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ABSTRACT

Purpose: To introduce optimal experimental design techniques in the cytogenetic

biological dosimetry practice. This includes the development of a new optimality

criterion for the calibration of radiation doses.

Materials and Methods: The most typical optimal design criterion and the one

developed in this research are introduced and applied in an example from the litera-

ture. In another example from the literature, a simulation study has been performed

to compare the standard error of the dose estimation using different experimental

designs. An RStudio project and a GitHub project have been developed to repro-

duce these results.

Results: In the paper it is observed that the application of optimal experimental

design techniques can reduce the standard error of biodosimetric dose estimations.

Conclusions: Optimal experimental design techniques jointly with practitioners re-

quirements may be applied. This practice would not involve an additional laboratory

work.
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1. Introduction

Ionising radiation (IR) may be absorbed by humans, leading to negative health conse-

quences. After a radiation event, absorbed dose estimates allow for appropriate clinical

actions to be made. IRs produce damage at a cellular level in the form of chromoso-

mal aberrations, which may be used as biomarkers of the absorbed dose. To study the

effect of IR, calibration dose-response curves are built.

These curves are based on the irradiation of n in vitro blood samples which sim-

ulate homogeneous whole body exposures. Each sample is irradiated with a dose di

(i = 1 . . . n). After the irradiation, mi blood cells are analysed for sample i and yij chro-

mosomal aberrations are scored for each cell (j = 1, . . . ,mi). For a low linear energy

transfer (LET) whole body irradiation, it is assumed that the number of chromosomal

aberrations follow a Poisson distribution whose intensity is a quadratic function of the

absorbed dose, i.e.

Y ∼ Pois(C + αD + βD2), (1)

where Y represents the number of aberrations, D is the absorbed dose and {C,α, β} is

the calibration parameter set. These parameters are calculated by maximum likelihood

estimation. It is important to remark that in this Poisson model the link function is

the identity, instead of the usual logarithmic link. This assumption is supported by

the biological process of production of IR induced chromosomal aberrations, Hall and

Giaccia (2012), and statistically in Oliveira et al. (2016). For high LET exposures it

is assumed there is no quadratic dose effect, i.e. β = 0, Hall and Giaccia (2012).

The experimental design of these curves is based on the International Atomic Energy

Agency (IAEA) suggestions. IAEA (2011) states that at least 10 doses should be used

in the range ( 0, 5 ] Gy, plus a control sample, and at least 4 of them in ( 0, 1 ] Gy.

The sample size, i.e. the number of scored cells at each dose, should aim to detect 100

chromosomal aberrations at each dose, but for the lower doses it is suggested to score

a number of blood cells in the range [3000, 5000]. It is also suggested to reduce the

variance of the linear term, i.e. α. Table 1 shows the experiment calibration data used
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to construct the dicentric dose-response curve in Barquinero et al. (1995).

In this example, the fitted calibration parameters and their standard errors, esti-

mated by maximum likelihood, are the following:

Ĉ = 0.00128, SE(Ĉ) = 0.00047;

α̂ = 0.02103, SE(α̂) = 0.00516;

β̂ = 0.06307, SE(β̂) = 0.00401.

(2)

The dose estimation leads to an inverse regression problem. The irradiated dose

cannot be modeled as a regression function of the frequency of chromosomal aberra-

tions, note the doses are fixed values selected by the experimenter. Given a sample

with a total of S dicentrics in N blood cells, the dose estimation is the positive value

D̂ which solves the equation

Ĉ + α̂D̂ + β̂D̂2 = S/N ⇒ D̂ =
−α̂+

√
α̂2 − 4β̂(Ĉ − S/N)

2β̂
. (3)

This equation is based on the fact that the Poisson maximum likelihood estimator for

the mean is the sample mean.

The purpose of this work is to provide experimental designs which reduce variance

of the dose estimation in the design space (here the range of doses). Next section

(Section 2) introduces the optimal experimental design field and presents a new criteria

for calibration models.

2. Optimal experimental design

Let Y be a dependent variable, in our problem the number of dicentrics per blood

cell, whose probability mass function is f(Y |D, θ), here the Poisson probability mass

function. D is the explanatory variable, the absorbed dose here, and θ = {Ĉ, α̂, β̂}

is the parameter set. Given a prediction function for the explanatory variable, in our

case the estimation of the absorbed dose η(N, θ) = D̂ (see Equation 3), the aim is to

find optimal (in some sense) experimental designs for the explanatory variable.
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The sample size N is the number of blood cells analyzed. Two observed samples

sizes will be used: N = 500, the number of cells recommended to analyze by the IAEA,

and N = 50, the number of cells recommended to analyze in emergency situations for

fast triage radio-protection response (see Barquinero et al. (2017)).

