SPARSE AND WEIGHTED ESTIMATES FOR GENERALIZED HORMANDER
OPERATORS AND COMMUTATORS

GONZALO H. IBANEZ-FIRNKORN AND ISRAEL P. RIVERA-RIOS

ABSTRACT. In this paper a pointwise sparse domination for generalized Hérmander and also for
iterated commutators with those operators is provided generalizing the sparse domination result in
[24]. Relying upon that sparse domination a number of quantitative estimates are derived. Some of
them are improvements and complementary results to those contained in a series of papers due to
M. Lorente, J. M. Martell, C. Pérez, S. Riveros and A. de la Torre [29] 28], 27]. Also the quantitative
endpoint estimates in [24] are extended to iterated commutators. Other results that are obtained
in this work are some local exponential decay estimates for generalized Hérmander operators in the
spirit of [33] and some negative results concerning Coifman-Fefferman estimates for a certain class
of kernels satisfying particular generalized Hérmander conditions.
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1. INTRODUCTION AND MAIN RESULT

During the last years a new set of techniques that allow to control operators (generally singular
operators) in terms of averages over dyadic cubes has blossomed, due to fact that those kind of
objects allow to simplify proofs of known results or even to obtain more precise results in the
theory of weights. The beginning of this trend was motivated by the attempt of simplifying the
original proof of the Ay Theorem [I3], namely, that if T" is a Calderén-Zygmund operator satisfying
a Holder-Lipschitz condition, then

ITFllz2 ) < enrlwlas [ fllz2w),
and can be traced back to the work of A. K. Lerner [2I]. In that work it is established that any

standard Calderén-Zygmund operator satisfying a Holder-Lipschitz condition can be controlled in
norm by sparse operators, to be more precise, that

ITfllx < Sup [As fllx (1.1)

where X is any Banach functions space and

Ast@) =Y @ /Q Flxa(@)

QesS

where each @) is a cube with its sides parallel to the axis and S is a sparse family. We recall that
a family of dyadic cubes § is an n-sparse family with n € (0,1) if for each @ € S there exists a
measurable set Fg C @ such that

nl@Q| < |Eq|
and the Fg are pairwise disjoint. The inequality (1.1)) combined with the following estimate from
3]
I Asl 2 ()= L2 (w) < cnlw]a,
yields an easy proof of the Ay Theorem. Later on it was proved independently in [6] and in [23]
that

3n
ITf(2)] < carir Y As, f(x).
j=1
Quite recently a fully quantitative version of this result for Calderén-Zygmund operators satisfying
a Dini condition has been obtained in [19] (see [22] for a simplified proof and also [20] for the idea of
the iteration technique). In that fully quantitative estimate kp = ||T'||;2_12 + ¢k + ||w|/Dini Where
cx denotes the size condition constant for 7' and [|w||pini = [~ w(t)%. Such a precise control was
fundamental to derive interesting results such as

1Tl L2 () L2 () < nl|Q] poo (sn-1)[w],

where Ty, is a rough singular integral with Q € L>°(S"™1) (see [19]).

Sparse domination techniques have found applications among other operators such as commu-
tators [24], rough singular integrals [5], or singular integrals satisfying an L"-Hérmander condition
[25] (see also [1]).

Let us turn our attention to that last class of operators. We say that T is an L"-Hormander
singular operator if T is bounded on L? and it admits the following representation

Tf(x) = - K(z,y)f(y)dy (1.2)

provided that f € C° and = ¢ supp f where K : R” x R" \ {(z,z) : z € R"} — R is a locally
integrable kernel satisfying the L"-Ho6rmander condition, namely

Hipy = sup sup i(zkw(@))"H(K(a:, )= K(2,)) xargzeig] .

Q x,zG%Q k=1

<
L7 2kQ
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o0
n
Hiro =sup sup 3 (20-UQ))" (K (o) = K(2) xargramo| < o
Q x,zG%Q k=1 L7.2%Q

As it was proved in [25],

3n
ITf ()| < encr Y Ars, ()
j=1
where each §; is a sparse family and

1 N
Asi =Y (i / ) e

Qes

If we call H,. the class of kernels satisfying an L"-Hormander condition, and Hpin; the class of kernels
satisfying a Dini condition we have that

Hpini C Hoo CH CHs, CH1 1 <s<7r <oo. (1.3)

There’s a wide range of Hormander conditions that, somehow, lay between classes of kernels in ([1.3)).
Those conditions are based in generalizing the L"-Hoérmander condition with Young functions. We
recall that given a Young function A : [0,00) — [0,00), namely a convex, increasing function such

that lmy_oo Al _ . Given a Young function A we can define the norm associated to A over a

cube @ as '
1
Ilag=int {3>0: o [ 4 (L) ar <1},

Also associated to each Young function A we can define another Young function A, that we call
complementary function of A, as follows

A(t) = sup{st — A(s)}. (1.4)
s>0
In Subsection we will provide some more details about Young functions and norms associated
to them.
Given A a Young function, we say that T is a A-Hormander operator if ||T||;2_,72 < oo and if
it satisfies a size condition and also admits a representation as with K belonging to the class
H 4, namely satisfying that Hx 4 = max {Hp a1, Hk a2} < 0o where

o0
n
Hiaz=swp swp > (21(Q))" | (K(w,) = K(z) xarqurg)|, . <
Q z,261Q 1 A2RQ

(1.5)

o0
n
Hp a2 =sup sup Z <2k : Z(Q)) H(K(a‘r) - K(-,2)) XZkQ\Qk_IQH k < 0.
Q z2elQim A2+Q
Operators related to that kind of conditions and commutators of BM O symbols and those oper-
ators have been thoroughly studied in several works. M. Lorente, M. S. Riveros and A. de la Torre
obtained Coifman-Fefferman estimates suited for those operators [29], the same authors in a joint
work with J. M. Martell established Coifman-Fefferman inequalities and also weighted endpoint
estimates in the case w € Ay for commutators in [28]. Later on, M. Lorente, M. S. Riveros, J.
M. Martell and C. Pérez proved some interesting endpoint estimates for arbitrary weights in [27].
The purpose of this work is to update and improve results in those works using sparse domination
techniques.
Our first result, that will be the cornerstone for the rest of the results in this paper, is a pointwise
sparse estimate for both A-Hérmander operators and commutators. We recall that given a locally
integrable function b and a linear operator 7', we define the commutator of 7" and b, by

b, T1f(z) = b(x)T f(x) = T(bf)(x).
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We can define the iterated commutator for m > 1 as
T f(x) = b, ;" 1 f (=),

where making a convenient abuse of notation Tl? =T'. Using the notation we have just introduced,
we present our first result. Precise definitions of the objects and structures involved in the statement
can be be found in Section [4]

Before stating our main Theorem, namely the sparse domination result we need one additional
definition. We define the class of functions Y (pg, p1) with 1 < pg < p1 < oo as the class of functions
A for which there exist constants ca p,, cap,, ta > 1 such that 70 < cA,pOA(t) for every t > t4 and
P < cap, A(t) for every t < ty.

Theorem 1.1. Let A € Y(po,p1) be a Young function with complementary function A. Let T

be an A-Hérmander operator. Let m be a non-negative integer. For every compactly supported
F€CPR") and b € L. (R™), there exist 3" sparse families S; such that

e r<cnchZZ( )4 0. o)

7=1 h=0

where

(),

AL = o)

Qes
and Ays(b, f) = Asf(x). Cr = cupypy max{capg, cap } (Hia + 1] 12 p2)-

We would like to point out that the usual examples of Young functions (see Subsection )
are in some ) (po,p1) class. Hence imposing that A € )(po,p1) does not seem to be an actual
restriction. The preceding result generalizes the pointwise estimates obtained in [19, 24] since it
is completely new for iterated commutators and it also provides a pointwise estimate in the case
that T is a Calderén-Zygmund operator satisfying a Dini condition. Indeed, as we point out at
the end of Subsection [{.3] if T is a w-Calderén Zygmund operator, then T is a L*°-Hérmander
singular operator, with Hg o < ¢,(||w||pini + Ck) and in this case it suffices to apply our result
with A(t) = t which yields the corresponding estimate with Cr = ||T'|| ;212 + ||w||Dini + Ck- It is
also straightforward to see that we recover the sparse control provided in [25] in the linear setting.

2. CONSEQUENCES OF THE MAIN RESULT

2.1. Strong type estimates. Relying upon the sparse domination that we have just presented we
can derive strong type quantitative estimates in terms of A, — A constants (cf. Subsection for
precise definitions).

Theorem 2.1. Let A € Y(po,p1) be a Young function with complementary function A and T an
A-Hérmander operator. Let b € BMO and m be a non-negative integer. Let 1 < r < p < oo and

AT
t

1 <r < oo and assume that K, 4 = sup;~1 < 00. Then, for every w € A

P/
1
7

1 1
I3 s < cnerlaronaluls,, (1wl +lopoi. ) (lae + prla) I lise )

where o,/ = w L
It is also possible to obtain a weighted strong type (p,p) estimate in terms of a “bumped” A, in
the spirit of [9].

