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Changjian Xiea, Carlos J. Garćıa-Cerverab,c, Cheng Wangd, Zhennan Zhoue,∗,
Jingrun Chena,f,∗

aSchool of Mathematical Sciences, Soochow University, Suzhou, 215006, China.
bDepartment of Mathematics, University of California, Santa Barbara, CA 93106, USA.

cBasque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Basque Country,
Spain.

dMathematics Department, University of Massachusetts Dartmouth, North Dartmouth, MA
02747, USA.

eBeijing International Center for Mathematical Research, Peking University, Beijing,
China.

fMathematical Center for Interdisciplinary Research, Soochow University, Suzhou, 215006,
China.

Abstract

Micromagnetics simulations require accurate approximation of the magnetiza-
tion dynamics described by the Landau-Lifshitz-Gilbert equation, which is non-
linear, nonlocal, and has a non-convex constraint, posing interesting challenges
in developing numerical methods. In this paper, we propose two second-order
semi-implicit projection methods based on the second-order backward differen-
tiation formula and the second-order interpolation formula using the informa-
tion at previous two temporal steps. Unconditional unique solvability of both
methods is proved, with their second-order accuracy verified through numerical
examples in both 1D and 3D. The efficiency of both methods is compared to
that of another two popular methods. In addition, we test the robustness of
both methods for the first benchmark problem with a ferromagnetic thin film
material from National Institute of Standards and Technology.
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1. Introduction

Electrons in a material pose local magnetic orders, but typically do not ex-
hibit a spontaneous macroscopic magnetic ordering unless a collective motion of
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these local magnetic orders is present. This results in a net magnetization even
in the absence of an external magnetic field. Such a material is called a ferro-
magnet. It has binary stable configurations, which makes it an ideal material
for data recording and storage. Recent advances in experiment and theory [1]
have demonstrated effective and precise control of ferromagnetic configurations
by means of external fields.

A very common phenomenological model for magnetization dynamics is the
Landau-Lifshitz-Gilbert (LLG) equation [2, 3]. This model has been success-
fully used to interpret various experimental observations. The LLG equation is
technically quasilinear, nonlocal and has a non-convex constraint, which poses
interesting challenges in designing efficient numerical methodologies. In addi-
tion, the magnetization reversal process requires numerical methods to resolve
different length and temporal scales in the presence of domain walls and vor-
tices, due to their important roles in the switching process [4, 5]. Therefore,
numerical methods for the LLG equation with high accuracy and efficiency are
highly demanding.

There has been a continuous progress of developing numerical algorithms
in the past few decades; see for example [6, 7] and references therein. The
spatial derivative is typically approximated by the finite element method (FEM)
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and the finite difference method [19,
20, 21, 22, 23]. As for the temporal discretization, explicit schemes [15, 24],
fully implicit schemes [25, 26, 20], and semi-implicit schemes [19, 27, 28, 29,
30, 31, 32] have been extensively studied. Explicit schemes suffer from severe
stability constraints. Fully implicit schemes can overcome this severe stability
constraints. However, a (nonsymmetric) nonlinear system of equations needs to
be solved at each time step, which is time-consuming. A nonlinear multigrid
method is used to handle the nonlinearity at each time step in [33], and the
fixed point iteration technique is used to deal with the nonlinearity in [34]. In
[20], the existence and uniqueness of a solution to the nonlinear system is proved
under the condition that the temporal stepsize be proportional to the square of
the spatial gridsize. This, however, is contrary to the unconditional stability of
implicit schemes.

Semi-implicit schemes achieve a desired balance between stability and effi-
ciency. One of the most popular methods is the Gauss-Seidel projection method
(GSPM) developed by Wang, Garćıa-Cervera, and E [19, 27, 28]. This method
is based on a combination of a Gauss-Seidel implementation of a fractional step
implicit solver for the gyromagnetic term, and the projection method for the
heat flow of harmonic maps to overcome the difficulties associated with the
stiffness and nonlinearity. Only several linear systems of equations need to be
solved at each step, whose complexity is comparable to solving the scalar heat
equation implicitly. It is tested that GSPM is unconditionally stable with first-
order accuracy in time. In order to get second-order accuracy in time, two
nonsymmetric linear systems of equations need to be solved at each step. Note
that a projection step is needed to preserve the pointwise length constraint.

