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Abstract

Most insurance policies include a deductible, so that a part of the claim is paid by the

insured. In order to get full coverage of the claim, the insured has two options: purchase a

Zero Deductible Insurance Policy or purchase an insurance policy with deductible together

with Refundable Deductible Insurance. The objective of this paper is to analyze these two

options and compare the premium paid by each. We define dif(P) as the difference between

the premiums paid. This function depends on the parameters of the deductible applied, and

we focus our attention on the sign of this difference and the calculation of the optimal deduct-

ible, that is, the values of the parameters of the deductible that allow us to obtain the greatest

reduction in the premium.

1 Introduction

Currently, the car rental sector is booming and is supposed to experience an important future

growth, especially in large urban centers. Specifically, the global car rental market is expected

to reach a CAGR (Compound Annual Growth Rate) of 7.5 during the forecast period of 2019-

2024 [1]. We could consider several reasons for this trend: a growing environmental aware-

ness, growing traffic problems, traffic restrictions due to pollution or the explosion of car

sharing.

Due to the positive evolution of this sector, companies offering insurance policies to rental

companies and their customers/users have developed new strategies to complete the coverage

offered and decrease the price of car hire insurance, which in some cases can represent half of

the rental cost. For more information about the car rental insurance industry in Europe, see

[2].

In Europe, most car rental companies offer rental insurance coverage that guarantees pro-

tection against damage, theft, and liability insurance against third parties. This is known as

CDW (Collision Damage Waiver), which provides cover in the event of collision or damage,

and LDW (Loss Damage Waiver), which provides cover in the event of theft or loss of use of

the vehicle. These policies offer varying levels of protection against damage. In other countries,

such as USA or Canada, CDW and LDW insurance must be contracted separately. Most of
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these insurance policies include a deductible, which in case of accident must be paid by the

user to the rental company.

In order to cover the deductible, the insured has two options: He/she can purchase either

an extension to a Super CDW offered by the car rental company, which is in fact a Zero

Deductible Insurance, or an RDI (Refundable Deductible Insurance), which covers the cost of

the deductible. In recent years, there have been online companies that, at a lower cost, cover

the deductible. Then, if a claim occurs, the amount of the deductible that the car rental com-

pany has charged to the user is refunded. Thereby, if a claim occurs and the insured does not

want to pay, he/she has two possibilities: purchase a Zero Deductible Insurance or a Deductible

Insurance together with a Refundable Deductible Insurance.

In the actuarial literature, studies about deductibles have focused on several aspects. One of

the main topics is the analysis of the problem of optimal coverage and deductible through

expected utility (see [3, 4] or [5]) and stochastic dominance [6, 7]. The interaction between

deductibles and bonus-malus systems and their repercussion on the efficiency of the bonus-

malus system have been studied in [8–10], or [11]. Another topic is the optimal allocation of

policy limits and deductibles from the viewpoint of a risk-averse policyholder [12, 13] or from

the viewpoint of the insurer [14]. Although the introduction of deductibles in insurance con-

tracts has been widely analyzed in actuarial literature, as far as we know, there are no studies

concerning Refundable Deductible Insurance.

The objective of our research is to analyze the advantage the insured can have by hiring

a Deductible Insurance and a Refundable Deductible Insurance, option covering the

whole cost of the claim, as opposed to the alternative of directly hiring a Super CDW,

that is to say a Zero Deductible Insurance policy. We measure this advantage by comparing

the premium paid in these two alternatives considering different rules to share the cost of

the claim between the insurer and the insured. Specifically, we worked with absolute

deductible, proportional deductible, mixture of absolute deductible and proportional

deductible and all-nothing deductible. For a definition of these deductibles, see [15] or [16],

among others.

As a preliminary step, we will go through some concepts and facts that are useful in what

follows. Notation and conventions used throughout the paper are also established. We denote

by S the aggregate claim amount random variable (r.v.) of a given portfolio of policyholders

over a year. Using the collective risk model S is defined as a random sum,

S ¼
XN

i¼1

Xi;

where Xi; i 2 IN is a non-negative r.v. that represents the cost of the i-th claim, and N is

a positive counting r.v. that represents the number of claims. Xi; i 2 IN re assumed to

be independent and identically distributed (i.i.d.) and also independent of N (see [17] or

[18]). Let AðXiÞ; i 2 IN be the part of the cost paid by the insured in an insurance with

deductible, and CðXiÞ; i 2 IN, the part of the claim paid by the insurer. The r.v. Xi; i 2 IN is

distributed as the strictly positive r.v. X, with cumulative distribution function FX(x). The

survival function of X, its expected value and variance are denoted by �FXðxÞ ¼ 1 � FXðxÞ,
E(X) and V(X), respectively. From now on, for reasons of simplicity, A(X) and C(X) are

denoted as A and C.