An exact experimental design of size n consists of a collection of points di, i =

1, . . . , n, in a given compact design space, X . Some of these points may be repeated and

a probability measure can be defined assigning to each different point the proportion

of times it appears in the design. This leads to the idea of extending the definition

of experimental design to any probability measure (approximate design). From the

optimal experimental design point of view we can restrict the search to discrete designs

of the type

ξ =

{
d1 d2 . . . dn

w1 w2 . . . wn

}
,

where di, i = 1, . . . , n are the support points and ξ(di) = wi is the proportion of

experiments to be made, here the number of scored cells, at point di. Thus, wi ≥ 0

and
∑n

i=1wi = 1.

The Fisher information matrix (FIM) of a design ξ is given by

M(ξ, θ) =
∑
d∈X

I(d, θ)ξ(d), (4)

where

I(d, θ) = E

[
∂ log f(Y |d, θ)

∂θ

∂ log f(Y |d, θ)
∂θT

]

is the FIM at a particular point d. It is evaluated at some nominal value of θ. The

nominal value usually represents the best guess for the parameters vector θ at the

beginning of the experiment.

It can be proved that the inverse of this matrix is asymptotically proportional

to the covariance matrix of the parameter estimators. An optimality design criterion,
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Φ[M(ξ, θ)], aims to minimize the covariance matrix in some sense and therefore the in-

verse of the information matrix. For simplicity Φ(ξ) will be used instead of Φ[M(ξ, θ)].

The main optimality design criterion is the D-optimal, which maximizes the FIM de-

terminant, i.e. ΦD(ξ) = detM(ξ, θ). In this paper a modification of the I-optimality

criterion is considered, jointly to the D– and c-optimality ones.

The I−optimality criterion minimizes the average of the predictions of the response

variable, that is the function

ΦI(ξ,N) =

∫
X

∂η(N, θ)

∂θT
M−(ξ, θ)

∂η(N, θ)

∂θT
dY,

where the superscript − stands for the generalized inverse class of the matrix. In this

paper the interest is not in estimating Y , but the absorbed dose, D̂, explicitly known.

Therefore, the modified I−criterion, say IM -optimality requires the expected value of

η(N, θ) with respect S, i.e.

ΦIM (ξ) =

∫
X

E

[
∂η(N, θ)

∂θT

]
M−(ξ, θ)E

[
∂η(N, θ)

∂θT

]
dD. (5)

The c−optimality criterion is used to estimate a linear combination of the param-

eters, say cT θ, and it is defined by Φc(ξ) = cTM−(ξ, θ)c. Although the generalized

inverse is unique only for nonsingular matrices the value of cTM(ξ, θ)−c is invariant

for any member of the generalized inverse class if and only if cT θ is estimable with

the design ξ. IAEA (2011) states that a significant effort should be made to reduce

the statistical uncertainty associated with the linear dose effect coefficient of yield, α.

Consequently the c-optimality criterion is applied here for c = (0, 1, 0), and will be

referred as cα-optimality criterion.

The goodness of a design is measured by its efficiency, defined by

effΦ(ξ) =
Φ(ξ∗)

Φ(ξ)
.

The efficiency can be multiplied by 100 and be reported in percentage. If the function

has a homogeneity property there is a practical statistical interpretation. Thus, if the
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efficiency of a design is 50% this means that the design needs to double the total

number of observations to perform as well as the optimal design.

In order to check whether a particular design is optimal or not there is a celebrated

General Equivalence Theorem (GET). See Kiefer and Wolfowitz (1960), or Whittle

(1973) for a more general version. This theorem is valid for approximate designs and

convex criteria. It is quite useful also for building efficient algorithms for computing

optimal designs. If the criterion function, Φ, is differentiable the Equivalence Theorem

has a friendly and much more useful version. Let ψ(D, ξ) be the Frechet directional

derivative in the direction of a one-point design at D,

ψ(D, ξ) = lim
ε→0+

Φ[(1− ε)M(ξ, θ) + εI(D,α)]− Φ[M(ξ, θ)]

ε
.

This function is frequently called the sensitivity function. The GET states that

under some conditions of the criterion function, ψ(D, ξ) achieves its minimum value,

zero, at the support points of the optimal design.