In this work, we propose two second-order semi-implicit projection methods
for LLG equation based on the second-order backward differentiation formula
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and the second-order interpolation formula using the information at previous
two temporal steps. The unconditional unique solvability of both methods is
proved, with their second-order accuracy verified through numerical examples in
both 1D and 3D. The efficiency of both methods is compared to that of another
two popular schemes in the literature. In addition, we test the robustness of
both methods using the first benchmark problem for a ferromagnetic thin film
material developed by the micromagnetic modeling activity group from National
Institute of Standards and Technology (NIST). It is worth mentioning that
a modification of the proposed method has been proved to be second-order
accurate in time under mild conditions [35].

The rest of the paper is organized as follows. In Section 2, we first intro-
duce the micromagnetics model based on the LLG equation. The second-order
semi-implicit projection methods are described in Section 2.2 with their unique
solvability given in Section 2.3. The calculation of the demagnetization field
(stray filed) is given in Section 2.4. Numerical results in Section 3 are used to
test the accuracy and the efficiency of the proposed methods in both 1D and 3D.
Moreover, the first benchmark for a ferromagnetic thin film material developed
by the micromagnetics modeling activity group from NIST is used to check the
applicability of the proposed methods in Section 4. Conclusions are drawn in
Section 5.

2. Second-order semi-implicit methods

2.1. Landau-Lifshitz-Gilbert equation

The magnetization dynamics in a ferromagnetic material are described by
the LLG equation [2, 36], which take the following nondimensionalized form:

mt = −m× heff − αm× (m× heff), (1)

with
∂m

∂ν

∣∣∣
Γ

= 0 (2)

on Γ = ∂Ω. Here the magnetization m : Ω ⊂ Rd → S2, d = 1, 2, 3 is a three-
dimensional vector field with a pointwise constraint |m| = 1 and ν is the unit
outward normal vector. Ω is a bounded domain occupied by the ferromagnetic
material. The first term on the right hand side in (1) is the gyromagnetic term
and the second term is the damping term with α > 0 being the dimensionless
damping coefficient.

The effective field heff consists of the exchange field, the anisotropy field,
the external field he and the demagnetization or stray field hs. For a uniaxial
material,

heff = ε∆m−Q(m2e2 +m3e3) + hs + he. (3)

Here, the dimensionless parameters areQ = Ku/(µ0M
2
s ) and ε = Cex/(µ0M

2
sL

2)
with L the diameter of the ferromagnetic body, Ku the anisotropy constant,
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Cex the exchange constant, µ0 the permeability of vacuum, and Ms the satu-
ration magnetization. e2 = (0, 1, 0), e3 = (0, 0, 1) and ∆ denotes the standard
Laplacian operator. he is the applied (external) magnetic field and the detailed
description of hs will be given in §2.4. Typical values of the physical parameters
for Permalloy are included in Table 1. For brevity, we define

Table 1: Typical values of the physical parameters for Permalloy, which is an alloy of Nickel
(80%) and Iron (20%) frequently used in magnetic storage devices.

Physical Parameters for Permalloy

Ku 1.0× 102 J/m3

Cex 1.3× 10−11 J/m

Ms 8× 105 A/m

µ0 4π × 10−7 N/A2

α 0.01

f = −Q(m2e2 +m3e3) + hs + he. (4)

and rewrite (1) as

mt = −m× (ε∆m + f)− αm×m× (ε∆m + f). (5)

It is easy to check that the following equation

(1− αm×)mt = −(1 + α2)m× (ε∆m + f) (6)

is equivalent to (5) since |m| = 1.

2.2. Second-order semi-implicit projection methods

Denote the temporal step-size by k, the spatial mesh size by h, the standard
second-order centered difference for Laplacian operator by ∆h, and tn = nk,
n ≤

⌊
T
k

⌋
with T the final time. For convenience, we use the finite difference

method to approximate the spatial derivatives in (5) and (6). For the temporal
discretization, we employ the second-order backward differentiation formulas
(BDFs) to approximate the temporal derivative

∂

∂t
mn+2
h ≈

3
2m

n+2
h − 2mn+1

h + 1
2m

n
h

k
. (7)

Such a discretization results the following fully implicit scheme for (5):

3
2m

n+2
h − 2mn+1

h + 1
2m

n
h

k
= −mn+2

h ×
(
ε∆hm

n+2
h + fn+2

h

)
(8)

− αmn+2
h ×

(
mn+2
h × (ε∆hm

n+2
h + fn+2

h )
)
.