Theorem 2.2. Let B € Y(po,p1) be a Young function with complementary function B. Let m a
—1. Assume now that A, C be Young functions with A € B,

non negative integer and Dy, (t) = et
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and that there exists to > 0 such that A=X(t)B " (£)C~L(t)Dm ' (t) < ct for everyt > to. Let T be a

B-Hérmander operator. Then, if w € A, is a weight satisfying additionally the following condition

w(@) | 1
w =sup —— ||lw » < 00,
[w]a,(c) Qp Q) H o
we have that ) )
IT5" ooy < enpllblBrrolwld 1wl h oy [wlh, 1l o - (2.2)

Even though Theorems and [2.2] provide interesting quantitative weighted estimates, it would
be desirable, if it is possible, to obtain some result in terms of some bump condition suited for each

class of kernels H that reduces to the A,/ class in the case H,.

2.2. Coifman-Fefferman estimates and related results. Now we turn our attention to Coifman-
Fefferman type estimates. We obtain the following result,

Theorem 2.3. Let B be a Young function such that B € Y(po,p1). If T is a B-Hormander operator,
then for any 1 < p < co and any weight w € As,

”TfHLP(w) < cnfw]ag HMBfHLP(w) : (2.3)

If additionally b € BMO, m is a non-negative integer and A is a Young function, such that

ATYHB7Y#)C7L(t) < t with C(t) = "™ — 1 fort > 1, then for any 1 < p < oo and any weight
wE As,

1T fll oy < enamllblBarolwld = IMafl o) (2.4)

We would like to point out that Theorem [2.3] was proved in [29] for operators satisfying an
A-Hoérmander condition. Later on in [28, Theorem 3.3] a suitable version of this estimate for
commutators was also obtained. Theorem improves the results in [29, 28] in two directions. It
provides quantitative estimates for the range 1 < p < oo and in the case m > 0 the class of operators
considered is also wider. This estimate can be extended to the full range 0 < p < oo using Rubio
de Francia extrapolation arguments in [7, 9] but without a precise control of the dependence on the
A constant. We encourage the reader to consult them to gain a profound insight into Rubio de
Francia extrapolation techniques and the results that can be obtained from them.

Related to the sharpness of the preceding result, in [30] it was established that L"-Hérmander
condition is not enough for a convolution type operator to have a full weight theory. In the following
Theorem we extend that result to a certain family of A-Hoérmander operators.

Theorem 2.4. Let 1 <r < oo, 1 <p <7 and % < v < 1. Let A be a Young function such that

there exists cq4 > 0 such that
1

tr
A7) ~ — fort>ca
p(t) ’
where ¢ is a positive function such that for every s € (0,1), there exists cs > 0 such that for every
t > cs, 0 < @(t) < kst®. Then there exists an operator T satisfying an A-Hdérmander condition such
that

||THLP(w)—>LPv°°(w) = o0,
where w(x) = |z|~7™.
From this result, via extrapolation techniques, it also follows, using ideas in [30] that the Coifman-
Fefferman estimate does not hold for maximal operators that are not big enough.

Theorem 2.5. Let 1 < r < co. Let A be a Young function satisfying the same conditions as in
Theorem [2.4. Then, there exists an operator T satisfying an A-Hérmander condition such that for
each 1 < g <1’ and B(t) < ct, the following estimate

1Tl ey < cllMBfll Lp(w)s (2.5)

where w € A, does not hold for any 0 < p < oo and any constant ¢ depending on w.
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2.3. Endpoint estimates. In this subsection we present some quantitative endpoint estimates
that can be obtained following ideas in [10] 24]. For the sake of clarity in this case we will present
different statements for 7" and T, with m a positive integer.

Theorem 2.6. Let A € Y(po,p1) be a Young function and T an A-Hoérmander operator. Assume
that A is submultiplicative, namely, that A(xy) < A(x)A(y). Then we have that for every weight w,
and every Young function o,

w({z €R™ : [TF)] > AD) < enarrio / A (’f(;)’> Mw(a)da, (2.6)

where

_ [ e (H)A(log(e +)?)
o = /1 t* log(e +t)3 dat

For commutators we have the following result.
Theorem 2.7. Let b € BMO and m be a positive integer. Let Ay, ..., An be Young functions,
1

such that Ag € Y(po,p1) and Aj_l(t)f_lal(t)@j_l(t) < t with Cj(t) = e’ fort>1. Let T be a Ay-
Hormander operator. Assume that each A; is submultiplicative, namely, that A;(xzy) < Aj(x)A;(y).

Then we have that for every weight w, and every family of Young functions g, ..., om,
“ x
w({z €R™ : [Ty"f(2)] > A}) < cnar Yy (m/ Ay, ('f& ”) M%th(x)dx> . (2.7
h=0 R

where ®;(t) = tlog(e +t)7, 0 < j <m,

¢p 0@, (1) Ap (log(et)4(m =)
Ky, = Onm,h 1 Cn foo . 12 lgg(e—i-:)?’(m DES dt 0<h<m,
L oo ¢, (1) An(log(e+t)?) _
1 - t2log(e+t)3 dt h =m.

At this point we would like to make some remarks about Theorems [2.6] and 2.7 These results
provide quantitative versions of [28, Theorem 3.3] for arbitrary weights instead of considering just
A, weights. We also recall that in the case of T satisfying an A-Hormander condition, it is proved
in [27, Theorem 3.1] that T" satisfies a weak-type (1, 1) inequality for a pair of weights (u, Su) where
S is a suitable maximal operator. We observe that it is not possible to recover A; estimates from
those results, since otherwise that would lead to a contradiction with [30, Theorem 3.2] or with
Theorem Hence Theorem and [27, Theorem 3.1] are complementary results. Theorems
and [27, Theorem 3.8] could be compared in an analogous way.

In Subsection [3.1] we will present an application of Theorem [2.7] to the case in which T" an w-
Calderon-Zygmund operator that provides a new weighted endpoint for iterated commutators that
extends naturally [24, Theorem 1.2].

2.4. Local exponential decay estimates. Also as a consequence of the sparse domination result
we can derive the following local estimates, in the spirit of [33].

Theorem 2.8. Let B be a Young function such that B € Y(po,p1) and T a B-Hérmander operator.
Let f be a function such that supp f C Q. Then there exist constants ¢, and oy, such that

Tf ()] H —on 2
TEQ : —————<>Ap| <cpe "eT|Q| 2.8
{ree oy o e
If additionally m is a positive mteger be BMO and A zs a Young function that satisfies the fo-
llowing inequality A=Y (t)B=1(t)C~1(t) < t with C(t) = e''™ fort > 1, then there exist constants

Cnm and o,y such that

1

1
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3. SOME PARTICULAR CASES OF INTEREST AND APPLICATIONS REVISITED

In this section we gather some applications of the main theorems. We present an extension of [24],
Theorem 1.2] to iterated commutators, which is completely new. We also revisit some applications
that appeared in [28].

3.1. Weighted endpoint estimates for Coifman-Rochberg-Weiss iterated commutators.
R. Coifman, R. Rochberg and G. Weiss introduced the commutator of a Calderén-Zygmund ope-
rator with a BMO symbol in [4] to study the factorization of n-dimensional Hardy spaces. Those
commutators were proved not to be of weak type (1,1) in [34] where a suitable endpoint replacement
for them and for iterated commutators as well, namely a distributional estimate, was also provided
for Lebesgue measure and A; weights.

In [36] C. Pérez an G. Pradolini obtained an endpoint estimate for conmutators with arbitrary
weights, and later on, C. Pérez and the second author [38] obtained a quantitative version of that
result that reads as follows

1
w({z eR” : [T f(z)| > A}) < ey / o, <|ﬂ> M, (10g Lym+ew e >0,
gm Rn A

where ®,,(t) = tlog(e +t)™. From that estimate is possible to recover the following estimates that
are essentially contained in [32]

wite € BT )] > 2D < culitoge + [ula)™ [ o (W) are we s

A
< culfulf, ogte + ola)™ [ o0 ()0 wean

In the case m = 1 it was established in [24] that the blow up can be improved to % is linear
instead of being 6% That improvement on the blow up led to a logarithmic improvement on the
dependence on the A, constant, namely,

w({x e R : |[b,T]f(x)] > A}) < c[w]a,, log(e + [w]Aoo)/n of} <’f)\’> Muw w e Axg

< clulfula g+ ola) [ (B wean

In the following result we show that the same linear blow up is satisfied in the case of the iterated
commutator.

Theorem 3.1. Let T be a w-Calderdn-Zygmund operator with w satisfying a Dini condition. Let
m be a non-negative integer and b € BMO. Then we have that for every weight w and every € > 0,

1 T
wite e B 52 @) > 2D < comrt [ o (HE) Mg pyogig -t

and

|/ ()]
A

w{z €RY : [T ()] > A}) < cm% / o, (

where O, (t) = tlog(e + t)™. If additionally w € A then

> ML(logL)m+ew(£L‘)d$, (31)

W R 17 > M) < comalulf og e+ la) [ o

Furthermore, if w € Ay the following estimate holds

w({r e R" : T f(x) > A\}) < cpmrw]a, [w]} log (e + [w]ay,) /n D, < /\ ) w(x)dz. (3.3)
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We observe that Theorem [3.I] improves known estimates in two directions. We improve the
maximal operator that we need in the right hand side of the estimate for it to hold, and the blow
up when ¢ — 0, which leads to a logarithmic improvement of the dependence on the A, constant.

3.2. Homogeneous operators. Let Q € L'(S"™!) such that [,_, Q = 0. Setting K ()
we consider the following convolution type operator

Tof(z) =p.v. - K(z —y)f(y)dy.