This theorem provides also an easy-to-build bound for the Φ-efficiency of a design,

ξ,

effΦ(ξ) ≥ 1 +
minD ψ(D, ξ)

Φ(ξ)
.

For c−optimality the Elfving’s graphic method (Elfving (1952)) can be used to

construct the optimal design and this will not be needed.

More details on the theory of optimal experimental designs may be found, e.g., in

Pazman (1986), Fedorov and Hackl (1997) and Atkinson et al. (2007).

In next section (Section 3), these criteria are applied in a literature experiment to

compare efficiencies. López-Fidalgo and Amo-Salas (2019) considered a similar cali-

bration problem with the essential difference of considering the error in the dose with

its corresponding probability distribution.
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3. Application example

Applying the Barquinero et al. (1995) fitted coefficients as nominal values (see Equa-

tion 2), the IM -optimal local design for N = 500 and for N = 50 are shown in Table 2.

It is also displayed the D-optimal and the cα-optimal designs. The design space for

the absorbed doses is [0, 5] Gy.

The sensitivity functions of the optimal designs, are positive over all the design

space, Figure 1, and consequently the GET states they are locally optimal.

As the three optimal designs obtained here are extremal with only 3 different doses,

sequences are optimized, analogously to López-Fidalgo and Wong (2002), to produce

IM -suboptimal designs which look similar to the IAEA directions (IAEA (2011)). For

this aim, sequences are proposed for both doses and weights to be optimized. For the

doses, the following series is proposed for n points

{D1 = 0, D2 = r/4, Di = 5rn−i | 5
1

4−n < r < 1, i = 3, . . . , n},

where constrains are set for fixing a control point and the upper bound dose (5 Gy),

for having at least one point in the range (0, 0.25) Gy, and the rest of the points

greater than 0.25 and lower than 5. Then r is optimized. For their respective weights,

the sequence

Wi =
f(Di)∑n
j=1 f(Di)

is defined, where

f(x) = Ax2 +Bx+ 1, 0 < − B

2A
< 5, f(0) > 0, f(5) > 0, f

(
− B

2A

)
> 0.

These constraints are to ensure the function is positive in the space design X and the

critical point is inside X . A and B are optimized, the independent term is fixed to 1

in this quadratic shape to avoid multiple equivalent solutions by proportionality.

Table 2 also shows two IM -suboptimal designs, one for N = 50 and another for
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N = 500. Table 3 shows the efficiencies with respect the designs analyzed here.

All the results in this section can be reproduced by the RStudio project (RStudio

Team (2016)) code available under request to the corresponding author.

3.1. Sensitivity analysis

Changes on the true calibration coefficients are done to check the efficiency of the

optimal designs (modifying the nominal values) respect the original optimal design.

Tables 4 and 5 show the efficiencies of different modified optimal designs with respect

the IN=50
M - and IN=500

M -optimal designs. The nominal values used to compute the

design remain fixed while true values of the parameters are consider in a neighborhood

of them. The neighborhood was built using the standard errors of the estimators of

the parameter in the example of reference.

In Tables 4 and 5 the first column indicates the modification done to the original

nominal values. The second column in both tables describes the optimal design for the

indicated modification. The third column is the efficiency of the “modified” optimal

design with respect the optimal one for the original nominal values.

The original nominal values in this example are the maximum likelihood estimators

of the Barquinero et al. (1995) dicentric assay experiment. These values are stated

in Equation 2. This means that the calibration curve of the experiment is 0.00128 +

0.02103D + 0.06307D2. The first row of Table 4 is represents the modification of

subtracting the standard error of Ĉ to the nominal value of the intercept, i.e. the

calibration curve results 0.00081 + 0.02103D + 0.06307D2. For these nominal values

the IN=50
M -optimal design suggest to use the 15.93% of the cells as control, to irradiate

the 45.85% to 0.95 Gy, and the 38.22% to 5 Gy. The IN=50
M -efficiency of this design in

the scenario of the original nominal values is 94.20%.

4. Distribution for design space

When applying IM -criterion, a distribution for the doses in the space design may

be considered, to focus the reduction of the variance of the dose estimation to a

determinate range. Note that in Expression 5 the reduction of the variance of the dose
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estimation is distributed uniformly in all the dose range.

