execution time taken by the endpoint to
process incoming queries. In other words, a vector of mapping functions λ♦(·) .

=
{λ♦,m(·)}Ms

m=1, relaxation policies F♦
p
.
= {F♦,m

p }Ms
m=1 and priority levels A♦(·) .

=

{α♦,m}Ms
m=1 = {{α♦,m

p }Pp=1}
Ms
m=1 will balance the following Pareto:

λ♦,m(·), α♦,m,F♦,m
p = arg

λ∈Λ
α∈RP

Fp⊆F

min
1

P

P∑
p=1

τλ(p)

Np

Np∑
n=1

T (Qn,′p , Qnp )

P∑
%=1
% 6=p

1

N%

N%∑
η=1

τλ(%)T (Qη,′% , Qη%)I(α% ≤ αp)I(λ(%) = λ(p)), (2)

max
1

P

P∑
p=1

1

Np

Np∑
n=1

P (Qn,′p , Qnp )

 , (3)

where I(·) is an auxiliary indicator function taking value 1 if its argument is
true and 0 otherwise; λ(p) ∈ {1, . . . , Z} denotes the index of the queue to which
the queries in cluster p are assigned; and Qn,′p is the result of relaxing query
Qnp through policy Fp. In words, Expression (2) denotes the time taken by the
queries Qnp within cluster p, which depends not only on the assigned queue
through τλ(p), but also on the average time taken by queries belonging to other
clusters % ∈ {1, . . . , p − 1, p + 1, . . . , P} provided that they are assigned to the
same processing queue and granted higher priority. Finally, Expression (3) poses
the mean quality score averaged over all the considered query clusters.

Before proceeding with the algorithmic solution proposed to efficiently solve
the above problems, it should be noted that in practice the relaxation and
scheduling modules might be conceived and formulated as a single optimization
problem driven by the objective functions in Expressions (2) and (3). However,
by decoupling both modules a deeper understanding of the flexibility of the clus-
ters with respect to the set of relaxation operators can be acquired, with further
potential applications beyond the one addressed in this paper (e.g. optimizing a
distributed deployment of the database at hand).

2.1 SPARQL Query Run-time Prediction

As shown in Figure 1 and argued above, an estimation of the running time
required to complete a given relaxed query Q is needed when the proposed
approach operates in both off-line and on-line modes. Such an estimation must
be produced without executing the query itself. Therefore, a supervised learning
model is included in order to predict execution times of generic SPARQL queries
based on a historic set of already executed queries. The adopted approach is
similar to the one presented by Hassan et al. in [5], but with novel ingredients:



the learning model itself and the set of features extracted from the expression of
the SPARQL queries to build the training dataset. As such, this dataset consist
of a set of previously executed queries and the observed performance metric
values (execution times) for those queries in their native, unrelaxed form. The
goal is to extract proper features from the syntax of the queries to construct a
prediction model that provide us with an accurate estimation of the execution
time that can be generalized to new, possibly relaxed query sets. The proposed
set of features are classified as:

1. Algebra features, which represent the syntax of the SPARQL query, its oper-
ators and structural information. First we transform a query into an algebra
expression tree, from which we extract the following features: number of
basic graph patterns, filter operator presence, type of filter, limit operator
presence, optional operator presence, distinct operator presence, number of
projected variables, group operator presence, number of union, number of
joins and number of left joins.

2. Dataset vocabulary features, for which we use the dataset terms involved in
the SPARQL query definition to extract intensional and semantic informa-
tion about them. First we compute the overall set of terms, and with this bag
of words we compute the TF-IDF frequency [16] as a quantitative score of
the importance of the terms of the query (words) in the dataset (document).

Figure 2: SPARQL query features vector.

Regarding the supervised learning model we opt for a so-called Random
Forest Classifier [17], a widely utilized ensemble model characterized by its good
generalization properties and low tendency to overfit. In short Random Forests
exploit the principle of bagging by randomly splitting the data into chunks,
selecting a feature subset and training a weak learner (tree) on each of them,
from where the predicted output is given by voting (classification) or averaging
(prediction) the individual outputs of the aforementioned weak models.