Our result is the following,

Theorem 3.2. Let T be as above. Let B a Young function such that B € Y(po,p1) and

/ wgl(t —<oo (3.4)

where

wg(t) = sup Q- +y) — Qy)|5 501 -
ly|<t

Then K € Hy. Assume that B € Y(po,p1). Then we have that

(1) , , and hold for Tq.

(2) If m is a non-negative integer and b € BMO, . ) holds for everyp > 1 such that K, p < oo.

(3) If there exists a Young function A such that A=1(t)B 4(1&)6,; (t) <t for everyt>1 where
Cn(t) = €t YT with m a positive integer, and b € BMO, then we have that. and
. ) hold for (Tq)y".

This result improves and extends [28, Theorem 4.1] since we impose a weaker condition on B
and we obtain quantitative estimates and a local exponential decay estimate that are new for this
operator.

3.3. Fourier Multipliers. Given h € L* we can consider a multiplier operator T defined for
f € 8, the Schwartz space, by

TF(€) = h(&)f(€).

Given 1 < s <2 and [ a non-negative integer, we say that h € M (s,1) if
sup R D*R|| < o0.2m00(0.8) < 00,
R>0

for all |a| <I. Our result for that class of operators is the following,

Theorem 3.3. Let h € M(s,l) with1 <s<2,1<1<n and withl > ". Let m be a non-negative
integer and b € BMO. Then,

(1) (2.3) and hold with A(t) =t7

(2) If p > 7} + € we have that

=

]

oo}

1
1T F o) < ealbllBarolul’ (m
Fie

n [a]iw) (] + [01a)™ 1 o)

for everyw € A_»
n+€

Results in this direction had been considered before in [28], nevertheless we provide quantitative
estimates that had not appeared in the literature before.
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4. PRELIMINARIES

4.1. Unweighted estimates. In this subsection we gather some quantitative unweighted estimates
that we will need to obtain, among other results, the fully quantitative sparse domination in Theorem

LT

Lemma 4.1. Let S be a linear operator such that S : L*(u) — LY*°(u) and v € (0,1). Then if E
is a measurable set such that 0 < p(E) < oo

[ 185@1 < 2 IS e (B U
Proof. 1t suffices to track constants in [I1, Lemma 5.6] choosing C' = ||S||11_p1,00. O
Lemma 4.2. Let A be a Young function. If T is a A-Hormander operator then
T/ pree < en (1T 222 + Hy)
and as a consequence of Marcinkiewicz theorem and the fact that T is almost self-dual
1Tl osre < e (I TN L2522 + Hy) -

Proof. For the endpoint estimate, following ideas in [19, Theorem A.1] it suffices to follow the stan-
dard proof using Hérmander condition, see for instance [I1, Theorem 5.10], but with the following
small twist in the argument. When estimating the level set [{|Tf(z)| > A}| the Calderén-Zygmund
decomposition of f has to be taken at level aX and optimize « at the end of the proof.

For the strong type estimate it suffices to use the endpoint estimate we have just obtained
combined with the L? boundedness of the operator to obtain the corresponding bound in the range
1 < p <2 and duality for the rest of the range. O

4.2. Young functions and Orlicz spaces. In this subsection we present some notions about
Young functions and Orlicz local averages that will be fundamental throughout all this work. We
will not go into details for any of the results and definitions we review here. The interested reader
can get profound insight into this topic in classical references such as [31], [39].
A function A : [0,00) — [0,00) is said to be a Young function if A is continuous, convex, and
A)

satisfies that A(0) = 0. Since A is convex, we have also that =~ is not decreasing.

The average of the Luxemburg norm of a function f induced by a Young function A on the cube

Q is defined by
. 1 f
Wil =t {2>0: o5 [ 4 (5] an 1) D

If we consider p to be the Lebesgue measure we will write just || f|| 4, and if 4 = wdx is an absolutely
continuous measure with respect to the Lebesgue measure we will write || f{| 4(u),q-

There are several interesting facts that we review now. First we would like to note that if
1/r
A(t) =1t",r > 1, then || fllag = (ﬁ fQ \f|’“) , that is, we recover the standard L" (Q, %) norm.

Another interesting fact is the following. If A, B are Young functions such that A(t) < kB(t) for
all t > ¢, then

[ law.e < (Ale) + B fllB.@ (4.2)

for every cube Q. In particular we have that if A is a convex function, then ¢t < cA(t) for t > 1, and

1fllerq < (A(D) + o)l fllaq-

Another interesting property that every Young function A satisfies is that the following generalized
Holder inequality is satisfied

1
te) /Q Foldis < 20 fllage.0 9 4.0 (4.3)
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where A is the complementary function of A that we defined in (1.4)). Some other properties of this
function is that it also satisfies the following estimate that will be useful for us

t< AT A () < 2t (4.4)

and that it can be proved that A~ A
It is possible to obtain more general versions of Holder inequality. If A and B are strictly
increasing functions and C' is Young such that A=1(t)B=1(¢)C~1(t) < t, for all ¢ > 1, then

If9llegy.o < cllfllagw.ellallBu.q- (4.5)

Now we turn our attention to a particular case that will be useful for us. If B is a Young function
and A is a strictly increasing function such that A='(¢)B~1(¢)C~1(t) < t with C71(t) = et'!"
t > 1, then,

for

||fg||B(u),Q < CHfHexle/m(,u),Q||g||A(u)7Q < CHfHeszl/h(u),Q||g||A(M)aQ (46)

forall 1 < h<m.
The averages that we have presented in (4.1]) lead to define new maximal operators in a very

natural way. Given f € L%OC(R"), the maximal operator associated to the Young function A is
defined as

My f(z) := sup||flla,q-
Q3

This kind of maximal operator was thoroughly studied in [35]. There it was established that if A is
doubling and A € B,,, namely if
/°° A(t) dt
<,
Lt

then [[Mal|r < co. Later on L. Liu and T. Luque [26], proved that imposing the doubling condition
on A is superfluous.
Now we compile some examples of maximal operators related to certain Young functions.
o A(t) =t" with 1 < r < co. In that case A(t) ~ ¢ with 14+ 1 =1 and A € Y(r,r). For
this particular choice of A we shall denote M4 = M,.
e A(t) = tlog(e + t)® with a > 0. Then A(t) ~ e 1, A € Y(1,1) and we denote
M = Mg 1o We observe that M < My < M, for all 1 <7 < oo, and if @ =1 € N it can
be proved that My ~ M, where M1 is M iterated { 4+ 1 times.
e If we consider A(t) = tlog(e +t) log(e + log(e +t))® with I, a > 0, then A € Y(1,1) we will

denote Ma = M, 1)t (loglog L)~ YWe observe that
ML(log L)™ (loglog L)1+= W < cEML(IOgL)m+ew 0<e< .

We end this subsection recalling a Fefferman-Stein estimate suited for M4 that we borrow from [24]
Lemma 2.6].

Lemma 4.3. Let A be a Young function. For any arbitrary weight w we have that

w({z €R™ : Maf(z) > \}) < 3”/ <9n‘f ‘) Muw(z)dz.

If additionally A is submultiplicative, namely A(xy) < A(x)A(y) then

w({zxeR" : Maf(z) > A}) <e¢, /n A (’f(;’> Muw(x)dx.

We are not aware of the appearance of the following result in the literature. It essentially allows
us to interpolate between LP scales to obtain a modular inequality and it will be fundamental to
obtain a suitable control for M7 in Lemma
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Lemma 4.4. Let A be a Young function such that A € Y(po,p1). Let G be a sublinear operator of
weak type (po,po) and of weak type (p1,p1). Then

{z €R™ : |G(z)| > )] < /]R A (m,Gth”) dx

where ca,g = 2max{ca p,, €A p, } max {||G||ro—rro., |G| Lr1— 1.0}

Proof. We recall that since A € Y(po,p1) there exist ta,capy,cap, > 1 such that 70 < cg 0 A(t)
for every t > t4 and "' < cqp, A(t) for every t < tn. Let

r = 2max {||G||Lro s Lro-os, | Gl[Lo1 s Leroe }
and let us consider f(x) = fi(x) + fo(x) where
folx) = f(x)X{\f(x)b%tA)\}(x)?
fi(@) = F@)X{ )< an) (@):
Using the partition of f and the assumptions on G we have that

{z eR" : [Gf(z)| > A}
< {xeR" 2| Gfo(x)] > ;‘} +HazeR” | Gfi(x)| > /2\}'

fo(z filz P1
<6 [ () o b o1 e [ (L)
]Rn Rn

S/n (Klfo§$)|>p°dx+/n (Kljﬁiﬂﬁ)l)p1 dr

Now we observe that, using the hypothesis on A,

/n (HW)% = /{f(x)|>itAA} <K|f(>iz)‘>p0 oS cam /{f(a; )>Lean}

and analogously

4(x
[ <ﬁ|f1§\x)|>p1 . /{m " <ﬁ|f<;)\>m dr < cap, /{ P a5
<

The preceding estimates combined with the convexity of A, namely, that cA(t)
c>1, yield

If(; >

e

A(ct) for every

{z € R™ ¢ |Gf(2)] > N} < /R A (max{cA,po,CA,pl}n‘f &‘””) J
O

4.3. Singular operators. We say that T is a singular integral operator if T is linear and bounded
on L? and it admits the following representation