The moments of the aggregate claim amount are easily calculated from the moments of X
and N. The expected value of the aggregate claim amount S is:

EðSÞ ¼ EðNÞEðXÞ; ð1Þ
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and its variance:

VðSÞ ¼ EðNÞVðXÞ þ EðXÞ2VðNÞ: ð2Þ

Without deductible, the aggregate claim amount coincides with the total cost covered by

the insurer. If a deductible is applied, the total cost for the insurer is calculated with the same

formula than the aggregate claim amount but including only the part of each of the claims that

he/she pays (C) instead of considering the whole claims (X). From now on, in order to avoid

confusions, S stands for the total cost paid by the insurer.

The insurer calculates the premium considering only the part of the claim that he/she pays.

If the contract includes a deductible, the moments of the total cost for the insurer are obtained

from (1) and (2), substituting X by C.

Let P be the premium paid for a Zero Deductible Insurance, PD the premium paid for a

Deductible Insurance, and PR the premium paid for a Refundable Deductible Insurance, that

is to say an insurance policy that covers A. To measure the effect of the two alternatives that

the insured has to get full coverage, we compare P andPD +PR. The function dif(P) measures

the difference for the insured between the two options,

dif ðPÞ ¼ P � PD � PR;

where dif(P) is a function that depends on P, the set of parameters that defines each deductible,

P = {p1, . . ., pj}, j 2 N, being j the number of parameters, with pi 2 P � Rþ. For example, for

an absolute deductible (the insured pays the first a monetary units of each claim X, and the

insurer pays the excess over a), j = 1 and P = {a}. Then, if P =PD + PR, dif(P) equals to zero

which implies that the two alternatives are indifferent for the insured. If P<PD +PR, dif(P)

is negative and the insured prefers to purchase just a Zero Deductible Insurance. And lastly, if

P>PD + PR, dif(P) is positive, so the insured prefers to buy a Deductible Insurance and a

Refundable Deductible Insurance. This analysis depends on the type of deductible applied and

the premium principle used, in other words, the mathematical method used to fix the insur-

ance premium. In this paper, we focus our attention on two premium principles: the mean

principle and the variance principle.

If we use the mean principle, the premium is calculated as the expected value of the risk

plus a safety loading to this expected value,

P ¼ EðSÞð1þ dÞ; d > 0;

whereas if we use the variance principle, the loading is proportional to the variance,

P ¼ EðSÞ þ dVðSÞ; d > 0:

For more information about premium principles and their properties, see [19, 20].

If the mean principle is applied, the premium of the Deductible Insurance is

PD ¼ EðNÞEðCÞð1þ dÞ;

the premium for the Refundable Deductible Insurance is

PR ¼ EðNÞEðAÞð1þ dÞ;

and the premium paid for a complete insurance covering the whole claim, a Zero Deductible
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Insurance, is given by

P ¼ EðNÞEðXÞð1þ dÞ:

Then, knowing that E(X) = E(C) + E(A), dif(P) =P −PD −PR = 0 for any X and N and

whatever deductible is used. In this case, there is no advantage from choosing one alternative

or the other. Whereas, if we focus on the variance principle, it is easy to see that dif(P) is not

always equal to zero, and then a deep analysis is needed in order to optimize the advantage

that the insured can get.

In this framework, the paper contributes in three aspects. First we propose a theoretical

framework for the market practice of hiring a Refundable Deductible Insurance policy. Sec-

ond, we find a sufficient condition, fulfilled by almost all deductible types, that guarantees the

advantage for the insured of the Refundable Deductible Insurance under the variance princi-

ple. And lastly, considering that the set of parameters P that defines each deductible is chosen

by the insured, we present the optimal deductible parameters allowing the insured to obtain

the maximum gain for different types of deductibles.

After this introduction, the paper is structured as follows. In Section 2, if the variance prin-

ciple is applied, the expression of dif(P) valid for any deductible is obtained and the conditions

that allow to maximize this function are presented. One of the main results obtained is that the

commonotonicity of the parts of the claim covered by the insurer and the insured guarantees

the advantage that the insured can obtain by hiring a Refundable Deductible Insurance policy.