2.2 SPARQL Quality Estimation

The estimation of the Pareto-optimal set of relaxation policies in the proposed
system also requires an a priori estimation of the quality of the relaxed query
with respect to its original version. This estimated function, heretofore denoted
as P (Q′, Q), must be computed based exclusively on the query itself, i.e. without
submitting any request to the endpoint. Within the scope of this paper it has
been noted that a query can be defined by a pair Q = (D, δ). Based on this



notation, the application of a relaxation policy to this query produces a relaxed
query Q′ = (D, δ′), with δ defining the RDF graph pattern of the query. To this
end, a similarity metric S(Q′, Q) has been designed to provide a quantitative
estimation of the similarity between queries Q′ and Q. This similarity metric is
designed to replace the generic function P (Q′, Q). Basically, S(Q′, Q) maps two
SPARQL queries to a real value in the closed interval [0, 1], such that higher
values indicate that queries are more similar to each other. Mathematically,
S : Q×Q 7→ [0, 1], with Q denoting the set of all possible SPARQL queries that
can be defined over the dataset D.

To implement the similarity function, we follow the approach introduced
in [18] by which similarity between Q′ and Q depends on the similarity between
their graph patterns δ′ and δ. We can consider a graph pattern δ as composed
by a number of triple patterns {P1, . . . , PK}, each composed by three terms
(sk, pk, ok). In general a term t (either subject, predicate or object) can be as-
signed different similarity factors φ(t′, t) ∈ R[0, 1]. These factors are meant to
reflect a similarity measure between the term t of the original query pattern and
its counterpart t′ after the relaxation process.

Given a triple pattern P = (s, p, o) and its relaxed counterpart P ′ = (s′, p′, o′),
the vector (φ(s′, s), φ(p′, p), φ(o′, o)) can be conceived as a point in a three di-
mensional space, where the point (1, 1, 1) represents the best (i.e. the triple P
and its relaxed counterpart are equal to each other) and the point (0, 0, 0) the
worst. Therefore, the Euclidean distance between (φ(s′, s), φ(p′, p), φ(o′, o)) and
(1, 1, 1) can be deemed as a measure of pattern similarity σ(P ′, P ) given by

σ(P ′, P ) = 1−
√

(1− φ(s′, s))2 + (1− φ(p′, p))2 + (1− φ(o′, o))2

3
. (4)

Given an original query Q compounded by graph patterns {P1, . . . , PK)
and its relaxed version Q′, their pattern-wise similarity values {σ(P ′k, Pk)}Kk=1

(computed as in the above expression) can be likewise regarded as coordinates
in a K-dimensional space. Again, the Euclidean distance between the points
(σ(P ′1, P1), . . . , σ(P ′K , PK)) and (1, . . . , 1) yields the sought normalized similar-
ity measure S(Q′, Q) expressed as

S(Q′, Q) = 1−

√∑K
k=1 (1− σ(P ′k, Pk))2

K
, (5)

which serves as a predictive estimation of the quality of a given relaxed query
Q′ for the meta-heuristic optimization algorithm explained in what follows.

3 Proposed Meta-heuristic Solver

Following the mathematical formulation posed in Section 2 (Expressions (1)
through (3)), it should be noticed that the two bi-objective optimization prob-
lems driving the relaxation and scheduling criteria of the proposed scheme are



very similar to each other, the difference relying mainly on the alphabet of the
variables involved. As such, the Pareto optimization of the relaxation policies Fp
to be applied to a certain query profile Qp can be encoded as a |Fp|-sized vector
of integers drawn from the set {1, . . . , R} (with R standing from the number
of possible relaxation operators), each indexing a different rule within F . On
the other hand, the scheduling problem requires a mixed integer-real encoding
strategy, as it implies optimizing not only – again – the relaxation policy to be
applied for a given query profile, but also the relative ordering of queries along
time when they belong to profiles assigned to the same processing queue. Such
an encoding diversity imprints notable changes in the design of the solvers to
face these problems.

In essence both optimization algorithms are based on approximate, self-
learning approaches that allow evolving intermediate solutions towards areas
of the solution space characterized by increasingly higher Pareto optimality. In
this context there is a plethora of algorithmic alternatives in the literature to deal
with multi-objective problems [19, 20], among which we will focus on those in-
spiring from behavioral patterns observed in Nature and Social Sciences. Specifi-
cally the bi-objective solver utilized in this work stands on the so-called Harmony
Search (HS) algorithm [21], which emulates the process of music improvisation
and composition observed in practice so as to yield a population-based meta-
heuristic solver quite similar to other schemes from Evolutionary computation1,
but outperforming them in many practical scenarios [22].