As expected, at each time step, a nonlinear system of equations needs to be
solved in (8). Moreover, the nonsymmetric structure of the system introduces
additional difficulties.
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To overcome this severe difficulty, we approximate the nonlinear prefactors
in front of the discrete Laplacian term using the information from previous time
steps (one-sided interpolation) with its accuracy the same as the corresponding
BDF scheme. For (8), we have

3
2m

n+2
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×
(
ε∆hm

n+2
h + f̂

n+2

h

)
− αm̂n+2

h ×
(
m̂n+2
h × (ε∆hm

n+2
h + f̂

n+2

h )
)
, (9)

where

m̂n+2
h = 2mn+1

h −mn
h, (10)

f̂
n+2

h = 2fn+1
h − fnh, (11)

and fnh = −Q(mn
2e2+mn

3e3)+hns +hne . However, such a scheme cannot preserve
the magnitude of magnetization, we therefore add a projection step and obtain
the following scheme for (5)

Scheme A



3
2m

n+2,∗
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×
(
ε∆hm

n+2,∗
h + f̂

n+2

h

)
− αm̂n+2

h ×
(
m̂n+2
h × (ε∆hm

n+2,∗
h + f̂

n+2

h )
)
,

mn+2
h =

mn+2,∗
h

|mn+2,∗
h |

,

where mn+2,∗
h is the intermediate magnetization. For (6), using the same idea,

we have

Scheme B



(1− αm̂n+2
h ×)

3
2m

n+2,∗
h − 2mn+1

h + 1
2m

n
h

k

= −(1 + α2)m̂n+2
h ×

(
ε∆hm

n+2,∗
h + f̂

n+2

h

)
,

mn+2
h =

mn+2,∗
h

|mn+2,∗
h |

.

Remark 1. Using the same idea, we can construct high-order semi-implicit
projection schemes for (5) and (6) using high-order BDFs and high-order one-
sided interpolations. However, if the order is greater than 2, then such a scheme
cannot be A-stable. Numerical tests for LLG equation also indicates the con-
ditional stability of higher order semi-implicit projection schemes. First-order
semi-implicit projection schemes are A-stable, but they do not have obvious ad-
vantages over the Gauss-Seidel projection method [27].

Remark 2. To kick start Scheme A and Scheme B in implementation, we
use the first-order semi-implicit projection scheme with the first-order BDF and
the first-order one-sided interpolation for the first temporal step, and thus the
whole method is still second-order accurate.
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2.3. Unconditionally unique solvability

For simplicity of illustration, we assume that the spatial mesh size hx =
hy = hz = h. An extension to the general case is straightforward.

We firstly introduce the discrete inner product.

Definition 1 (Discrete inner product). For grid functions fh and gh over the
uniform numerical grid, we define

〈fh, gh〉 = hd
∑
I∈Λd

fI · gI ,

where Λd is the index set and I is the index which closely depends on the di-
mension d.

Definition 2. For the grid function fh, we define the average of summation as

fh = hd
∑
I∈Λd

fI .

Definition 3. For the grid function fh with fh = 0, we define the discrete
H−1
h -norm as

‖fh‖2−1 = 〈(−∆h)−1fh,fh〉.

For ease of notation, we drop the temporal indices and rewrite Scheme A
and Scheme B in a more compact form(3

2
I + kεm̂h ×∆h + αkεm̂h × (m̂h ×∆h)

)
mh = ph, (12)(3

2
I − 3

2
αm̂h ×+kε(1 + α2)m̂h ×∆h

)
mh = p̃h, (13)

where ph, p̃h, and m̂h are given.

Theorem 2.1 (Solvability for Scheme A). Given ph and m̂h, the numerical
scheme (12) admits a unique solution.

For the unique solvability analysis for (12), we denote qh = −∆hmh. Note
that qh = 0, due to the Neumann boundary condition for mh. Meanwhile, we
observe that mh 6= (−∆h)−1qh in general, since mh 6= 0. Instead, we rewrite
(12) into

mh =
2

3

(
ph + kεm̂h × qh + αkεm̂h × (m̂h × qh)

)
and take the average on both sides. Therefore, mh can be represented as follows:

mh = (−∆h)−1qh+C∗qh
with C∗qh

=
2

3

(
ph+kεm̂h × qh+αkεm̂h × (m̂h × qh)

)
and m̂h is given by (10). In turn, (12) is then rewritten as

G(qh) :=
3

2
((−∆h)−1qh+C∗qh

)−ph−kεm̂h×qh−αkεm̂h×(m̂h×qh) = 0. (14)

To proceed, we need the following lemma.
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Lemma 2.1 (Browder-Minty lemma [37, 38]). Let X be a real, reflexive Banach
space and let T : X → X ′ (the dual space of X ) be bounded, continuous, coercive

(i.e., (T (u),u)
‖u‖X → +∞, as ‖u‖X → +∞) and monotone. Then for any g ∈ X ′

there exists a solution u ∈ X of the equation T (u) = g.
Furthermore, if the operator T is strictly monotone, then the solution u is

unique.