In Section 3, we develop the specific results for the different deductibles considered in this

paper: absolute deductible, proportional deductible, mixture of absolute deductible and pro-

portional deductible and all-nothing deductible. We show that the deductible parameters that

maximize the difference obtained by the insured depend on the expected value and variance of

the number of claims and the distribution of the individual claim amount. The paper ends

with some conclusions.

2 Analysis and optimization of dif(P) for any deductible if the

variance principle is applied

In this section the variance principle is used to calculate premiums. A general expression for

dif(P) is obtained and the conditions that allow to maximize this function are presented.

Using the variance principle, the premium of the Deductible Insurance is

PD ¼ EðNÞEðCÞ þ d½EðNÞVðCÞ þ EðCÞ2VðNÞ�;

whereas the premium for the Refundable Deductible Insurance is given by

PR ¼ EðNÞEðAÞ þ d½EðNÞVðAÞ þ EðAÞ2VðNÞ�;

and the premium that would be paid for a complete insurance covering all X, a Zero Deduct-

ible Insurance, is given by

P ¼ EðNÞEðXÞ þ d½EðNÞVðXÞ þ EðXÞ2VðNÞ�:

The random variables A and C depend not only on X but also on the parameters of the

deductible. In order to simplify the expressions, we will not make explicit these dependencies.

PLOS ONE Is a Refundable Deductible Insurance an advantage for the insured?

PLOS ONE | https://doi.org/10.1371/journal.pone.0247030 February 17, 2021 4 / 22

https://doi.org/10.1371/journal.pone.0247030


Then, with the variance principle,

dif ðPÞ ¼ dEðNÞVðXÞ þ dVðNÞEðXÞ2 � dEðNÞ½VðCÞ þ VðAÞ�

� dVðNÞ½EðCÞ2 þ EðAÞ2�

¼ 2dEðNÞCovðA;CÞ þ 2dVðNÞEðAÞEðCÞ:

ð3Þ

Taking into account that Cov(A, C) = E(AC) − E(A)E(C) and substituting C by X − A, an

alternative expression for dif(P) is obtained,

dif ðPÞ ¼ 2dð½EðAÞEðXÞ � EðAÞ2�½VðNÞ � EðNÞ� þ EðNÞ½EðAXÞ � EðA2Þ�Þ: ð4Þ

We analyze this function dif(P). The first aspect is the sign of this difference. Proposition 1

establishes its positiveness under an usual condition. The second aspect studied is the calcula-

tion, if it exists, of the optimal deductible, that is, the values of the parameters of the deductible

such that the insured obtains the greatest reduction in the total premium paid with the same

coverage. In this section, Proposition 2, we include the first order condition for this optimiza-

tion problem. Next sections are dedicated to these questions regarding the absolute deductible,

the proportional deductible with maximum loss, a mixture of an absolute deductible and a

proportional deductible and the all-nothing deductible.

Before Proposition 1 is presented, we introduce the definition of comonotonicity.

Definition 1. Let X and Y be two non negative r.v. that represent two different risks. They are
comonotonic (see [21]) if their bivariate cumulative distribution function, FXY(x, y), satisfies

FXY(x, y) = min[FX(x), FY(y)] for all x, y� 0.

From an intuitive point of view, the comonotonicity of two risks means that these risks are

not able to compensate each other.

Proposition 1. For a deductible such that A and C are comonotonic risks, dif(P)> 0.

Proof. If two risks are comonotonic, its covariance is positive (see [22]). Then, from (3), if A
and C are comonotonic, dif(P)> 0.

Then, the comonotonicity is a sufficient condition for the positiveness of dif(P). For more

information on comonotonicity, see [23–25]. The r.v.’s A and C are comonotonic in almost all

deductibles, see [21]. This is the case for the absolute deductible (Section 3.1), the proportional

deductible with maximum loss (Section 3.2) and a mixture of an absolute deductible and a pro-

portional deductible (Section 3.3). In Section 3.4., we analyze a type of deductible such that A
and C are not comonotonic, the all-nothing deductible.

The optimal deductible problem is

maxdif ðPÞ;

w.r.t. the parameters {p1, . . ., pj} that define the deductible and subject to the constrains

pi 2 P � Rþ; i ¼ 1; . . . ; j. These constrains permit obtaining the set of feasible solutions, D. In

all the deductibles studied in this paper, D turns out to be an open set, and dif(P) a continuous

and differentiable function in D.