In its original definition, the HS algorithm breaks down in three stochastically-
driven operators (HMCR, PAR and RSR) that are sequentially applied to every
compounding variable (referred to as instrument) of a ϕ-sized population of po-
tential solutions to the problem (correspondingly, harmonies) until a given stop
condition is satisfied. The value taken by a variable is therefore a note, whose
entire pitch range depends on the alphabet of the represented variable. This is
the rationale why the design of the HS operators is closely linked to the encoding
approach that allows numerically representing the produced solutions, specially
those that do not permute elements among the population but rather impose
perturbations on the variables based on their respective alphabets.

When particularized to the problem tackled in this work, the integer encoding
approach used to deal with the first relaxation problem posed in Expression (1)
permits to resort to the nominal HS operators for integer-variable problems first
introduced in [21] (namely, HMCR, PAR and RSR), with the variable alphabet
F sorted in terms of the estimated impact of its compounding relaxation rules in
the fitness functions to be optimized. Likewise, each harmony produced by HS
as a potential solution to the scheduling problem is divided in two parts, isolated
from each other in regards to the application of the HS operators, but coupled
together by its participation in both metric functions: 1) a P -sized vector of

1 In fact there have been controversial discussions lately around the originality of the
näıve HS algorithm in regards to its close resemblance to the more traditional (µ+1)
Evolution Strategies. Having said this, foregoing algorithmic descriptions will use the
HS terminology impartially with respect to the aforementioned controversy.



integer elements from the alphabet {1, . . . ,Mr}, with Mr denoting the number
of Pareto-optimal relaxation rulesets previously produced for each query profile
p by the relaxation module; and 2) a P -sized vector of real-valued variables from
R[0, Z], with Z denoting the number of processing queues. Each of the variables
within this second part represents both the profile-to-queue mapping λ(p) and
the relative ordering αp by virtue of a Random Keys strategy [23]; if Xp denotes
the p-th variable of this part, λ(p) = bXpc and αp = Xp − bXpc. By sorting
queues in terms of their processing capabilities {τz}Zz=1 a more suitable relative
queue ordering can be achieved for its processing through the vicinity-based PAR
operator of HS.

START

END

HMCRInitialization

Non-dominated

iterations < I?
Yes

No

Return estimated front

sorting & filtering

PAR

RSREvaluation

Figure 3: Flow diagram of the proposed bi-objective optimization algorithm.

To end with, Figure 3 schematically describes the 4 compounding steps of
the utilized bi-objective HS solver:

1. Initialization: the harmonies (potential solutions) of the population are filled
with notes (values) drawn uniformly at random from the alphabets of their
compounding instruments (variables).

2. Application of the operators: a new population of harmonies is produced
by sequentially applying, to each note of the prevailing population, the
stochastic HMCR, PAR and RSR operators defined in [21] based on prob-
abilistic parameters Pr(HMCR), Pr(PAR) and Pr(RSR). For real-valued
variables the PAR operator requires an additional bandwidth parameter
BW ∈ R(0,∞), such that the new value Xnew

p for Xp given by the PAR
operator is Xnew

p = Xp +BW ·Uniform(−1, 1).
3. Evaluation and update: fitness values for every newly produced potential

solution are computed, concatenated to those from the previous iterations,
sorted and filtered based on the well-known non-dominated sorting criterion
utilized in other solvers (e.g. NSGA-II). The application of this criterion
yields a ϕ-sized set of harmonies that are kept for the next iteration due to
their higher Pareto optimality and wider Pareto span (crowding distance).