To consider the IM -criterion with a different distribution with probability function

f(D), this criterion function Expression 5 may be modified as

ΦIM (ξ) =

∫
X
f(D)E

[
∂η(N, θ)

∂θT

]
M−(ξ, θ)E

[
∂η(N, θ)

∂θT

]
dD.

In Section 5, as part of the comparative study, some probability functions f(D) are

checked, but in this study the authors are focused on the equally distributed space

design. Practitioners interested in constructing cytogenetic dose-response curves with

the techniques described in this work, will have the choice to select the distribution for

the space design they want to consider, e.g. they may be interested in more reduced

statistical uncertainty dose estimations for the 0-1 Gy range.

5. Comparative study

A comparative study is performed in order to check the variance of the dose estimations

for different experimental designs. Both parametric and non-parametric simulations

are performed. They will be described later in detail. The experimental designs consid-

ered are the classical, IN=500
M -optimal, IN=50

M -optimal, cα-optimal and D-optimal. In

the non-parametric simulations, since the support points di must be contained within

the available data, quasi-optimal versions of the above designs are used instead. Ad-

ditionally, the simulations are performed at a range {0.125, 0.25, 0.5, 0.75, 0.875, 1} of

different observation irradiation fractions, where irradiation fraction 1 corresponds to

full-body exposure.

The number of cells simulated in the observation is 500 and in the calibration is

20000. For each dose, experimental design and irradiation fraction, 10000 dose esti-

mates are simulated. The standard deviations of these simulations are shown in Ta-

bles 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 together with Figures 2 and 3. In these

tables, the minimum standard deviantion at each scenario is highlighted in bold.

The scripts which reproduce the results of these simulations are available on

https://github.com/athowes/biodose.
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5.1. Simulation details

Firstly, some preliminary steps are taken:

• Using the Barquinero et al. 1997 Table 1 data, nominal values for the calibration

parameters are fit by maximum likelihood estimation resulting in the values

Ĉ = 9.054 · 10−4, α̂ = 3.431 · 10−2, β̂ = 5.702 · 10−2

and the covariance matrix

Σ̂ =


0.009726 −0.038362 0.012924

−0.038362 2.351729 −1.012357

0.012924 −1.012357 0.885871

 · 10−5.

• For each approximate experimental design ξ, the exact experimental design

ξ∗ =

{
d1 d2 ... dn

m1 m2 ... mn

}

is generated where the number of cells mi at each design point di sum to the

total calibration sample size. In this case, that is to say
∑n

i=1mi = 20, 000. This

is done using rounding if necessary.

5.1.1. Observed full-body exposure simulations

The number of chromosome aberrations yz is simulated in each cell z in both the exact

experimental design ξ∗ and the observed sample. As previously noted, there are two

methods for simulating yz. The steps of the parametric simulation for cell z at dose d,

with full-body exposure f = 1, are:

S1 Generate (C,α, β) from N ((Ĉ, α̂, β̂), Σ̂)

S2 Calculate λ = C + α · d+ β · d2

S3 Generate yz from Pois(λ)

Alternatively, in the non-parametric simulations yz is determined by re-sampling with
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replacement from the Barquinero et al. 1997 Barquinero et al. (1997) Table 1 data

corresponding to dose d.

In both methods the calibration parameters are then refitted by maximum likelihood

estimation using the simulated calibration data. The absorbed dose estimation D̂ may

then be calculated using the simulated observed sample, of size 500, and the refitted

calibration parameters via Equation 3. In the case that there is either no solution or

only negative solutions to Equation 3 then D̂ is set to zero.

5.1.2. Observed partial-body exposure simulations

For observed partial-body exposure simulations, the calibration data is simulated as

above. As before the calibration parameters are refitted by maximum likelihood esti-

mation. However, for the cells in the observed sample the simulations also incorporate

the fraction f of the body which has been irradiated.

In the case of partial-body exposure the number of chromosome aberrations is be-

lieved to follow a zero-inflated Poisson distribution, with additional parameter ω, the

proportion of extra zeroes (see Higueras et al. (2016)). The value of ω may be estimated

using Dolphin’s method (IAEA (2011))

f =
(1− ω) exp(d/d0)

ω + (1− ω) exp(d/d0)
, (6)

where d0 is the 37% cell survival dose. From experimental evidence d0 is believed to be

between 2.7 and 3.5 Gy. As such, the steps of the parametric partial body simulation

for each cell z in the observed sample are:

S1 Generate d0 from U(2.7, 3.5)

S2 Calculate ω =
(

f
1−f exp(−d/d0) + 1

)−1
(rearranging Equation 6)

S3 Generate (C,α, β) from N ((Ĉ, α̂, β̂), Σ̂)

S4 Calculate λ = C + α · d+ β · d2

S5 Generate yz from ZIP(ω, λ)

Similarly to the whole-body exposure simulations, the non-parametric partial-body

simulations of the cells in the observed sample are made by re-sampling with replace-
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ment, this time from the Barquinero et al. (1997). Table 2 data corresponding to dose

d and irradiated fraction f .