Proposition 2. The values of the parameters of the deductible such that the insured obtains
the greatest reduction in the global total premium paid with the same coverage fulfill, if they
exist, the following system of equations

@EðAXÞ
@pi

�
@EðA2Þ

@pi
¼ gðNÞ

@EðAÞEðXÞ
@pi

�
@EðAÞ2

@pi

� �

; i ¼ 1; :::; j; ð5Þ
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being gðNÞ ¼ EðNÞ� VðNÞ
EðNÞ . In the Poisson case, this system is reduced to

@EðAXÞ
@pi

�
@EðA2Þ

@pi
¼ 0; i ¼ 1; :::; j:

Proof. The first order condition of the optimal deductible problem is

rdif ðPÞ ¼
@dif ðPÞ
@p1

; . . . ;
@dif ðPÞ
@pj

 !

¼ 0;

that, taking into account the definition of dif(P) in (4), allows us to obtain (5). From (5) we see

that, regarding the number of claims, only its expected value and variance affect the optimiza-

tion problem and in fact, when the expected value and the variance of N are equal, the first

order conditions are simplified. In the Poisson case, N� Pois(λ), E(N) = V(N), so g(N) = 0,

and the result presented in the proposition is obtained.

In Section 3, we apply Proposition 2 to obtain the parameters of the different deductibles

that maximizes the reduction in the global total premium paid with the same coverage.

3 Analysis and optimization of dif(P): Specific results for different

types of deductibles if the variance principle is applied

In this section we present the results obtained in the optimization of dif(P) for different types

of deductibles under the variance principle. Specifically, we consider absolute deductible, pro-

portional deductible, mixture of absolute deductible and proportional deductible and all-noth-

ing deductible. In the first three types of deductibles, Proposition 1 is fulfilled, that is to say, A
and C are comonotonic risks and therefore dif(P) is always positive. If the all-nothing deduct-

ible is applied, A and C are not comonotonic risks, thence dif(P) can be positive or negative,

so, for the insured, the option of taking out a Deductible Insurance and a Refundable Deduct-

ible Insurance is not always better than hiring a Zero Insurance policy.

3.1 Absolute deductible

If the absolute deductible is applied, the insured pays the first a monetary units of each claim

X, and the insurer pays the excess over a, X − a. Then, if an absolute deductible with parameter

a� 0 is applied, A and C are defined in Table 1.

Following [26], we define the s-th partial moment of X about the origin over (0, x0) as the

partial expectation of Xs, HXsðx0Þ ¼
R x0

0
xsf ðxÞdx. Hence, the expectations of A, AX and A2 are

EðAXÞ ¼ HX2ðaÞ þ aEðXÞ � HXðaÞ; ð6Þ

EðA2Þ ¼ HX2ðaÞ þ a2 �FXðaÞ; ð7Þ

EðAÞ ¼ HXðaÞ þ a�FXðaÞ: ð8Þ

Table 1. Definition of A and C if an absolute deductible with parameter a� 0 is applied.

X A C

X< a X 0

X> a a X − a

https://doi.org/10.1371/journal.pone.0247030.t001
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From (4) and using (6), (7) and (8), dif(P) is given by

dif ðPÞ ¼ 2d½HXðaÞ þ a�FXðaÞ�½EðXÞ � HXðaÞ � a�FXðaÞ�½VðNÞ � EðNÞ�

þ2dEðNÞa½EðxÞ � HXðaÞ � a�FXðaÞ�:
ð9Þ

As dif(P) is function of only one variable, in order to find the value of a that maximizes

the difference, we substitute the gradient by the derivative with respect to a. The system (5)

becomes

E0ðAXÞ � E0ðA2Þ ¼ gðNÞfE0ðAÞEðXÞ � ½EðAÞ2�0g: ð10Þ

Differentiating (6), (7) and (8) with respect to a, we obtain,

E0ðAXÞ ¼ EðXÞ � HXðaÞ;

E0ðA2Þ ¼ 2a�FXðaÞ;

E0ðAÞ ¼ �FXðaÞ;

ðEðAÞ2Þ0 ¼ 2�FXðaÞ½HXðaÞ þ a�FXðaÞ�:

Then, using these last derivatives, (10) is

EðXÞ � HXðaÞ � 2a�FXðaÞ ¼ gðNÞ�FXðaÞ½EðXÞ � 2HXðaÞ � 2a�FXðaÞ�: ð11Þ

Proposition 3. The function dif(P) attains a global maximum on D.

Proof. The function dif(P) is a continuous and positive function in D = {a|a> 0}} and

lima!1 dif(P) = lima! 0 dif(P)) = 0. Therefore, (11) has at least one solution and dif(P)

attains a global maximum.

We consider two claim amount distributions: exponential and Pareto-Lomax.