Proof of Theorem 2.1. For any q1,h, q2,h with q1,h = q2,h = 0, we denote
q̃h = q1,h − q2,h and derive the following monotonicity estimate:

〈G(q1,h)−G(q2,h), q1,h − q2,h〉

=
3

2

(
〈(−∆h)−1q̃h, q̃h〉+ 〈C∗q1,h

− C∗q1,h
, q̃h〉

)
− kε〈m̂h × q̃h, q̃h〉 − αkε〈m̂h × (m̂h × q̃h), q̃h〉

≥ 3

2

(
〈(−∆h)−1q̃h, q̃h〉+ 〈C∗q1,h

− C∗q2,h
, q̃h〉

)
=

3

2
〈(−∆h)−1q̃h, q̃h〉 =

3

2
‖q̃h‖2−1 ≥ 0.

Note that the following equality and inequality have been applied in the second
step:

〈m̂h × q̃h, q̃h〉 = 0, 〈m̂h × (m̂h × q̃h), q̃h〉 ≤ 0.

The third step is based on the fact that both C∗q1,h
and C∗q2,h

are constants,

and q1,h = q2,h = 0, so that 〈C∗q1,h
− C∗q2,h

, q̃h〉 = 0. Moreover, for any q1,h,

q2,h with q1,h = q2,h = 0, we get

〈G(q1,h)−G(q2,h), q1,h − q2,h〉 ≥
3

2k
‖q̃h‖2−1 > 0, if q1,h 6= q2,h,

and the equality only holds when q1,h = q2,h.
Therefore, an application of Lemma 2.1 implies a unique solution of Scheme

A.

Theorem 2.2 (Solvability for Scheme B). Given p̃h and m̂h, the numerical
scheme (13) admits a unique solution.

Proof of Theorem 2.2. We first rewrite (13) in a compact form
(

3
2I −A

)
mh =

p̃h, where

A =
3

2
αm̂h × Ih + kε(1 + α2)m̂h × (−∆h)

= kε(1 + α2)m̂h ×
(
−∆h +

3α

2kε(1 + α2)
Ih

)
=: kε(1 + α2)MS.
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Here Ih is the identity matrix, M is the antisymmetric matrix corresponding
to the discrete operator mh×, and S is the symmetric positive definite matrix
corresponding to −∆h + 3α

2kε(1+α2)Ih which admits a decomposition S = CCT

with C being nonsingular.
Thus, we have

|λI −MS| = |λI −MCTC| = |λI − CMCT |,

Due to the antisymmetry of matrix M , we have

(CMCT )T = − CMCT .

It follows from the spectral lemma for antisymmetric matrices [39] that the
eigenvalues of CMCT are either 0 or purely imaginary, thus the eigenvalues of
MS are either 0 or purely imaginary as well. This unique solvability comes as a
consequence of the fact that all eigenvalues of 3

2I − A have 3
2 as real parts and

det( 3
2I −A) 6= 0.

Remark 3. Note that the unique solvability of Scheme A and Scheme B does
not impose any condition on k and h. This is in contrast with earlier results for
the fully implicit schemes where k = O(h2) is needed for the unique solution of
the nonlinear system of equations at each time step; see [20] for example.

Remark 4. In [35], we prove the second-order convergence of a modified scheme
of Scheme A by introducing two sets of approximated solutions and separating
errors caused by the evolution step and by the projection step. A similar proof
of Theorem 2.1 has also been given in [35].

2.4. Computation of the stray field

The stray field hs = −∇U with U the scalar function in R3 which satisfies

∆U =

{
∇ ·m in Ω

0 outside Ω,
(15)

together with jump conditions

[U ]∂Ω = 0[
∂U

∂ν

]
∂Ω

= −m · ν. (16)

Here [U ]∂Ω denotes the jump of U at the material boundary as

[U ]∂Ω(x) = lim
y→x

y∈R3/Ω

U(y)− lim
y→x
y∈Ω

U(y), (17)

and
[
∂U
∂ν

]
∂Ω

is defined similarly. The solution to (15) - (16) is

U(x) =

∫
Ω

∇N(x− y) ·m(y) dy,
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and thus the stray field

hs = −∇
∫

Ω

∇N(x− y) ·m(y) dy, (18)

where N(x) = − 1
4π|x| is the Newtonian potential.