For both parametric and non-parametric simulations a zero-inflated Poission dis-

tribution is fitted to the observation data to give maximum likelihood estimate λ̂.

This is used in place of the sample mean in Equation 3 and again combined with the

simulated calibration parameters to give the dose estimate D̂. As before, in the case

that there is either no solution or only negative solutions then D̂ is set to zero.

Table 18 summarizes the standard deviations of dose estimations using the classical

design divided by the standard deviations of dose estimations using the optimal design

in the same situation, i.e. assuming the same dose, the same irradiated fraction body

and the same type of simulation. These ratios are grouped in four dose ranges. The

mean and the 95% most probably interval (MPI) are shown for each gruop.

6. Final remarks

A new optimal experimental design criterion is proposed here to minimize the dose

estimation error for classical cytogenetic biodosimetry calibration curves. The results

displayed here show how the IM -efficiency can be increased significantly defining non-

extremal alternative designs which are inside the IAEA directions (IAEA (2011)).

Approximate designs are proposed balancing both the minimization of the dose esti-

mation variance and the experimenters suggestions.

The application of these results allow to define new experimental designs taking

into account the results in previous experiments. For instance, the alternative design

for irradiating 18261 blood cells (the same number of cells scored in the Barquinero

et al. (1995) experiment) based on the 11 points IN=500
M -suboptimal design at Table 3

would be

 Dose (Gy): 0.00 0.19 0.48 0.64 0.86 1.15 1.54 2.07 2.78 3.73 5.00

Scored cells: 2064 1815 1484 1325 1144 958 812 800 1117 2143 4599

 .

In Table 18 it is observed that the reduction of the standard error of dose estimations

in optimal designs with respect the classical design increases at higher doses. In fact, at

12



lowest doses (≤ 0.25 Gy) the classical design seems to produce lower standard errors.

Here it is necessary to consider that only the IM -optimal design is focused on reducing

the standard error of dose estimations, and as the simulated samples are of size 500,

only the IN=500
M -optimal design is indicated to reduce the average of the standard

error of whole-body irradiations in the design space (0-5 Gy). However, in general,

application of OED techniques reduces the standard error of dose estimations. For

instance, the standard error for doses higher than 2 Gy is reduced in average a 15%.

For more specific targets, e.g. to reduce the standard error at doses lower than 1 Gy

for partially irradiated samples, a new design can be generated by giving more weight

to the 0-1 Gy interval in the design space, assuming a partially irradiated sample is

given.

Suboptimal designs are proposed here in order to come to a compromise between

OED techniques and experimenters’ experience. This implies to deteriorate the theo-

retical optimization, but it is important to remark that in practice an optimal design

is as optimal as true its model hypothesis. Consequently, experimenters can distrust

an extremal design with only three points. In this particular practice, the spread of

dose points can respond to the worry of biodosimetrists in a dose range values which

they consider critical, for instance at doses lower than 1 Gy.

This research proposes the application of OED techniques for designing cytogenetic

dose-response curves. A new optimality criterion is proposed to minimize the cali-

brated estimation of dose. In Section 3 designs are calculated and analyzed for the

Barquinero et al. (1995) dicentric assay experiment, based on this new criterion and

in other well-known criteria. The results of this section are reproducible by the R code

scripts available (under request to the corresponding author) in the form a RStudio

project (RStudio Team (2016)). In Section 5, a comparative study via simulations is

performed. These simulations compare the error of the dose estimations of different

designs using the Barquinero et al. (1997) dicentrics plus rings data. The GitHub

project biodose (https://github.com/athowes/biodose) reproduce the results of this

comparative study.
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Figure 1. From left to right, sensitivity functions of the IN=500
M -, IN=50

M - and cα-optimal designs for the
Barquinero et al. (1995) dicentric assay.
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Figure 2. Non-parametric.
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Figure 3. Standard deviation of simulated dose estimations; 10,000 simulations via parametric bootstrap,

plot faceted by irradiated fraction
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Table 1. Dicentric distribution within cells, cells analysed m, total

number of dicentrics detected s, and sample means s/m for each irra-
diated dose.