Exponential case: If X� exp(γ), γ> 0, the probability density function is given by f(x) =

γe − γx, then

HXðaÞ ¼
1

g
�

1

g
þ a

� �

e� ag; ð12Þ

�FXðaÞ ¼ e� ag: ð13Þ

Substituting the previous expressions in (9), dif(P) is

dif ðPÞ ¼
2d

g
e� ag 1 � e� agð Þ

1

g
þ 2a

� �

V Nð Þ � E Nð Þ½ � þ EðNÞa
� �

:

And, substituting (12) and (13) in (11), the equation that allows to obtain the value of a that

maximizes dif(P) is

1 � ag ¼ gðNÞð2e� ag � 1Þ:

The value of a that fulfills the previous expression, a�, depends on the relationship between

E(N) and V(N). So, if E(N) > V(N), a� 2 0; ln 2

g

� �
[ 1

g
;1

� �
; if E(N)< V[N], a� 2 ln 2

g
; 1

g

� �
, and

lastly, when E(N) = V(N), a� ¼ 1

g
. If N is Poisson distributed with parameter λ, the optimal

value for a coincides with the mean claim amount, the maximum difference is
2dEðNÞ
g2e and hence,

for the insured, the best option is to purchase a deductible insurance with a = E(X) and a

refundable insurance that covers a.
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In Fig 1, we plot dif(P), in the Poisson-exponential case, as a function of a for different val-

ues of EðXÞ ¼ 1

g
.

Pareto-Lomax case: If X� Pareto(θ, ν), the probability density function is given by f(x) =

θνθ(ν + x) − θ−1 and the mean is EðXÞ ¼ n

y� 1
, ν> 0, θ> 2 (so that the variance is finite). Then,

HXðaÞ ¼
1

1 � y
nyðnþ aÞ1� y � n
h i

�
any

ðnþ aÞy
;

�FXðaÞ ¼
n

nþ a

� �y

:

Substituting the previous expressions in (11)

nþ að2 � yÞ ¼ gðNÞn½2ny� 1ðnþ aÞ1� y � 1�:

If E(N)> V(N), a� > n

y� 2
, if E(N) = V(N) (Poisson case) a� ¼ n

y� 2
, and if E(N) < V(N),

a� < n

y� 2
.

Summarizing the results for the exponential and the Pareto-Lomax cases, in Table 2, the

optimal values of a that maximizes dif(P) are included.

We now consider that N is Poisson distributed with parameter λ, and we do not specify

the distribution of X. Now, dif(P) is linear on δ and depends on a, the only parameter of the

Fig 1. dif(F) as a function of a in the Poisson-exponential case for δ = 0.03 and λ = 1 for E(X) = 2, 5, 10, 15.

https://doi.org/10.1371/journal.pone.0247030.g001

Table 2. Optimal a in absolute deductible in the Poisson-exponential and Poisson-Pareto-Lomax cases.

E(N)<V(N) E(N) = V(N) E(N)>V(N)

Exp(γ) a� 2 ln 2

g
; 1

g

� �
a� ¼ 1

g a� 2 0; ln 2

g

� �
[ 1

g
;1

� �

Pareto(θ,ν) a� < n

y� 2
a� ¼ n

y� 2
a� > n

y� 2

https://doi.org/10.1371/journal.pone.0247030.t002
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deductible,

dif ðPÞ ¼ dEðNÞ2a½EðXÞ � HXðaÞ � a�FXðaÞ�:

The value of a that maximizes dif(P) is the solution to

EðXÞ � HXðaÞ � 2a�FXðaÞ ¼ 0;

which can be rewritten as

Z 1

a
ðx � 2aÞf ðxÞdx ¼ 0: ð14Þ

The solution to (14) depends only on the distribution of X. Explicit expressions have been

obtained in the previous two subsections for the exponential and the Pareto-Lomax distribu-

tions. For other claim amount distributions, only numerical solutions can be found. We calcu-

late the optimal value of a and the maximum difference reached for several distributions of the

claim amount. The parameters of the distributions are such that the expected value and the

variance of the claim amount is the same, so the premium with a zero deductible insurance P

would be the same. The Pareto-Lomax distribution is not included in the comparison because

there is no combination of θ and ν that fulfills E(X)2 = V(X), as in the exponential case. For the

lognormal distribution, with parameters μ and σ, (14) is

EðXÞ 1 � F
ln a � ðmþ s2Þ

s

� �� �

� 2a 1 � F
ln a � m

s

� �� �

¼ 0; ð15Þ

that, for the specific choice of parameters that fulfills E(X)2 = V(X), in order to compare with

the exponential distribution, we obtain

EðXÞ 1 � F
1
ffiffiffiffiffiffiffiffi
ln 2
p ln

a
EðXÞ

� �

� 0:5
ffiffiffiffiffiffiffiffi
ln 2
p

� �� �

� 2a 1 � F
1
ffiffiffiffiffiffiffiffi
ln 2
p ln

a
EðXÞ

� �

þ 0:5
ffiffiffiffiffiffiffiffi
ln 2
p

� �� �

¼ 0:

If the individual claim amount follows an Inverse-Gaussian distribution, X� IG(μ, λ), μ>

0, λ> 0, the probability distribution function is given by f ðxÞ ¼
ffiffiffiffiffiffi
l

2px3

q
e
� lðx� mÞ2

2m2x , the expected

value is E(X) = μ and its variance VðXÞ ¼ m3

l
. The combination of μ and λ that fulfills E(X)2 =

V(X) is μ = λ. Then, the optimal value of a is obtained from

Z 1

a
ðx � 2aÞ

ffiffiffiffiffiffiffiffiffiffi
l

2px3

r

e
� lðx� mÞ2

2m2x dx ¼ 0;

equation that can be solved numerically.

In Table 3, the results of the optimal value a� and the maximum value of dif(P) depending

on E(N) and δ are presented for an Exponential, a Lognormal and an Inverse-Gaussian

distribution.

Table 3 shows that the maximum difference is proportional to the expected value of N and

to the safety loading, which is the highest in the exponential case and the lowest in the Lognor-

mal case. For each value of E(X), the optimal value of a, a�, is the lowest in the Lognormal case

and the highest in the Inverse-Gaussian case.
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3.2Proportional deductible

In this section, we focus our attention on the proportional deductible. We work with two types

of proportional deductible: a first type in which the insured pays a percentage α of each claim,

and, a second type in which we include a maximum loss for the insured, B. In a deductible

with participation α 2 (0, 1), A and C are defined in Table 4.

In this case, E(AX) = αE(X2), E(A2) = α2 E(X2) and E(A) = αE(X), then

dif ðPÞ ¼ 2dað1 � aÞfEðXÞ2½VðNÞ � EðNÞ� þ EðNÞEðX2Þg;

Using (5), the value α that maximizes the difference has to fulfill

ð1 � 2aÞ½EðX2Þ � gðNÞEðXÞ2� ¼ 0: ð16Þ

Proposition 4. The function dif(P) attains a global maximum in a ¼ 1

2
.

Proof. The function dif(P) is a continuous and positive function in D = {α|α 2 (0, 1)} and

limα! 1 dif(P) = limα! 0 dif(P)) = 0. As the second factor in (16) is always different from 0,

the critical point, a ¼ 1

2
, is a global maximum of dif(P).

Independently of the distribution of N and X, a ¼ 1

2
is the value that maximizes the differ-

ence. Then, the maximum value of the difference is
d½EðNÞVðXÞþEðXÞ2VðNÞ�

2
. If N� Pois(λ), the maxi-

mum difference is
dlEðX2Þ

2
.

Now, we generalize the proportional deductible including a maximum loss for the insured.

In Table 5, a deductible with participation α 2 (0, 1) and a maximum loss B> 0 is defined.

If B tends to infinity, the first type of proportional deductible is obtained as a particular

case.

Table 3. Optimal value of a and difference (a�, dif(a�)) for Exp(γ), Log(μ, σ) and IG(μ, λ) claim amount

distributions.

E(X) V(X) Exp(γ) Log(μ, σ) IG(μ, λ)

0.1 0.01 (0.1, 0.007E(N)δ) (0.093, 0.001E(N)δ) (0.102, 0.007E(N)δ)

0.5 0.25 (0.5, 0.184E(N)δ) (0.468, 0.029E(N)δ) (0.508, 0.168E(N)δ)

1 1 (1, 0.736E(N)δ) (0.938, 0.332E(N)δ) (1.016, 0.672E(N)δ)

2 4 (2, 2.943E(N)δ) (1.877, 1.621E(N)δ) (2.033, 2.69E(N)δ)

5 25 (5, 18.394E(N)δ) (4.692, 9.902E(N)δ) (5.082, 16.812E(N)δ)

10 100 (10, 73.576E(N)δ) (9.388, 39.469E(N)δ) (10.166, 67.248E(N)δ)

https://doi.org/10.1371/journal.pone.0247030.t003

Table 4. Definition of A and C if a deductible with participation α 2 (0, 1) is applied.