It follows from (18) combined with the divergence theorem that

hs(r) =
1

4π
∇
{∫

Ω

∇ ·m(r′)

|r − r′|
dr′ −

∫
∂Ω

m(r′) · n(r′)

|r − r′|
dS(r′)

}
. (19)

The evaluation of the stray field can be carried out by performing an integra-
tion over the entire material for every point r. In terms of the computational
complexity, a direct evaluation of (18) requires O(N2) with N the degree of
freedoms. Moreover, we need to evaluate (18) at each time step. Therefore, the
direct evaluation is computationally expensive and thus a fast solver is highly de-
sirable. The complexity for solving stray field using FFT is O(N logN) [27, 28].

3. Accuracy and efficiency test

We use examples in both 1D and 3D to show the second-order accuracy of
Scheme A and Scheme B.

In order to have the exact magnetization profile, we consider the simplified
LLG equation with only the exchange term and set ε = 1 with the forcing term

mt = −m×∆m− αm× (m×∆m) + g, (20)

where g = met+me×∆me+αme× (me×∆me) with me the exact solution.
The ferromagetic body Ω = [0, 1] in 1D and Ω = [0, 1]3 in 3D. The final time
T = 1. Since the exchange term is the stiffest term in the original LLG equation,
it is adequate to use (20) to test accuracy and efficiency of the proposed methods.

The exact solution in 1D is

me =
(
cos(x2(1− x)2) sin t, sin(x2(1− x)2) sin t, cos t

)T
, (21)

which satisfies the homogeneous Neumann boundary condition.
The exact solution in 3D is

me = (cos(XY Z) sin t, sin(XY Z) sin t, cos t)
T
, (22)

where X = x2(1− x)2, Y = y2(1− y)2, and Z = z2(1− z)2.
Since both schemes are semi-implicit, we compare their efficiency with an-

other two semi-implicit methods: Gauss-Seidel projection method [27] and the
second-order implicit-explicit method [32]. For completeness, we first state these
two methods.
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3.1. The Gauss-Seidel projection method

It follows from (4) and (5) that the Gauss-Seidel projection method (GSPM)
[27] is given as the following three steps:

Step 1. Implicit Gauss-Seidel:

gni = (I − ε∆t∆h)−1(mn
i + ∆tfni ),

g∗i = (I − ε∆t∆h)−1(m∗i + ∆tfni ), i = 1, 2, 3 (23)

m∗1m∗2
m∗3

 =

mn
1 + (gn2m

n
3 − gn3mn

2 )

mn
2 + (gn3m

∗
1 − g∗1mn

3 )

mn
3 + (g∗1m

∗
2 − g∗2m∗1)

 . (24)

Step 2. Heat flow without constraints :

f∗ = −Q(m∗2e2 +m∗3e3) + hns + he (25)

m∗∗1m∗∗2
m∗∗3

 =

m∗1 + α∆t(ε∆hm
∗∗
1 + f∗1 )

m∗2 + α∆t(ε∆hm
∗∗
2 + f∗2 )

m∗3 + α∆t(ε∆hm
∗∗
3 + f∗3 )

 . (26)

Step 3. Projection onto S2: mn+1
1

mn+1
2

mn+1
3

 =
1

|m∗∗|

m∗∗1m∗∗2
m∗∗3

 . (27)

where m∗ denotes the intermediate values of m. As in [28], the stray field hs
is computed using the intermediate values m∗ in (23) and (25).

3.2. The second-order implicit-explicit method

For simplicity, we only formulate the second-order implicit-explicit (IMEX2)
scheme [32] without Gilbert damping. Define

H(t,u,v) = −u×∆v + f

and

u1 = mn,

v1 = mn.