Tf(x) = - K(z,y)f(y)dy, for all = ¢ supp f,

where f € L} (R") and K : R" x R"\ {(z,z) : * € R"} — R is a locally integrable kernel away
of the diagonal such that K € H for some class H. Among the classes we consider in this work we
recall that K € Hpiy; if besides satisfying all the properties above, K also satisfies the size condition

K (,y)] < 7=

!”’

and a smoothness condition

|z — 2| 1
K(e.y) - K@\ )] + |K(y,2) — K(y,2')] < w ( ,
| <\ o=y m=ur
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for |z — y| > 2|z — /|, where w : [0,1] — [0,00) is a modulus of continuity, that is a continuous,
increasing, submultiplicative function with w(0) = 0 and such that it satisfies the Dini condition,
namely

oot
[wllpimi = [ w(t)— < oo.
0 t
In this case, following the standard terminology, we say that T is a w-Calderén-Zygmund operator.
We note that if we choose w(t) = ct® for any § > 0 we recover the standard Holder-Lipschitz
condition. At this point we would like to recall that K € H if K satisfies the conditions (1.5]) with
| - I Lo 2k in place of || - || 4 9xg. Abusing notation, we would like to point out that if we consider
A(t) =t, then

5>0 >0 oo t>1

A(t) = sup{st — A(s)} = sup{(t — 1)s} = {0 t<1

so we may assume in that case that A(t) = oco. It is straightforward to check that equivalent
conditions can be stated in terms of balls instead of cubes. Now we observe that taking into account
[@.2), if A and B are Young functions such that there exists some ¢y such that A(t) < kB(t) every
for every t > to, then Hp C Ha. Taking that property into account it is clear that the relations
between the different classes of kernels presented in hold and that for Young functions in
intermediate scales the analogous relations hold as well. In particular we would like to stress the
fact that if K € Hpini then K € Ho, with Hoo < ¢p(||w||Dini + ¢k )-

4.4. A, weights and BMO. A function w is a weight if w > 0 and w is locally integrable in R".
We recall that the A, class 1 < p < oo is the class of weights w such that

inimap (G ) Gy [ o

where the supremum is taken over all cubes ) in R". For p = 1, w € A; if and only if

Muw(x)

W|A, ‘= €SS Sup
[wlay = ess su w(@)

The importance of those classes of weights stems from the fact that they characterize the weighted
strong-type (p,p) estimate of the Hardy-Littlewood maximal operator for p > 1 and the weighted
weak-type (1,1) in the case p = 1. We observe that among other properties those classes are
increasing, so it is natural to define an A, class as follows

A = [ Ap-
p>1

It is possible to characterize the Ao, class in terms of a constant. In particular, it was essentially
proved by Fujii [I2] and later on rediscovered by Wilson [40] that

wE A = [W]a, = sup /MwXQ

In [16] this As constant was proved to be the most suitable one and the following Reverse Holder
inequality was also obtained (see [I8] for another proof).

Lemma 4.5. Let w € Ay,. Then for every cube @,
(wh) =
— | w < — [ w
Q[ Jo 1Ql Jg
where 1 <r <1+ m with T, a dimensional constant independent w and Q).

Reverse Holder inequality allows us to give a quantitative version of one of the classical charac-
terizations of A, weights suggested to us by Kangwei Li.
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Lemma 4.6. There exists ¢, > 0 such that for every w € Ay, every cube Q and every measurable

subset E C @ we have that
1
wiB) <‘E’> enilAco
w(@) ~ \|Q|

Proof. Let us call r, =1+ m where 7, is the same as in Lemma We observe that using

Reverse Holder inequality,

oL 1 |Ey>
ww””QHme”““@<mn4w ) QQ

g%@@(@b%

which yields the desired result, since 7/, ~ ¢, [w]a, . O

]

We recall that the space of bounded mean oscillation functions, BMO(R™), is the space of locally
integrable functions on R”, f, such that

1
|Wmmﬂ?méﬁ@—mm<w

where the supremum is taken over all cubes @@ in R™ and fg = ﬁ J. 0 f(z)dz. A fundamental result
concerning that class of functions is the so called John-Nirenberg theorem.

Theorem 4.1 (John-Nirenberg). For all f € BMO(R™), for all cubes Q, and all o > 0 we have
{z € Q:1/(x) ~ fol > a}| < el@le” M 5wo

Combining John-Nirenberg Theorem and Lemma [4.6| we obtain the following result that will be
fundamental for our purposes.

Lemma 4.7. Let b€ BMO and w € As,. Then we have that

16— 0@ lexp Lw).@ < enlw]a bl Bro- (4.7)
Furthermore, if 7 > 0 then
I =babll 3 o < enslola PlBao (438)

Proof. First we prove (4.7). We recall that

kaumgzﬂﬁ{A>01w&»éﬁ@<vf”)—hm<ﬂ}

So it suffices to prove that

1 b(x) —b

/exp< |b(z) — bg )dw<2,

w(@Q) Jg cnlw]a [0l MO

for some ¢, independent of w, b and Q. Using layer cake formula, Lemma [£.6] and Theorem

B ex [blz) = bl w:L Ooetw T : |b(z) —
w(Q)/Q p< A )d w(Q)/o {x €@ : |b(x) —bg| > At})dt

L2 (HreQ: fbe) ~ bl > M) mw
<l Q] ) @

oo A
§2€/ ele enlwlag blipamoe?™ (¢
0

So choosing A = ac,e2"||b|| Brmolw] .,

oo _ t oo
26/ ele nlwlaMlprmoe?™ ¢ — 26/ et(l_a)dt
0 0
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and choosing « such that the right hand side of the identity is smaller than 2 we are done.
To end the proof of the Lemma we observe that for every measure

M(lQ)/Qexp (If(;v)lj>j - u(lQ) /Qexp(\fg)> 1dp

Consequently
o=l 1. o =10 =belhy 1o (49)
and (4.8) follows. O

5. PROOF OF THE SPARSE DOMINATION

The proof of Theorem follows the scheme in [22] and [24]. We start recalling some basic
definitions. Given T' a sublinear operator we define the grand maximal truncated operator Mr by

Moy f(x) = sup ess sup |T(fxrm\30)(§)]
Q3x  ¢€Q

where the supremum is taken over all the cubes Q C R" containing x. We also consider a local
version of this operator

Mg, f(x) = sup ess sup |T(fxs0030) ()]
z€EQCQo €€Q

We will need two technical lemmas to prove Theorem [I.1] The first one is partly a generalization
of 22, Lemma 3.2].

Lemma 5.1. Let A be a Young function such that A € Y(po, p1) with complementary function A.
Let T be an A-Hdormander operator. The following estimates hold

(1) For a.e. z € Qo
T (fx3Q0) ()] < el Tl 1 proe f(2) + M1, f ()
(2) For all x € R"™ and 6 € (0,1) we have that
My f(x) < eng (HaMaf(z) + Ms(Tf)(2) + || T 1 pr0o M f () -

Furthermore

o €R": Maf(z) > M| < |

R

flx
A <maX{CA7p07CA,pl}CTl,po,pl (HK,Z + ||THL2_>L2) | ()\ )l dz.

(5.1)
Proof. (1) was established in [22] Lemma 3.2], so we only have to prove part (2). We are going to
follow ideas in [25]. Let z,2’,£ € Q C 3 - 3Q. Then

T(fxrm\30) (§)] < HITF(@)] + 1T (fx3Q) ().

/ (K(&y) — K(2',y)) f(y)dy
R™\3Q

Now we observe that

/ (K(&y) - K(2',y)) f(y)dy
R™\3Q

1

K — Kz d
1283Q) Jarso\2r-13¢ ’( (&) (', y)) f(y)‘ Y

< Z Qk:ngnl(Q)n
k=1

(K(&,)— K(«',")) X2k3Q\2k—13QH 1 £1l 4230

A2k3Q

<2) 2k3m(Q)"
k=1

< CnHK,ZMAf(x)
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Then we have that
IT(fxrm3Q) ()| < enH e zMaf(x) +|Tf(x")| + |T(fxsq)(@)].

I8 (Q, %) averaging with § € (0,1) and with respect to 2/,

T a1 s <H“M“‘f ) (IQ\/ T 5dff) + (i / ’TfX?,Q(:C’)\(de’)})

For the last term we observe that by Kolmogorov’s inequality (Lemma [4.1])

ENUVES 1 5\
(137 | et ) <2 (25 ) 0oy [ £ <en (55) ITlecsinm M A0

Summarizing

T(xama)(©) < ens (HigxMaf(@) + Ms(TF)(@) + | Tl o= M) )

and this yields
M f(2) < ey (HiMaf @)+ My(TF)(@) + 1T 1ospne M () (52)

Now we observe that | 7|11 M f(z) < || T||11or1.00 Maf(z), and since Lemma provides
the following estimate
1T s pr0e < en(Hygz + 1Tl 2 12),

we have that

cn(Hp 5+ T p2— 12 x
(o e B HaMaf @)+ 1Tl MS@) > )| < o /A< slehdy bl ”)w.