X A C

8X αX (1 − α)X

https://doi.org/10.1371/journal.pone.0247030.t004

Table 5. Definition of A and C if a deductible with participation α 2 (0, 1) with limit B> 0 is applied.

X A C

X < B
a

αX (1 − α)X

X > B
a

B X − B

https://doi.org/10.1371/journal.pone.0247030.t005
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If the deductible with participation α 2 (0, 1) with limit B> 0 is applied,

EðAXÞ ¼ aHX2

B
a

� �

þ B EðXÞ � HX
B
a

� �� �

; ð17Þ

EðA2Þ ¼ a2HX2

B
a

� �

þ B2�FX
B
a

� �

; ð18Þ

EðAÞ ¼ aHX
B
a

� �

þ B�FX
B
a

� �

: ð19Þ

From (4), dif(P) can be rewritten as

2d½VðNÞ � EðNÞ� aHX
B
a

� �

þ B�FX
B
a

� �� �

EðXÞ � aHX
B
a

� �

� B�FX
B
a

� �� �

þ2dEðNÞ ða � a2ÞHX2

B
a

� �

þ B EðXÞ � HX
B
a

� �� �

� B2�FX
B
a

� �� �

The deductible depends on two parameters, α and B. The partial derivatives with respect to

α and B, from (17), (18) and (19), are

@EðAXÞ
@B

¼ EðXÞ � HX
B
a

� �

;
@EðAXÞ
@a

¼ HX2

B
a

� �

;

@EðA2Þ

@B
¼ 2B�FX

B
a

� �

;
@EðA2Þ

@a
¼ 2aHX2

B
a

� �

;

@EðAÞ
@B

¼ �FX
B
a

� �

;
@EðAÞ
@a

¼ HX
B
a

� �

:

Then, (5) is

EðXÞ � HX
B
a

� �

� 2B�FX
B
a

� �

¼ gðNÞ�FX
B
a

� �

EðXÞ � 2 aHX
B
a

� �

þ B�FX
B
a

� �� �� �

;

1 � 2að ÞHX2

B
a

� �

¼ gðNÞHX
B
a

� �

EðXÞ � 2 aHX
B
a

� �

þ B�FX
B
a

� �� �� � ð20Þ

The function dif(P) is a continuous and positive function in D = {(α, B)|α 2 (0, 1), B> 0}.

The critical points of the maximization problem are the solutions of the system of Eq (20). If

we evaluate the function at the boundaries of D, it is easy to see that limα! 0 dif(P) = limB! 0

dif(P) = 0, limα! 1 dif(P) equals to dif(P) in the absolute deductible case with parameter a = B,

and limB!1 dif(P) equals to dif(P) in the proportional deductible case. Therefore, we are not

able to guarantee the existence of a global maximum for any N and X. Nevertheless, if N is

Poisson distributed, we proof (see Proposition 5) that a global maximum does not exist. In this

proposition, considering that the insured can choose only one of the parameters that define

the deductible while the other is fixed by the insurer, we also obtain marginal maximums.

Proposition 5. If N� Pois(λ), there is no value of (B, α) that maximizes (22), but marginal

optimums exist. For a fixed B, a� ¼ 1

2
maximizes the difference. For a fixed a � 1

2
the maximum

does not exist, and if a > 1

2
the maximum point, if it exists, fulfills

R1
B
a
ðx � 2BÞf ðxÞdx ¼ 0.
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Proof. If N� Pois(λ), dif(P) is

dif ðPÞ ¼ 2dEðNÞ a � a2ð ÞHX2

B
a

� �

þ B EðXÞ � HX
B
a

� �� �

� B2 �FX
B
a

� �� �

; ð21Þ

and (20) is

EðXÞ � HX
B
a

� �

� 2B�FX
B
a

� �

¼ 0;

ð1 � 2aÞHX2

B
a

� �

¼ 0:

ð22Þ

From the second equation in (22), knowing that
R B
a

0
x2f ðxÞdx 6¼ 0, we obtain a ¼ 1

2
. Substi-

tuting this value in the first equation, it is reduced to
R1

2B ðx � 2BÞf ðxÞdx ¼ 0, which is impossi-

ble because the integral is always different from 0. Then, there is no value of (B, α) that

maximizes (22).

From
@dif ðPÞ
@a
¼ 0 (the second equation of (22)), a ¼ 1

2
is the critical point. As the sign of

@2dif ðPÞ
@2a

at a ¼ 1

2
is negative, the critical point is a maximum.