10



The second-order IMEX scheme (IMEX2) reads as

`1 = H(tn + γk,u1,v1 + γk`1),

k1 = H(tn,u1,v1 + γk`1),

u2 = u1 + kk1,

v2 = u1 + (1− 2γ)kk1,

`2 = H(tn + (1− γ)k,u2,v2 + γk`2),

k2 = H(tn + k,u2,v2 + γk`2),

m̃n+1 = mn +
1

2
k(k1 + k2),

mn+1 =
m̃n+1

|m̃n+1|
, (28)

where γ = 1 − 1/
√

2. Note that IMEX2 solves two linear systems of equations
at each step.

Remark 5. The computational cost for GSPM, IMEX2, and BDF2 at each
temporal step is as follows. Seven symmetric linear systems of equations with
constant coefficients and dimension M need to be solved for GSPM, and two
nonsymmetric linear systems of equations with variable coefficients and dimen-
sion 3M need to be solved for IMEX2. BDF2 only needs to solve one nonsym-
metric linear systems of equations with variable coefficients and dimension 3M
for both Scheme A and Scheme B. Here M is the number of unknowns in
each spatial dimension.

3.3. Accuracy test
Since Scheme A and Scheme B are comparable numerically, we only show

results of Scheme A, termed as BDF2. For comparison, we also list results of
the other two semi-implicit methods: GSPM and IMEX2.

In 1D, for (21), we fix h = 5D− 4 and record the temporal error in terms of
the temporal stepsize k in Table 2 and Figure 1a to get the temporal accuracy.
Both BDF2 and IMEX2 are second-order accurate, while GSPM is first-order
accurate. To get the spatial accuracy, we fix k = 1D − 6 and record the spatial
error in terms of h in Table 3 and Figure 1b. BDF2, IMEX2, and GSPM are
all second-order accurate.

In 3D, for (22), we fix hx = hy = hz = 1/16 and record the temporal error in
terms of k in Table 4 and Figure 2a to get the temporal accuracy. Both BDF2
and IMEX2 are second-order accurate, while GSPM is first-order accurate. To
get the spatial accuracy, we fix the temporal stepsize k = 1D−4 and record the
spatial error in terms of hx = hy = hz = h in Table 5 and Figure 2b. BDF2,
IMEX2, and GSPM are all second-order accurate.

3.4. Efficiency comparison
To compare the efficiency, we plot the CPU time (in seconds) of BDF2,

GSPM and IMEX2 in terms of the error ‖mh −me‖∞ in Figure 3a for the 1D
case and in Figure 3b for the 3D case.
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Table 2: Temporal accuracy in 1D for BDF2, GSPM, and IMEX2 when h = 5D − 4 and
α = 1D − 3.

BDF2 GSPM IMEX2

k ‖mh −me‖∞ ‖mh −me‖∞ ‖mh −me‖∞
2.0D-2 1.0753D-4 3.2024D-2 4.1119D-5

1.0D-2 2.7384D-5 1.6289D-2 1.3107D-5

5.0D-3 6.8538D-6 7.9890D-3 3.7623D-6

2.5D-3 1.6513D-6 4.1923D-3 7.2361D-7

1.25D-3 3.4152D-7 2.0662D-3 1.2711D-7

order 2.065 0.987 2.085

Table 3: Spatial accuracy in 1D for BDF2, GSPM, and IMEX2 when k = 1D − 6 and
α = 1D − 3.

BDF2 GSPM IMEX2

h ‖mh −me‖∞ ‖mh −me‖∞ ‖mh −me‖∞
4.0D-2 6.2092D-4 6.2094D-4 6.2092D-4

2.0D-2 1.5516D-4 1.5517D-4 1.5516D-4

1.0D-2 3.8789D-5 3.8805D-5 3.8789D-5

5.0D-3 9.6973D-6 9.7145D-6 9.6972D-6

2.5D-3 2.4243D-6 2.4439D-6 2.4243e-6

order 2.000 1.998 2.000

Table 4: Temporal accuracy in 3D for BDF2, GSPM, and IMEX2 when hx = hy = hz = 1/16
and α = 1D − 3.

BDF2 GSPM IMEX2

k ‖mh−me‖∞ k ‖mh−me‖∞ k ‖mh−me‖∞
1/8 3.1853D-3 1/32 3.0024D-4 1/4 4.1759D-3

1/16 9.3167D-4 1/64 1.5214D-4 1/8 1.0659D-3

1/32 2.4929D-4 1/128 7.7368D-5 1/16 2.6611D-4

1/64 6.1027D-5 1/256 3.8171D-5 1/32 6.3198D-5

1/128 1.1785D-5 1/512 2.0295D-5 1/64 1.2107D-5

order 2.009 - 0.977 - 2.094
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Table 5: Spatial accuracy in 3D for BDF2, GSPM, and IMEX2 when k = 1D − 4 and
α = 1D − 3.