(5.3)
Let us focus now on the remaining term. Since A € Y(po, p1) taking into account Lemma

{z € R" : Ms(Tf)(x) > A} < /]R" A <CA MéoT’f()\ )|> dx

where k = 2max{ca p,,cAp, } max {||M;s o T'||ro—rrosoo, ||Mso T rr1rr1.0}. Now we observe that
for every 1 <p < o0

IMs(T)llanee = || (71170

fon < Cns |
= Cnps T fll ppe < CrpslIT|lLo— oo || fllLe-

This estimate combined with Lemma [.2] yields
|Ms 0 Tl oy ine < s (Hicz + [T z2s2) -
Hence
x
o B 5 MA@ > A < [ A (o smax(eamscant (Hia + 1T1202) T )
R"
(5.4)

Since @ is non decreasing, it is not hard to see that for ¢ > 1 cA(t) < A(ct). Using this fact

combined with equations (5.2)), (5.3) and (5.4)) we obtain (5.1]). O
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Proof of Theorem[I.1 Before we start the proof we would like to recall the 3"-dyadic lattices trick.

Lemma 5.2. Given a dyadic lattice D there exist 3" dyadic lattices D; such that

g
(3Q : Qe D} = D5,

j=1
and for every cube Q) € D we can find a cube Rg in each Dj such that Q C Rq and 3lg = IR,

For more the definition of dyadic lattice and a thorough study of dyadic structures based on that
notion we encourage the reader to consult [23].

Remark 5. 1 Let us fix a dyadic lattice D. For an arbitrary cube Q C R™ we can find a cube Q' € D
such that '@ < lor <lg and Q C 3Q". It suffices to take the cube Q" that contains the center of
Q. From the preceding lemma it follows that 3Q" = P € D; for some j € {1,...,3"}. Therefore,
for every cube Q C R™ there exists P € D; such that @) C P and [p < 3lg. Frorn this follows that
QI < [P <3"|Q).

With the preceding Lemma at our disposal we are in the position to provide a proof of Theorem
We shall follow the strategy in [22, 24]. From Remark it follows that there exist 3" dyadic
lattices such that for every cube @ of R" there is a cube Rg € D, for some j for which 3¢Q) C Rg
and |Rq| < 97|Q)|

We fix a cube Q9 C R™. We claim that there exists a %—sparse family F C D(Qq) such that for
a.e. T € Qo

1 o)) < e ()8R0, 1)), (5.5
h=0
where
BE" (b, £)(x) = D [b(@) = brg " IF1b — bro "l a3 x0()-

QeF

Suppose that we have already proved . Let us take a partition of R by cubes @; such that
supp(f) € 3Q); for each j. We can do it as follows. We start with a cube Q) such that supp(f) C Qo.
And cover 3Qo \ Qo by 3" — 1 congruent cubes Q. Each of them satisfies Qo C 3Q;. We do the
same for 9Q \ 3Qo and so on. The union of all those cubes, including Qq, will satisfy the desired
properties.

We apply the claim to each cube @;. Then we have that since supp f C 3(Q); the following
estimate holds a.e. x € Q;

T3 f () xq, (x) = | Ti"(Fxsq,)(x)| < CnCTB;-r‘?h(bv )(z)

where each F; C D(Q;) is a %—sparse family. Taking F = |JF; we have that F is a %-sparse family

and
m

@l < acr Y. ()00

h=0
Now since 3Q) C Rg and |Rg| < 3™|3Q)| we have that || f||a30, < cnllflla,r,- Setting

Sij={RqgeD;: QeF}
and using that F is %—sparse, we obtain that each family S; is ﬁ—sparse. Then we have that

e |<cnchZZ< )4z 0.1

j=1 h=0
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Proof of the claim . To prove the claim it suffices to prove the following recursive estimate:
There exist pairwise disjoint cubes P; € D(Qo) such that 3, |Pj| < 3|Qo| and

T (xa)@he < @Cr () —bag, "0 brg, lsana
h=0

+ Z 1Ty (fx3p;)(®)|xP;
J

a.e. in Qp. Iterating this estimate we obtain (5.5) with F being the union of all the families {Pf}
where {PJO} ={Qo}, {le} = {P;} and {ij} are the cubes obtained at the k-th stage of the iterative
process. It is also clear that F is a i-sparse family. Indeed, for each Pf it suffices to choose

2
_ pk k+1
Epjk—Pj\UPj .
J

Let us prove then the recursive estimate. We observe that for any arbitrary family of disjoint cubes
P; € D(Qo) we have that
T8 (Fx3Q0) ()] X Qo (%)

<IT(Fx300) (@) XQo\U, P, () + Y 1T3" (Fx300) ()] xp, ()
j

<" (fx3q0) ()] XQo\U, Pi (z) + Z ‘Tf%(fm@o\:apj)(@} xp; () + Z Ty (fxsp,) ()] xp, ()

So it suffices to show that we can choose a family of pairwise disjoint cubes P; € D(Qp) with
> ilPl < £]Qo| and such that for a.e. z € Qo

T3 (fxs0) (@) Xauu, 7, (2) + D | T (Frsgose, ) (@) xr, (@)
J

m m—
< enCr 3 (1) te)  brg, I 171 = b, e @)
h=0

Using that T;" f = 17" f for any ¢ € R, and also that
m G m m—
1 =30 (3 )T - - o
h=0

we obtain

IT3" (fX3Q0)IXQo\U; P; T Z 1Ty (fx3Q0\3P;) X P;
J

m m .
S Z <h> ‘b N bRQO’ h‘T((b - bRQo)th3QO>‘XQ0\Uij (56)
h=0
m m .
+Z <h)‘b_bRQo| hz|T((b_bRQO)th3Q0\3Pj)|XPj- (5.7)
h=0 g

Now for h =0,1,...m we define the set E; as

En={2€ Qo : b= brg, "] > anlllb = brg, " fllascy }

U{zeQo s Mrgy (1= big,"f) > anCrlllb = brg, " Fllasa,
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and we call E = (J;", E,. Now we note that taking into account the convexity of A and the second
part in Lemma

|En| < dx

fQo ’b - bRQO |h|f| / A maX{CA,pov CA,py }Cn7p07P1 <HK,Z + HTHL?%LQ) |b - bRQO ’h’f|
n
3Qo

anl| f1l4,3Q0 anCr||[b—brg, 1" fll 4,300

1 h
< 3n [3Qo] f3Q0|b_bRQ0’ ’f||Q0|+Cl|QO| 1 / A ’b_bRQo‘h‘f’ dr
0 anll|b—brg, 1" fll 4300 an T 3Qol Jag,  \ b= Drg, " fll4300

< <2 3y C") Q-

Qp Qn

Then, choosing «,, big enough, we have that
1
|E| < W‘Qo‘-
Now we apply Calderén-Zygmund decomposition to the function xg on Qg at height A = Qn%
We obtain pairwise disjoint cubes P; € D(Qy) such that
1

xe(®) < oo

for a.e. x ¢ J P;. From this it follows that ‘E \U; Pj‘ = 0. And also that family satisfies that

1
> 1Pl =P <2 E < 5
- | ]‘ - Jj| = | |_2|Q0|7

and also that
lél/ XE(w):Mﬁla
2n L = P Jp, | Pj] 2
from which it readily follows that |P; N E¢| > 0.
We observe that then for each P; we have that since P; N E¢ # 0, Mg, (\b —bry, |hf> (x) <

anCr||[b = brg, " flla30, for some z € Pj and this implies

ess sup [T~ brg, " Fxaq0a0) (€)] < anCrlllb ~ brg,
S

A73Q0

which allows us to control the summation in (5.7]).
Now, by (1) in Lemma (5.1)) since by Lemma [1.2] ||T'|| 11, z100 < cn(Ha + ||T||12_12) We know
that a.e. x € Qy,

IT(1b ~ brg, "1/ 1x300)(@)| < eaCrlb(@) = brg, "L f(@)| + Mr.gq (|b = brg, "Lf1) (x)
Since ’E \U ; Pj’ = 0, we have that, by the definition of F, the following estimate

[b(2) = brg, ["1£(2)] < anll[b — brg, " f]
holds a.e. z € Qo \ U; Pj and also

M.y (b= brg, I"lf1) () < anlllb = bro, I" Fllaso:

holds a.e. z € Qo \ U ; Pj. Consequently

A,3Q0»

IT((b = brg,)" Fx300) @) < enCrllb = brg, " fllascu:

Those estimates allow us to control the remaining terms in (5.6|) so we are done.
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6. PROOFS OF STRONG TYPE ESTIMATES

6.1. Proof of Theorem -. We establish first the corresponding estimate for 7. Combining |
Lemma 4.1] with [I5, Theorem 1.1] and taking into account the sparse domination

1/p 3 r
HTfuLp(w<cncTz(/ ashre) =aer Y ([ Iflaoxe
j=1

7 w(z)dz

QesS

an U p 1/p

<eoer > Koa | | Z<|Q, /w) xo@) | w(z)ds
j=1 R™ \ Qes

3”

= cner Y Kral AL (D)

Lp/m(w
Jj=1

1/p

1

%\H

< cncrKpafw]y <[w1§{;f>r +[o ]51“) AT

Lr/m(w)
1

—coerkaluly,, (1wl + 0T ) I

Now for the commutator and the iterated commutator we use the conjugation method (See [4] 3] [37]
for more details about this method). We recall that

| esz(eszf)
Py L e )
’ /Z| €

2mi Zzmtl dz.
If w e A, taking norms

175" fll oo (w) <

m)! ba
T Z
S s [P T(fe ) 1

|z|=¢

M 1T ()
g O o)

m)!
< CnCT’C'r A

1 » 1
suple" Ol ([eRe(bz)pwmw + [ o] ) 11l
z|=€

Now taking into account [I4, Lemma 2.1] and [16 Lemma 7.3] we have that
cn,p/r[w]Ap/r, [eRe(2)Pyy) 4 < cp[w]a., and [e