Number of dicentrics
Dose (Gy) 0 1 2 3 4 5 m s s/m

0.00 4992 8 5000 8 0.002
0.10 4988 14 5002 14 0.003
0.25 1987 20 1 2008 22 0.011
0.50 1947 55 2002 55 0.027
0.75 1736 92 4 1832 100 0.050
1.00 1064 99 5 1168 109 0.093
1.50 474 76 12 562 100 0.178
2.00 251 62 16 3 332 103 0.310
3.00 104 72 15 2 193 108 0.560
4.00 35 41 21 4 2 103 103 1.000
5.00 11 19 11 9 6 3 59 107 1.814
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Table 2. First column at each design represents the weight (%) at 0 Gy. All designs have a 5 Gy point
whose weight is omitted.

Name Design (Gy and %)

Classical 27.38
0.1 0.25 0.5 0.75 1 1.5 2 3 4

27.39 11.00 10.96 10.03 6.40 3.08 1.82 1.06 0.56

IN=500
M -optimal 12.08

0.93
49.62

IN=50
M -optimal 24.89

1.01
41.67

cα-optimal 12.22
0.73
78.15

D-optimal 33.33
0.75
33.33

IN=50
M -suboptimal, n = 10 20.95

0.19 0.69 0.91 1.21 1.61 2.13 2.83 3.76
17.80 10.75 8.15 5.27 2.46 0.51 1.08 7.40

IN=500
M -suboptimal, n = 11 11.29

0.19 0.48 0.64 0.86 1.15 1.54 2.07 2.78 3.73
9.94 8.12 7.26 6.27 5.25 4.45 4.38 6.12 11.74
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Table 3. Designs efficiencies (%).

Name IN=500
M -eff IN=50

M -eff cα-eff D-eff

Classical 8.26 10.43 43.57 37.85
IN=500
M -optimal 100.00 86.33 72.65 84.79
IN=50
M -optimal 91.73 100.00 62.08 96.74
cα-optimal 49.46 50.62 100.00 62.85
D-optimal 81.40 93.15 52.51 100.00
IN=50
M -suboptimal, n = 10 82.43 87.18 52.91 87.12
IN=500
M -suboptimal, n = 11 88.53 78.02 54.82 75.84
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Table 4. Sensitivity analysis for IN=50
M -criterion (%). First

column at each design represents the weight (%) at 0 Gy. All
designs have a 5 Gy point whose weight is omitted.

Modification Design (Gy and %) IN=50
M -eff

−SE(Ĉ) 15.93
0.95
45.85

94.20

+SE(Ĉ) 42.96
0.77
49.07

50.76

−0.003D 43.21
0.78
46.56

60.25

+SE(α̂)D 15.72
1.02
46.55

94.04

−SE(β̂)D2 23.22
1.02
42.40

99.84

+SE(β̂)D2 26.81
1.00
40.94

99.80

+0.00047− 0.000015D 42.65
0.76
49.71

49.17

−SE(Ĉ) + SE(β̂)D2 16.55
0.93
45.45

95.02
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Table 5. Sensitivity analysis for IN=500
M -criterion (%). First

column at each design represents the weight (%) at 0 Gy. All
designs have a 5 Gy point whose weight is omitted.

Modification Design (Gy and %) IN=50
M -eff

−SE(Ĉ) 8.79
0.90
51.32

98.66

+SE(Ĉ) 39.77
0.87
46.32

61.29

−0.003D 33.77
0.92
43.40

79.79

+SE(α̂)D 9.09
0.97
51.52

98.88

−SE(β̂)D2 11.54
0.94
50.00

99.97

+SE(β̂)D2 12.76
0.91
49.23

99.96

+0.00047− 0.000015D 42.27
0.79
48.93

44.49

−SE(Ĉ)− SE(β̂)D2 9.00
0.89
51.11

98.82
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Table 6. Non-parametrically simulated standard deviations for whole body irradiations.