BDF2 GSPM IMEX2

h ‖mh −me‖∞ ‖mh −me‖∞ ‖mh −me‖∞
1/2 3.5860D-4 3.5856D-4 3.5860D-4

1/4 8.1251D-5 8.1245D-5 8.1252D-5

1/8 2.0187D-5 2.0187D-5 2.0189D-5

1/16 5.0532D-6 5.0519D-6 5.0552D-6

1/32 1.2635D-6 1.3278D-6 1.2656D-6

order 2.030 2.016 2.030
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Figure 1: Accuracy test in 1D for BDF2, GSPM, and IMEX2 when α = 1D−3. (a) Temporal
accuracy when h = 5D − 4; (b) Spatial accuracy when k = 1D − 6.
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Figure 2: Accuracy test in 3D for BDF2, GSPM, and IMEX2 when α = 1D−3. (a) Temporal
accuracy when hx = hy = hz = 1/16; (b) Spatial accuracy when k = 1D − 4.
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In 1D, for the same tolerance, costs of BDF2, GSPM, and IMEX2 in Fig-
ure 3a satisfy: BDF2<IMEX2<GSPM. In 3D, for the same tolerance, costs of
BDF2, GSPM, and IMEX2 in Figure 3b satisfy: BDF2≈IMEX2<GSPM. For
both cases, BDF2 is slightly better than IMEX2 since two linear systems of
equations need to be solved in IMEX2 while only one linear system needs to
solved in BDF2. Both BDF2 and IMEX2 are better than GSPM.
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(a) 1D
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Figure 3: Efficiency test for BDF2, GSPM, and IMEX2 when α = 1D−3 and the spatial grid-
size is fixed. (a) BDF2<IMEX2<GSPM when h = 5D−4 in 1D; (b) BDF2≈ IMEX2<GSPM
when hx = hy = hz = 1/16 in 3D.

Remark 6. When the spatial mesh is very fine, we observe that to achieve the
same tolerance, costs of BDF2, GSPM, and IMEX2 satisfy: GSPM<BDF2<IMEX2.
The reason is that fast solvers can solve symmetric linear systems with constant
coefficients in GSPM, while nonsymmetric linear systems with variable coeffi-
cients are involved in both BDF2 and IMEX2. It becomes increasingly difficult to
solve such systems using the Generalized Minimum Residual Method (GMRES),
for example. This issue will be further explored in a subsequent work.

4. Benchmark problem from NIST

To examine our methods in the realistic case, we simulate the first standard
problem established by the micromagnetic modelling activity group at National
Institute of Standards and Technology (NIST) [40]. This problem asks for sim-
ulating the hysteresis loop of a Lx × Ly × Lz = 1 × 2 × 0.02 µm3 thin-film
element with material parameters that are not too different from Permalloy.
The hysteresis loop is obtained in the following way: A positive external field of
strength H0 = µ0He, in the unit of mT is applied. The magnetization is able to
reach a steady state. Once this steady state is approached, the applied external
field is reduced by a certain amount, and the material sample is again allowed to
reach a steady state. The process continues until the hysteresis system attains
a negative field of strength H0. The process then is repeated, increasing the
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field in small steps until it reaches the initial applied external field. As a con-
sequence, we are able to plot the average magnetization at the steady state as
a function of the external filed strength during the hysteresis loop. For BDF2,
the unsymmetric linear systems of equations are solved by GMRES from library
called high performance preconditioners [41] which was developed by Center for
Applied Scientific Computing, Lawrence Livermore National Laboratory.

4.1. Magnetization profile

For comparison, we use the same setup of the available code mo96a of the
first standard problem from NIST. Its setup is 100× 50× 1 grid points and the
canting angle +1◦ of applied field from nominal axis. The calculation of the
demagnetization field is done by FFT. The initial state is uniform. In the loop,
133 successive steps between +50 mT and −50 mT are adopted for both x-loop
and y-loop.

Due to the presence of meta-stable symmetric states, the applied fields should
be rotated one degree counterclockwise off the nominal axis. The damping
coefficient α = 0.1, the temporal stepsize k = 1 ps and the cell size is 20 ×
20 × 20 nm3. A stopping criterion is used to determine that a steady state
is reached when the relative change in the total energy is less than 10−7. For
mo96a, Figure 4a and Figure 4b plot the average remanent magnetization on
the bottom surface of the sample in the xy- plane when H0 = 0 when the
applied fields are approximately parallel (canting angle +1◦) to the y- (long)
axis and the x- (short) axis, respectively. For BDF2, the corresponding results
are shown in Figure 4c and Figure 4d, respectively. The in-plane magnetization
components are represented by arrows in Figure 4.