4. Termination: steps 2 and 3 are repeated for I iterations.

4 Experimental Evaluation

In this section we assess the performance of the two novel technical aspects
of our system: the prediction of SPARQL query run-times (Subsection 2.1)



and the bi-objective optimization algorithm (Section 3). To this end a dis-
tributed queue system based on Apache Kafka has been implemented. The
SPARQL query and similarity computation module relies on the JENA frame-
work, RDFLib, Wordnet Similarity (code.google.com/p/ws4j/) and SimMet-
rics (sourceforge.net/projects/simmetrics/), whereas the optimization and
run-time prediction algorithms have been implemented in Python. The experi-
ment discussed in what follows can be conceived as a SPARQL query rewriting
scenario contextualized in the LOD semantic web. Specifically we select the so-
called DBPSB benchmark, with DBpedia 3.5.1 as the RDF dataset. The training
(70%), validation (25%), and test (5%) queries for the run-time prediction model
are extracted from the 25 available DBPSB query templates in which RDF terms
are assigned randomly from the DBpedia vocabulary, amounting to a total of
1260 queries. To measure its average execution time, each query is executed
five times. This setup for the predictive model scores a 20-fold cross-validated
average R2 score of 0.977 with a Random Forest Classifier composed by 100
estimators, which is higher than the R2 = 0.94 score reported in [5].
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Figure 4: (a) Pareto front estimated by the relaxation module for a query profile
Qp; (b) Pareto front produced by the bi-objective scheduler for P = 10 query
profiles and Z ∈ {5, 10, 15, 20} queues with varying processing capabilities.

We begin our discussion by Figure 4.a, which depicts the estimated Pareto
front (in bold black) of the relaxation module corresponding to a hypothesized
query profile Qp composed by the entire set of 1260 DBPSB queries previously
generated for the predictive model. Such compounding queries can be processed
through a maximum of 10 relaxation operators from an overall alphabet of R =
18 possible relaxation rules. Values for the parameters of the HS solvers are
ϕ = 25, Pr(HMCR) = 0.5, Pr(PAR) = 0.1, Pr(RSR) = 0.01 and I = 100
iterations, which have been optimized via a off-line grid search. This figure also
includes the Pareto fronts estimated during the execution of the bi-objective
algorithm marked in increasing levels of gray. As seen in the plot the derived
HS-based algorithm succeeds at finding query relaxation policies that sacrifice
the quality of the results returned by the queries for a lower execution time.

We finally proceed with the analysis of the results obtained by the proposed
scheduler for P = 10 profiles as a function of the number of available process-
ing queues Z ∈ {5, 10, 15, 20}. For simplicity profiles are generated by shuffling
and splitting the set of DBPSB queries in 10 groups, but any other clustering

code.google.com/p/ws4j/
sourceforge.net/projects/simmetrics/


scheme can be instead applied. For the sake of understandability of the results
processing capabilities are forced to grow linearly with Z such that an increase
of this parameter implies adding queues with lower τz to the simulation setup.
Parameter values of the HS solver are as in the previous case, with BW = 1. As
shown in Figure 4.b, as Z increases the Pareto fronts produced by the scheduler
are better in the Pareto sense due to the availability of new queues with en-
hanced processing power. It is important to note that this trend also holds when
Z ≤ P , which evince that the proposed scheduler excels at relaxing profiles and
allocating them to processing queues in scenarios with limited resources.

5 Concluding Remarks and Future Research Lines

This work has presented a novel approach to improve the performance of SPARQL
endpoints by using an optimized run-queue system incorporating automatic
query relaxation and intelligent queue scheduling functionalities. The proposed
scheme hinges on a bi-objective optimization criterion, which permits the admin-
istrator of the endpoint to balance differently two conflicting objectives: the aver-
age run-time of queries incoming at the endpoint and the quality of such queries
when relaxed with respect to their original versions. In order to efficiently solve
this trade-off, a bi-objective solver based on the HS algorithm has been designed
along with an encoding strategy aimed at handling mixed integer/real-valued
variables. Besides this bi-objective formulation further novel aspects have been
proposed in this manuscript: an improved feature set to predict the execution
time of SPARQL queries and the use of semantic similarity to infer their quality.
From a practical perspective the proposed system is useful in those cases when
several users concurrently submit computationally expensive queries to SPARQL
endpoints where other mechanism such as cost-based models are not effective
due to the unavailability of data statistics.

There are several research directions to aim at from this study: to begin with
the work can be extended to other benchmarks such as LUBM or BSBM, possibly
incorporating real SPARQL endpoint logs in various domains such as UNIPROT
(biological domain) or BNE (Biblioteca Nacional de España, bibliographic do-
main). There is also room for improvement in the optimization algorithm itself
by leveraging other alternative bioinspired solvers. Other schemes for computing
the semantic similarity can be explored such as the one proposed in [24].
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