2me™m

[eRe(bz)pw] A <
-Re(bz)

o= p/r=1g|a < cplo]a,, provided that

|Z < €n7p

< Tolsaro (lae + Tas)”
This yields

; o m m
T f 50y < enmerKralulh, ( w)([wumﬂ%m) TN

w)*
6.2. Proof of Theorem [2.2} It is clear that it suffices to establish the result for the corresponding
sparse operators, namely it suffices to prove that

1 1

m,h m— m— > o7

IAE O, Dl oy < enpap™ " w] 5 ]} o lwli 1010 I £l o
Using duality we have that

A0 Dl = s 5 (o [ b= bol™ o ) @16~ )l
90l .o ()=t Qes

19
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Now we observe that, using (4.3),

1@) /Q ‘l)(l') — bQ’m—hg(x)w(x)dx < H(b _ bQ)m—hH

exp LT (), 191 Lo £y (w).@

< w3 IlIEG 191 2 og £y (.0
and this yields

p/
Z (”g”L(logL)m*h(w),Q) w(Eq) < cnlw] HbHBMO Z/ M, 10g L)y~ h(w)( )
QeS QeSs
m— m— / 6.1
< calul3 Bl [ M (@) (6.1)
< Cnp(m—h+1)p’ Hg”i?’ (w)’

Since, by (4.6), we know that there exists ¢y > 0 such that A*I(t)Bfl(t)C‘*l(t)Dih_1

(t) < ct for
every t > to, applying generalized Holder inequality (4.5]), we have that

1 (b= bg)"

1 h
(b—=00)"lBq
1 _1
<alfwragllw 7 lleqll(® = 5Q) lep i/n.q

~ h 1 _1
< allbllamoll fwrllagllv 7lee
Now, since A € B,,, we have that

S | fwr | ol Eol< Z/ Ma(fuw?)?

Qes Qes

< [ Ma(fwry (6.2)
RTL

1
<y [ (F03Y = cugl
Then, taking into account (| and m,

5 $< /’b bo|™ hgw> w(Q)|[(b - bo)" fll5.0

L v llee w(Q) 5
< a2 S | fwr | aglEgl? ¢Q 190 Log Lym () 0w (EQ) P
QesS |Eq|» (EQ)]”
p’
< eap [0l 00 sup T(w, Q) [ S IfwrlaclBal | | 101 g 1ymniun. o (Fe)
Q@ Qes Qcs ’

< engp™ 0l Wi 500 T, Q) (a9l

To end the proof of the result it suffices to prove that

=

1
Slép T(’w, Q) < Cn,p,n[w}ﬁp(c) [w]

]

! (6.3)

where T'(w, Q) = [ le.o W@ We observe that taking into account that
|EQ|1’ w(Eqg)?’

w(Q) < clw]a,w(Eq),
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we have that

_1 ’

lw rllog w@ i w(@YP w(@)'P

i + = [ Pllee 1, T
|Egl?  w(Eq)7 [Eq|'/P w(Eq)

= el Hlo UL W)

— Cp OvQ ’Q|1/p w(EQ)l/p/

o w(@W

< cplw]

1 1
D v
< Cnpy [w]f;p(c) [w]ip-

This proves (|6.3) and ends the proof of the Theorem.

7. PROOFS OF COIFMAN-FEFFERMAN ESTIMATES AND RELATED RESULTS

7.1. Proof of Theorem We omit the proof for the case m = 0 since it suffices to repeat the
same proof that we provide here for the case m > 0 with obvious modifications.

Let m > 0. Using Theorem it suffices to control each Af’g(b, f). We observe that taking into
account Lemma [£.7] and Holder inequality,

[ A5 powde = 3 o [ 19@) bl @ut) (@0~ bo) flng

Qes

<M= el e @ @IG =)y olflac
Qes

< ealwl 3 " 101Bvo Y 191 og ym ) @l 4.0 (Q)
Qes

Now we observe that

> 19l Lgos ym-n () 01 Fla@w(@) < D gl Lgog pym-rqwy pllfllar > w(@)

Qes FeF QeSm(Q)=F

< enlwlane Y 19l 1 10g 2ym— (), £ L4, 7w (F)
FeF

< calula. /R (M F) (M g 1ot g0l

<calulas [ (Map)OIE " guds
where F is the family of the principal cubes in the usual sense, namely,

]: - Uzozoj:k;
with Fy :={maximal cubes in S} and

Fry1 i= FeU]-‘kCh]:(F)’ chr(F) ={Q C F maximal s.t. 7(Q) > 27(F)}

where 7(Q) = (|9l L(1og L)1 (w),0ll fll4,@ and 7(Q) is the minimal principal cube which contains Q.
At this point we observe that

[ Oaapaap " gyude < |Mafllrn Mgl

< cnp™ M MAF o) 1911
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and combining estimates

/Rn AL 3, Fgwda < cplw] ap™ " HIMaFl| o () 1] o (-

Hence supremum on ||g|| () = 1 we end the proof.

7.2. Proof of Theorem We are going to follow the scheme of the proof of [30), Theorem 3.2].
We consider the kernel that appears in [29, Theorem 5]

1
k(t) = A_l <tn (1 — 1Ogt)1+ﬁ> X(071)(t) ,8 > O

We observe that K (z) = k(|z|) € L'(R"). Indeed, since the convexity of A allows us to use Jensen
inequality we have that

1 . B e\ (18
MNmoo <1°g m) X, (Jz]) | de
1 0 \ —(1+8)
= Al BT A |z <log > dz
(|B(07 1) lz|<1 <| | ||

1 e —(1+8)
< — || ™" <log ) dz < ¢, .
B0, D) Jiajx <] "

N o \ —(1+8) B
AT logm X(o,0)([z]) | dz < A7 (enp) |B(0, 1)

and hence K (z) € L'. Now we define K (z) = K(x — 1) with || = 4, and we consider the operator

Then

Tf(x)=K=x*f(x) = . K(z —n—y)f(y)dy. (7.1)

Since K € L' we have that T : L9 — L for every 1 < ¢ < co. We observe now that the kernel K
satisfies an A-Hormander condition [29, Theorem 5].
Let us assume that 7" maps LP(w) into LP*°(w). We define

ymn

f@) =1z +nl" 7 X{jaty<(z) € LP(R")
with 71 € (0,1) to be chosen. If |z 4+ n| < 1 then 3 < |z| < 5 and therefore

sup 0w o € B 5 (110 > ) e [ (f@lutadn) < e ([ 1r@iir) <o ()

A>0

Let us choose 0 < s < min{#, %} We know that ¢(u) < ksu® for every u > cs. Let us

choose t1 € (0,1) such that for each ¢t € (0,¢1) we have that W > max{ca, ¢s}. Then, for
t e (0, tl)

_mn B 1 Cn 1 e
k(e = AT (tn(l —1 t)1+6> T T~ 5 ) A
- W =10gt) ¢ (i)
1 _nn 1 1y _mn
] 5 4 - (1 _ ]Ogt)(l-i‘ﬂ)(s—i) ¢ 7; +ns _ *h(t)
(1—logt) <+> Ks Ks
tn(1—log t)*+#
(7.3)

33

~
]
I

1
27
Rs
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Actually we can choose 0 < tg < t; such that the preceding estimate holds and both A(t) and k(?)
are decreasing in (0,%p) as well, note that in the case of h, that monotonicity follows from the fact
that s < %. Let us call g = %to. We observe that for |z| < dp,

Tf(z) = / Ka@-n—yytn Fdy= [ K-yl
[n+yl<1 ly|<1

3 1n
= [ el =k (Glel) [
lyl<1 lyl<
2l s 1, (3l
> (1) 2 TH >eln(31).

where the last step follows from (7.3). Now taking into account that h(t) is decreasing in (0, ty) we
have that

3
sup Nw {z € R" : [T'f(z)] > A} > sup Nw {|x! <60 :cth < W) > A}
A>0 A>0 Ks 2

> ¢ sup Xpw{|x| <dp : h(?)m> > )\}
A>h(to) 2

> ¢ sup h(t)Pw {yx\ < %} (7.4)

0<t<to 3

=c sup (1-— logt)(1+ﬂ)(s—%)p t—’y1n+pns/ 2|y
0<t<to i<

~ sup (1-—log t)(lJrﬁ)(%*p) {—intpnstn—yn
0<t<tg

At this point we we observe that

—yin+pns+n—m <0 <= 1+ps <y +7.

Hence, choosing 71 = 1 — =5 we have that, since s < 3 57
71+7:1—£+'y>1——+— 1+£>1+ps.
r'2 r'2 2r"

In other words
—yin +pns +n —yn < 0.
That inequality combined with ([7.4) yields

sup NPw{z € R" : |[T'f(x)] > \} = 0.
A>0

This contradicts ([7.2]) and ends the proof of the theorem.