Furthermore, magnetization components are visualized by the grayscale value
in Figure 5. For mo96a, Figure 5a - Figure 5d plot the x- component and the y-
component when the applied field is along the y- axis, the x- component and the
y- component when the applied field is along the x- axis, respectively. Results
of BDF2 are shown in Figures 5e to 5h.

From Figure 4 and Figure 5, we observe that results of BDF2 are in quali-
tative agreements with those of mo96a.

4.2. Hysteresis loop

Hysteresis loops generated by the code mo96a are shown in Figure 6a when
the applied field is approximately parallel to the long axis and in Figure 6b
when the applied field is approximately parallel to the short axis, respectively.
The average remanent magnetization in reduced units is (−0.15, 0.87, 0.00) for
the y-loop and (0.15, 0.87, 0.00) for the x-loop. The coercive fields are 4.9 mT in
Figure 6a and 2.5 mT in Figure 6b.

For BDF2, hysteresis loops are presented in Figure 6c when the applied field
is approximately parallel to the long axis and in Figure 6d when the applied field
is approximately parallel to the short axis, respectively. The average remanent
magnetization in reduced units is (−1.613× 10−1, 8.606× 10−1,−9.940× 10−5)
for the y-loop and (1.681 × 10−1, 8.571 × 10−1,−2.281 × 10−3) for the x-loop.
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(a) Applied field parallel to the long
axis

(b) Applied field parallel to the short
axis

(c) Applied field parallel to the long axis (d) Applied field H0 parallel the short axis

Figure 4: Remanent magnetization when α = 0.1 for the bottom surface in the xy plane. The
applied field is approximately parallel (canting angle +1◦) to the y- (long) axis (left column)
and the x- (short) axis (right column). Top row: mo96a; Bottom row: BDF2. The in-plane
magnetization components are represented by arrows.

The coercive fields are 5.213 (±0.4) mT in Figure 6c and 2.552 (±0.4) mT in
Figure 6d.

Based on these results, we conclude that results of BDF2 agree well with
those of NIST, both qualitatively and quantitatively.

5. Conclusions

In this paper, we proposed two second-order semi-implicit projection meth-
ods to solve the Landau-Lifshitz-Gilbert equation, which possess unconditionally
unique solvability at each time step. Examples in both 1D and 3D are used to
verify the accuracy and the efficiency of both schemes. Additionally, the first
benchmark problem from NIST is used to check the applicability of our meth-
ods in the realistic situation using the full Landau-Lifshitiz-Gilbert equation.
Results show that our schemes can produce the correct hysteresis loop with
quantities of interest agreeing with other methods in a quantitative manner.

One issue associated to the proposed methods is that nonsymmetric linear
systems with variable coefficients are involved at each time step. It becomes in-
creasingly difficult to solve such systems using the Generalized Minimum Resid-
ual Method. However, such linear systems have some unique features, as a
consequence of the unique structure at the continuous level. This shall be used
to develop more efficient linear solvers. Meanwhile, the technique presented here
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(a)
mx (H0//y-axis)

(b)
my (H0//y-axis)

(c)
mx (H0//x-axis)

(d)
my (H0//x-axis)

(e)
mx (H0//y-axis)

(f)
my (H0//y-axis)

(g)
mx (H0//x-axis)

(h)
my (H0//x-axis)

Figure 5: Remanent magnetization when α = 0.1 for the bottom surface in the xy plane.
The applied field is approximately parallel (canting angle +1◦) to the y- (long) axis (left two
columns) and the x- (short) axis (right two columns). Top row: mo96a; Bottom row: BDF2.
The x- and y- magnetization components are visualized by the gray value.
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Figure 6: Hysteresis loop when α = 0.1 and the cell size is 20 nm × 20 nm × 20 nm. The
applied field is approximately parallel (canting angle +1◦) to the y- (long) axis (left column)
and the x- (short) axis (right column). Top row: mo96a; Bottom row: BDF2.
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may be applicable to the model for current-driven domain wall dynamics [42]
and the Schrödinger-Landau-Lifshitz system [43], which shall be explored later.
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