Irradiated dose (Gy)
Design 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4 5

Classical 0.0274 0.0487 0.0877 0.0921 0.0917 0.0935 0.0970 0.1000 0.1128 0.1321 0.1555
qIN=500
M 0.0389 0.0653 0.0940 0.0911 0.0905 0.0896 0.0916 0.0891 0.0885 0.0884 0.0830

qIN=50
M 0.0387 0.0646 0.0941 0.0913 0.0921 0.0901 0.0905 0.0913 0.0892 0.0896 0.0818

qcα 0.0226 0.0426 0.0822 0.0869 0.0888 0.0893 0.0907 0.0926 0.0925 0.0958 0.0936
qD 0.0361 0.0628 0.0942 0.0935 0.0915 0.0913 0.0913 0.0907 0.0892 0.0898 0.0828
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Table 7. Parametrically simulated standard deviations for whole body irradiations.

Irradiated dose (Gy)
Design 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4 5

Classical 0.0256 0.0661 0.0837 0.0901 0.0929 0.0952 0.0971 0.1017 0.1154 0.1351 0.1619
IN=500
M -op 0.0279 0.0669 0.0845 0.0904 0.0925 0.0946 0.0951 0.0954 0.0955 0.0958 0.0966
IN=50
M -op 0.0274 0.0669 0.0829 0.0909 0.0924 0.0927 0.0940 0.0946 0.0947 0.0959 0.0974
cα-op 0.0268 0.0661 0.0834 0.0893 0.0927 0.0939 0.0953 0.0955 0.0966 0.0993 0.1042
D-op 0.0261 0.0656 0.0837 0.0914 0.0940 0.0952 0.0953 0.0957 0.0953 0.0966 0.0969
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Table 8. Non-parametrically simulated standard de-
viations for partial body irradiations, irradiated frac-

tion 0.875.

Irradiated dose (Gy)
Design 2 3 4 5

Classical 0.2595 0.2127 0.1884 0.1857
qIN=500
M 0.2470 0.1992 0.1575 0.1356

qIN=50
M 0.2483 0.1979 0.1577 0.1336

qcα 0.2554 0.2039 0.1666 0.1446
qD 0.2498 0.1996 0.1588 0.1346
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Table 9. Non-parametrically simulated standard de-
viations for partial body irradiations, irradiated frac-

tion 0.75.

Irradiated dose (Gy)
Design 2 3 4 5

Classical 0.3315 0.2649 0.2163 0.2402
qIN=500
M 0.3219 0.2453 0.1876 0.1905

qIN=50
M 0.3161 0.2476 0.1855 0.1900

qcα 0.3300 0.2563 0.1958 0.2011
qD 0.3185 0.2485 0.1853 0.1900
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Table 10. Parametrically simulated standard deviations for partial body irradiations, irradiated fraction 0.875.

Irradiated dose (Gy)
Design 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4 5

Classical 0.0441 0.2280 0.3642 0.3992 0.3284 0.2914 0.2610 0.2447 0.2208 0.2015 0.2091
IN=500
M -op 0.0751 0.2760 0.3687 0.4053 0.3292 0.2880 0.2565 0.2431 0.2096 0.1749 0.1607
IN=50
M -op 0.0831 0.2308 0.3823 0.4040 0.3300 0.2900 0.2621 0.2439 0.2083 0.1764 0.1609
cα-op 0.0363 0.2424 0.3659 0.4084 0.3201 0.2927 0.2615 0.2450 0.2084 0.1791 0.1664
D-op 0.0753 0.2422 0.3617 0.4025 0.3271 0.2911 0.2590 0.2448 0.2096 0.1771 0.1629
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Table 11. Parametrically simulated standard deviations for partial body irradiations, irradiated fraction 0.75.

Irradiated dose (Gy)
Design 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4 5

Classical 0.0910 0.2349 0.3697 0.4484 0.3855 0.3490 0.3264 0.3073 0.2531 0.2346 0.2401
IN=500
M -op 0.0740 0.2447 0.3905 0.4524 0.3849 0.3506 0.3261 0.3007 0.2459 0.2116 0.1997
IN=50
M -op 0.0747 0.2386 0.4109 0.4425 0.3846 0.3470 0.3253 0.3068 0.2451 0.2134 0.1996
cα-op 0.0230 0.2332 0.3641 0.4444 0.3860 0.3491 0.3250 0.3090 0.2464 0.2157 0.2047
D-op 0.0545 0.2344 0.3876 0.4517 0.3824 0.3540 0.3257 0.3076 0.2464 0.2117 0.2020
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Table 12. Non-parametrically simulated standard
deviations for partial body irradiations, irradiated frac-

tion 0.5.