7.3. Proof of Theorem Assume that with Mp with B(t) < ct? for every t > ¢ and
1 < ¢ < ' holds for every operator in the conditions of Theorem Arguing as in [30, Proof of
Theorem 3.1], it suffices to disprove the estimate for some 0 < pg < co. Let us choose ¢ < pg < 1.
Assume that for every w € A1 C A we have that ||Tf||zro.cc(w) < e[| Mpfllro.co(yy- Then we
observe that

| T fll rooowy < ellMBfllproce ) < ell Mg fllproco wy < cll fll Lrowoo w)-

and this in particular holds for the weight w(z) = |z|™"7 with v € (2,1) contradicting Theorem
2.4
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8. PROOFS OF ENDPOINT ESTIMATES

The proofs that we present in this section will follow the strategy outlined in [10] and generalized
n [24]. Let A be a Young function satisfying

A(4t) < A A(2) (t>0,A4 >1). (8.1)
Let D be a dyadic lattice and k € N. We denote
Fo={QeD: 4 < |flag <4},
Now we recall |24, Lemma 4.3],

Lemma 8.1. Suppose that the family Fy is (1 — ﬁ) — sparse. Let w be a weight and let E be

an arbitrary measurable set with w(E) < oco. Then for every Young function ¢,

404
X wdeka(E)—i—/ A (4% £)) Mywdz.
/E Q;k ¢ 7! ((2AA)2k> R ( ) ’

Using the preceding Lemma we are in the position to prove Theorem

8.1. Proof of Theorems and Firstly we are going to establish an endpoint estimate for
the operator Ag 4. That estimate combined with Theorem [I.1] yields a proof of Theorem We
will follow the strategy devised in [24] generalizing [10].

Let

o {a: ER" : Asaf(z) > 4 Maf(z) < 1}

By homogeneity, taking into account Lemma it suffices to prove that
w(E) < cry /R A(f(@))) Mywdz. (8.2)
Let us denote S, = {Q € S + 47F 1 < | f|
Tof(@) = 3 Iflaoxe(@).

QEeSy
If ENQ # 0 for some Q € S then we have that || f||a,g < 7 so necessarily

A0 < 4*’“} and set

A37Af(w):Zka(x) x € FE.
k=1

Since A is submultiplicative it satisfies (8.1)) with Ay = A(4). Using Lemma with Fj, = Sg
combined with the fact that T} f(z) < 47" >_0es,, XQ(x) we have that

4—k+1A(4k)

- A(|f)Mywdz. (8.3)

Taking that estimate into account,

1 1
w(E) < 4/EA37Afwdx§ 1 E /Ekawd:U
k=1

1 247k A4R)
Now we observe that
92" 1
/ — — _dt>e (8.4)
92k—1 tlog(e + t)
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Alt)

Taking this into account, since —;

is non-decreasing,

47k A4k 47k A(4F)
Z*—l 22k <c Z/Qk 1 tlo e+t)dt*—1 (22k)
k=1 % 8( ¥
k
A(4 2/22 g AEE
g2k—1 11 ( log(e +1t) 4k1
A(log(e +¢)?)
926—1 1~ (t) log(e + t) log(e + t)2

@~ ( )A(log(e +1)*)
= C/1 2log(e + £)3 dt.

This proves Theorem [2.7] in the case m = 0.
Assume now that m > 0. Taking into account Theorem it suffices to obtain an endpoint
estimate for each

= > b(x) = ba" "I £1b = bol" | 5.oxq ().
Qes

We shall consider two cases.
Assume first that A = m. Then we have that

"0, (@) =Y 11— bl B.axa(@) < 1blEvo Y Iflla.exe(@),

QeS QeS

and arguing as above,

w xeR" : Z | fllAm.@xQ(x) > A < ckyp,, /n Am < 3 ) M, w(zx)dz,

QeS

where

_ /°° P (t)Am(log(e +1)%)
Kgpm = 3 dt.
1 t"log(e +t)3
Now we consider the case 0 < h < m. Using the generalized Holder’s inequality if h > 0 we have
that

AG 0, (@) < b0 D b)) = bol™ "I fan.oxe(@) = T f ().
Qes

We define
E={z:|Tf(z)] > 8 Mg, f(z) <1/4}.

By the Fefferman-Stein inequality (Lemma [4.3) and by homogeneity, it suffices to assume that
16l Baro = 1 and to show that

W(E) < eCy [ () Mooty

Let
S={QeS8 : 47 <|flaQ <47},

k
F(Q) = {x € Q:lb(a) ~bol" "> (3) }

and for Q) € Sg, set
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If ENQ # 0 for some Q € S, then || f|/4,.0 < 1/4. Therefore, for x € E,

T f@)] <) > b(x) = bo™ " If la,oxe()

k=1 QESk
< 3/2)F Y flanexel= +Z > o) = bo™ I fll 40X (@) ()
k=1 QESK k=1 QeS8

=Tif(x) + Tof (z).
Let E; ={x € E: T;f(x) >4},i =1,2. Then
w(E) < w(Ey) + w(Es).
Using (with any Young function )

00 k k
[ it < (oYt +cana S5 EED [ gty e

k=1 k=1 @ZJh (22)
This estimate, combined with w(FE;) < i f B (71 f)wdz, implies

w(Ey) < caha Z (3/8) hk / Ap(|f]) My, wdz.
= (22

Now we observe that using (8.4))

> (3/8) ’fAh (4F) & An(4h)
2 —— N
2 o (22) kzl U (224) 4k

e} 2k
< CZZkLm /2 édt
TS dn o (220) 4k Ja tlog(e + 1)

o ahi(t) Ap(log(e + 1)?)
< 6/1

dt.
t2log(e 4 t)3

An(t)
t

Ap(log(e + t)?) - Ah(log(e+t)3(m_h)) - Ah(log(e+t)4(m_h))
logle +t)2  —  log(e+t)3m=h) = log(e+t)3(m=h)
t)Ap (log(e+t)(m—h)

t2 log(e+-t)3(m—nh)

w(Br) < crn / An(If)) Ma,_, o0 wda
Rn

We observe that since

is not decreasing,

Y

we have that ¢ [} oy dt, and choosing ¢, = ®,,,_p, © ©p,

(8.5)

Now we focus on the estimate of w(FE2). Arguing as in the proof of [24] Lemma 4.3], for Q € S we

can define pairwise disjoint subsets Eg C ) and prove that

4 (4 )
s@'/EQ W (45| ) da

Hence,

w(Ea) < HTflne Y] 3 o / b~ bo|™ " wdz / A4\

k=1 Q€ESk

(8.6)

Now we apply twice the generalized Holder inequality (4.3). First we obtain the following in-

equality
1 / L
7 b—bo|" "wdx < ¢, llwy o
Q| Jr.@ | Ql nllwXF (@) L(og Lym—r.0

(8.7)
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Now we define ®,,_p,(t) = tlog(e +t)™ ", and ¥,,_;, as

Since ¢p(t)/t and ® are strictly increasing functions, W,,_j is strictly increasing, too. Hence, a
direct application of (4.6)) yields

(8.8)

”wXFk(Q) HL(log Lym-h g = (Pm—novn),Q

2
v GQiE@) e e

k
(3/2)m—h

Taking into account that Theorem assures that |Fy(Q)| < ax|Q|, where oy, = min(1,e™" 27 +1).
That fact together with and ({8.8)) yields

b—bollwd <7 o .
|Q’/ ‘ Q‘ wax - (1/ )Hw”(émfh ©n),Q

mh

From this estimate combined with it follows that

(e 9]

w(B) < e gor e 3 ol [, A4
k= ( / QES

oo

c"(Z\I,—l tl/a / Ap([fDMa,, 00 (r)w(T)dz.
k=1 ~m—h

Now we observe that we can choose ¢, 5 such that for every k > ¢, 5 we have that akl,l =
kfl
(3/2)m
e ~1 > max{e?,4*}. We note that

1

“k édt >
1 tlog(e+t) —
k—1

IN

is non-

Taking this into account, if % = (m — h)lolgo(%, since A is submultiplicative and @
decreasing, we obtain
o0
1 Ap(4%) 1 An(4¥)
— < anhm +
Z: \Ijml,h(l/ak) a¥ o Z v ! (/o) 4k

k= Cn,m,h

A(4) /OO 1 1 Ap(log(e +t)'/P)
4 Jy w b (t)tlog(e+1t) log(e+t)H/5

-1 -1 -
- o t 1 A (1 4(m—h)
SO"rzhm‘|'cn/ Ph o_l mih( ) h( Og(€+t) )dt
, 1 o, () ot log(e +t) log(e + t)4(m=h)

+ = 90’:1 © (I);zl—h(t)Ah(log(e + t)4m=h)y
An,hm cn/l‘ +2 log(e + t)3(m—h)+1

dt

< Qp.hym T Cn

dt

9. PROOFS OF EXPONENTIAL DECAY ESTIMATES

9.1. Proof of Theorem We recall that in [33, Theorem 2.1], it was established that

ze@ : Z xr(z) >t | < ce”™|Q). (9.1)

ReS,RCQ
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Assume that supp f C Qo. It is easy to see that (5.5 holds with bg, replaced by b3q. Then we
have that for almost every = € Qq,

T3 (F)(@)] = T (fx300)(@)] < cnmer Y CEE (b, ),
h=0

where
mh m—
Crp(b, £) =Y |b(x) = bag[™ "1 fIb — bsg|" | 3.3oxq(x),
QeF

and F C D(Qo) is a sparse family. For the sake of clarity we consider now two cases. If m = 0 then
we only have to deal with C%’Of(b, ) =2 0er IflB3gxq(z). In this case taking into account that

ZQG}‘ | f1l 5, 3QXQ
<> xolx

Mpf(x QeF

a direct application of (9.1)) yields (2.8]).
For the case m > 0. First we observe that

[b(2) = bag|™ " < cnmllblBaro + enmlb(@) — bol™ ",
and also that by the generalized Holder’s inequality and taking into account (4.6]) and (4.9)),

16— bsol" fll B3 < 116l a0l fllas0-
Then we have that

m,h

Myf
T A

c|freq Derlllvme 2

Maf 2Cn,m||bHBMOCT

b(x A
e, . Saerh@ (@ h

Maf 2Cn,me||BMOCT

=1+1I.

For I we observe that

1f1la3Qxq(2)
S S Y )

QeS

and then a direct application of (9.1 yields

X )\ — 4)\m
{rea: Maf > b < o Tl g,

2¢n,m |0l Barocr
Now we focus on I1. [24] Lemma 5.1] provides a sparse family F such that for every Q € F,

b= tol < e 3 (i [ 1060 - brde ) ol

PeF,PCQ

Since b € BM O, we have that for every Q € F,

b -vol < e 3 (g [ o) bolde) o) < calbllovo X xela)

PeF,PCQ PeF,PCQo
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This yields

Yger o) — bl " £l 4saxe ()
“ L < enmnlIDIi0 > @] el
QEF \PeF,PCQo

m—h

m—h+1
< Cnmn bl a6 > xe@) xQ(),
PeF,PCQo
and using again ((9.1]),
m—h+1
A
II<|SxeQoeamnlbliFaro [ Y xr() >

92 h
PeF,PCQo cn,ml|0l Barocr

A T ( By ) m—hFT
m— =\ ST e
=197 € Qo : Camn E xp(z) > < > <ce Zen,m I 00T Q|

2 bl|m
PeF.PCQo enmlblBrocr

as we wanted to prove. Controlling all the decays by the worst possible, namely, when h = 0 we are
done.

10. PROOFS OF CASES OF INTEREST AND APPLICATIONS

10.1. Proof of Theorem Since T' is an w-Calderén-Zygmund operator, we know that it
satisfies an L*°-Hormander condition with Heso < ¢, (||w||Dini + €& ), in other words T satisfies an
A-Hérmander condition with Ag(t) = ¢. Let us call ®;(t) = tlog(e + t)7. We are going to apply
Theorem with A;(t) = ®;(t), so we have to make suitable choices for each ¢, to obtain the
desired estimate for each term

Ko /n Ay (W) Ms,, o, w(x)dr.

We consider three cases. Let us assume first that 0 < h < m. Then

Ky, = Q +ec o0 @;1 o CD;LI?h(t)Ah(log(e + t)4(m_h)) "
©h n,m,h n 1 t2 log(e + t)B(mfh)+1

< Qnmn +C /00 0, (1) log(e + log(e + @ppp (1)) 2= o
n,m, " @, n(t)2log(e + @py_p(t))L—(m=h) m—h

< Qo+ € /00 @i (1) log(e +log(e + @, —p (1)) Hm—R))R y

= Onm, n 1 tP,, h( )10g(e+ D, h(t))l m—h)

<a te /°° ( ) log(e + log(e + @, — h(t)) ) »
n,m,h n 1 t2log(e+t> .

If we choose oy (t) = tlog(e + t)log(e + log(e + t))1+¢, € > 0, then

Ko < @ L /00 log(e + log(e + @y, (£))4(m=h))h
on > Onomh n , tlog(e + t)2log(e + log(e + t))1+e
dt

o0
/1 tlog(e + t)log(e + log(e + t))t+e

dt

< Qp,m,h T Cn

<

m\r—t

and we observe that also

Byun o o1 < tlog(e + 1) log(e + log(e + 1)) <. (10.1)
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Then, for 0 < h < m,
flx 1 flx
Ko, / Ap <| (/\ >‘ M@m—hOth($)dx <c-— D, ‘ ()\ )‘ ML(logL)m(loglogL)lJrEw(x)dx'

e

For the case h = 0, arguing as in the first case, we obtain

oo —1 -1 4m
_ @y © P (H)Ao(log(e +¢)™)
Fipo = Qnm + cn/l t;ibog(e + t)3m+l dt

[e'e) —1
w0y (t)
< _ %o ()
S Onm + C”/l t2log(e + 1)

So it suffices to choose ¢o(t) = tlog(e + log(e + t))1 < and have that r,, < 1 and
B 0 00 < olt) log(e + 6™ = tlog(e + 1) log(e + log(e + ). (10.2)

Consequently, since Ay(t) =0,

flx 1 flx
Ko /n Ao (H)\)|> ‘]\4‘1%1OQDO,W(x)dm < Cg /n | ()\)|ML(logL)m(loglogL)H'Ew(x)dx'

To end the proof we consider h = m. We observe that

_ /°° P (1) Am(log(e +1)*) |
Kom = 7 3 t
1 t?2log(e + t)
_ /°° P (t)log(e + log(e +)°)™
N t21og(e + t) ’
and taking ¢, (t) = tlog(e + t)™ log(e + log(e + t))1¢, we obtain &y, < % and since ®¢(t) = t,

€

T 1 T
Keom, /]Rn Ap (lf()\ )’> Mo, w(z)dr < c— /n Py, <|f(/\ )|> ML(logL)m(loglogL)”Ew(x)dx-

€

Collecting the preceding estimates

it e ) > < eile X (i [ an (U)ot

1 flx
< Cn,mCTs/ @, (‘ ()\ )’) ML(logL)m(loglogL)l+Ew(l‘)dx'

Arguing essentially as above, we may also show that

w({e R 5 (@) > ) < eonCr [ @, ('f f)‘) My og 1y ().

Now we turn our attention now to the remaining estimates. Assume that w € A,. To prove (3.2)
we argue as in [I7, Corollary 1.4]. Since log(t) < %, for every t > 1 we have that

1 1 1
EML(logL)m+5w < CEWM1+(m+s)aw-

Taking (m + ¢)a =

Lemma [4.5]

1 1 1 1
e Migmeeyaw = — (4 e)melwla)™ My, 1w < em_[w]i 1 Muw.

™n ['LU]AOO

ﬁ where 7, is chosen as in Lemma we have that, precisely, using
n oo

Finally choosing € =

1 1
EML(IOgL)WH»Ew < cmg[w]’X:gEMw < emlog(e + [w]ay ) [w]X  Muw.

1
m we have that
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This estimate combined with (3.1) yields (3.2). We end the proof noting that (3.3)) follows from
(3.2) and the definition of w € A;.

10.2. Proof of Theorem It suffices to prove that K € Hg, namely that T is a B-Hormander
operator. The rest of the statements of the Theorem follow from applying the corresponding results
in Section 2| to Tq. Let us prove then that K € Hp. We borrow the following estimate from [28|
Proposition 4.2],

I = ) = KOl acppens < (D (1)) i<

S

This condition is essentially equivalent to consider cubes instead of balls, and hence to our condition.
We also note that in the convolution case it suffices to consider balls centered at the origin.
Now we observe that choosing s = 2" R and taking |y| < R < § we have that

o.9] oo
Z ||K ) - K(')HEQkRQIKQkHR <c (Z 27* + WB(Q_k)>
k=1 k=1

1
1
<c+ c/ wg(t)—dt.
0 t
Hence taking into account (3.4 we have that K € H.

10.3. Proof of Theorem The following Coifman-Fefferman estimate was obtained in [28]
Theorem 4.5].

Theorem 10.1. Let h € M(s,l) with 1 < s<2,0<1<n andl > % Then for all non-negative
integer m and any € > 0 we have that for all 0 < p < 0o and w € Ay

| i@ w@de < cupae [ Mapsef@Puie)ds,

The proof of that result relies upon the fact that certain truncations KV of the kernel belong to
the class H4 [28, Proposition 6.2]. Here we state a slightly weaker version of their result that is
enough for our purposes.

Lemma 10.1. Let h € M(s,l) with 1 < s < 2,1 <1 < n and with | > 2, then for every
non-negative integer m and all 1 <r < (%), we have that Kn € Hprog rymr uniformly in N.

Armed with those results we are in the position to establish Theorem [10.1

First we check that both and hold. Let us choose 7' = % 4+¢ with ¢ > 0 small. Lemma
yields then that Kn € Hprogymr. Let us call Ty the truncation of T" associated to K. For
the case m = 0 we deal with T" and we have that Ky € Hpr so it suffices to apply Theorem
with B(t) = t" to each T and apply a standard approximation argument. For the case m > 0,
let us call By, (t) = t" log(e + t)™". We choose A(t) = t"'so we have that A_l(t)B_l(t)é;ll (t) <ct
for every t > 1 where Cpy(t) = €''/™. Then holds for Ty and any b € BMO with constant
independent of IV and a standard approximation argument yields that those estimates hold.

Now we turn our attention to the strong type estimate. We observe that it also follows from
Lemma that Ky satisfies an A-Hoérmander condition with A(t) =¢" and that K, 4 = 1. Then
we can apply Theorem to each Txn and the desired estimate follows again from a standard
approximation argument.
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