Irradiated dose (Gy)
Design 2 3 4 5

Classical 0.4228 0.3604 0.2654 0.2776
qIN=500
M 0.4016 0.3327 0.2424 0.2397

qIN=50
M 0.4061 0.3378 0.2387 0.2407

qcα 0.4137 0.3486 0.2508 0.2498
qD 0.4067 0.3342 0.2370 0.2383
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Table 13. Non-parametrically simulated standard
deviations for partial body irradiations, irradiated

fraction 0.25.

Irradiated dose (Gy)
Design 2 3 4 5

Classical 0.6558 0.7198 0.4350 0.4547
qIN=500
M 0.6293 0.6896 0.4056 0.4129

qIN=50
M 0.6296 0.6864 0.4038 0.4138

qcα 0.6370 0.6971 0.4140 0.4192
qD 0.6321 0.6863 0.4106 0.4125
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Table 14. Parametrically simulated standard deviations for partial body irradiations, irradiated fraction 0.5.

Irradiated dose (Gy)
Design 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4 5

Classical 0.0529 0.2255 0.4025 0.5331 0.5473 0.5041 0.4723 0.4306 0.3517 0.3257 0.3268
IN=500
M -op 0.0409 0.1833 0.4082 0.5456 0.5456 0.5016 0.4712 0.4293 0.3470 0.3097 0.3031
IN=50
M -op 0.0406 0.2158 0.4101 0.5358 0.5488 0.5040 0.4715 0.4312 0.3447 0.3162 0.3031
cα-op 0.0648 0.2145 0.4045 0.5225 0.5434 0.5018 0.4717 0.4279 0.3441 0.3167 0.3105
D-op 0.0727 0.1908 0.3943 0.5414 0.5441 0.5051 0.4739 0.4319 0.3428 0.3117 0.3014
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Table 15. Parametrically simulated standard deviations for partial body irradiations, irradiated fraction 0.25.

Irradiated dose (Gy)
Design 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4 5

Classical 0.0121 0.1376 0.3550 0.5981 0.7441 0.7849 0.7485 0.6842 0.5684 0.5261 0.5263
IN=500
M -op 0.0126 0.1632 0.3461 0.6142 0.7362 0.7789 0.7366 0.6800 0.5580 0.5072 0.5068
IN=50
M -op 0.0126 0.1928 0.3675 0.5996 0.7457 0.7889 0.7506 0.6766 0.5576 0.5123 0.5133
cα-op 0.0507 0.1656 0.3654 0.5851 0.7433 0.7775 0.7387 0.6724 0.5519 0.5043 0.5017
D-op 0.0512 0.1608 0.3771 0.5936 0.7279 0.7769 0.7506 0.6815 0.5642 0.5074 0.5062
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Table 16. Non-parametrically simulated standard
deviations for partial body irradiations, irradiated frac-

tion 0.125.

Irradiated dose (Gy)
Design 2 3 4 5

Classical 0.7723 0.8104 0.5375 0.7432
qIN=500
M 0.7482 0.7661 0.5054 0.6911

qIN=50
M 0.7523 0.7703 0.5092 0.6960

qcα 0.7614 0.7759 0.5161 0.7126
qD 0.7610 0.7780 0.4974 0.6842
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Table 17. Parametrically simulated standard deviations for partial body irradiations, irradiated fraction 0.125.

Irradiated dose (Gy)
Design 0 0.1 0.25 0.5 0.75 1 1.5 2 3 4 5

Classical 0.0085 0.1159 0.2893 0.6103 0.7931 0.9636 1.0806 1.0493 0.9119 0.8077 0.8363
IN=500
M -op 0.0511 0.1251 0.2780 0.5623 0.7918 0.9683 1.0817 1.0587 0.8956 0.8333 0.8098
IN=50
M -op 0.0508 0.1081 0.3012 0.5498 0.8024 0.9585 1.0892 1.0586 0.9066 0.8144 0.8298
cα-op 0.0086 0.1250 0.3325 0.5597 0.7820 0.9389 1.0831 1.0611 0.8981 0.8272 0.8025
D-op 0.0084 0.1583 0.2997 0.5925 0.8073 0.9701 1.0794 1.0662 0.8951 0.8212 0.8213
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Table 18. Ratio of standard deviations of

dose estimations grouped in dose ranges to

compare the classical design aginst the op-
timized ones.

Dose range (Gy) Mean 95% MPI

[0, 0.25] 0.96 (0.17, 1.29)
(0.25, 1] 1.01 (0.97, 1.06)

(1, 2] 1.02 (0.98, 1.08)
(2, 5] 1.15 (0.99, 1.68)
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