From
@dif ðPÞ
@B ¼ 0 (the first equation of (22)), the value of B that maximizes does not exist

because
R1

B
a
ðx � 2BÞf ðxÞdx is always different from 0 as B

a
� 2B, and if a > 1

2
the value of B that

maximizes has to fulfill
R1

B
a
ðx � 2BÞf ðxÞdx ¼ 0.

Poisson-Exponential case: If N� Pois(λ) and X� exp(γ), following Proposition 5, we know

that there is no value of (α, B) that maximizes (21), but marginal optimums exist. For a fixed B,

a� ¼ 1

2
maximizes the difference and for a fixed α> 0.5, the value B� ¼

a

gð2a � 1Þ
maximizes

dif(P). For example, assuming γ = 0.6, δ = 0.03 and λ = 1, dif(P) as a function of α and B is plot-

ted in Fig 2.

Poisson-Pareto case: If N� Pois(λ) and c for a fixed B, a� ¼ 1

2
maximizes dif(P) and for a

fixed a > 1

2
, B� ¼

a

2aðy � 1Þ � y
also maximizes the difference. For example, if θ = 3, δ = 0.03

and λ = 1, dif(P) is plotted in Fig 3.

Poisson-Lognormal case: If X� LN(μ, σ), for a fixed a > 1

2
, the optimal value of B is the one

that fulfils
R1

B
a
ðx � 2BÞf ðxÞdx ¼ 0, which can be written as,

EðXÞ 1 � F
ln

B
a
� ðmþ s2Þ

s

0

B
@

1

C
A

2

6
4

3

7
5 � 2B 1 � F

ln
B
a
� m

s

0

B
@

1

C
A

2

6
4

3

7
5 ¼ 0: ð23Þ

In this case, it is not possible to obtain analytical results of the value B that optimizes the dif-

ference. Some numerical results are presented in Table 6 for different values of a > 1

2
.

From Table 6, we see that B� decreases with α and if α = 1, we have in fact an absolute

deductible and thus (23) is reduced to (15).

3.3 Mixture of absolute deductible and proportional deductible

In a mixture of absolute deductible with a> 0 and proportional deductible with α 2 (0, 1), the

insured pays the first a monetary units of each claim X, pays a if the claim amount is greater

than a and less than a
a
, and if the claim amount is greater than a

a
the proportional deductible is
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Fig 2. dif(F) in the Poisson-exponential case with δ = 0.03, λ = 1, γ = 0.6.

https://doi.org/10.1371/journal.pone.0247030.g002

Fig 3. dif(F) in the Poisson-Pareto case with δ = 0.03, λ = 1, θ = 3.

https://doi.org/10.1371/journal.pone.0247030.g003
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applied and the insured pays a percentage α of the claim amount. A and C are defined in

Table 7.

We define the different elements needed in the optimization of dif(P):

EðAXÞ ¼ HX2ðaÞ þ a HX
a
a

� �
� HXðaÞ

h i
þ a EðX2Þ � HX2

a
a

� �h i
;

EðA2Þ ¼ HX2ðaÞ þ a2 �FðaÞ � �F
a
a

� �h i
þ a2 EðX2Þ � HX2

a
a

� �h i
;

EðAÞ ¼ HXðaÞ þ a �FðaÞ � �F
a
a

� �h i
þ a EðXÞ � HX

a
a

� �h i
:

This deductible depends on two parameters. We calculate the partial derivatives with

respect to α and a,

@EðAXÞ
@a

¼ HX
a
a

� �
� HXðaÞ;

@EðA2Þ

@a
¼ 2a �FðaÞ � �F

a
a

� �h i
;

@EðAÞ
@a

¼ �FðaÞ � �F
a
a

� �
;

@EðAXÞ
@a

¼ EðX2Þ � HX2

a
a

� �
;

@EðA2Þ

@a
¼ 2a EðX2Þ � HX2

a
a

� �h i
;

@EðAÞ
@a

¼ EðXÞ � HX
a
a

� �
:

And the system of equations that allows us to obtain the critical points is,

HX
a
a

� �
� HXðaÞ � 2a �FðaÞ � �F

a
a

� �h i
¼ gðNÞ �FðaÞ � �F

a
a

� �h i
E Xð Þ � 2E Að Þ½ �;

ð1 � 2aÞ EðX2Þ � HX2

a
a

� �h i
¼ gðNÞ EðXÞ � HX

a
a

� �h i
E Xð Þ � 2E Að Þ½ �:

ð24Þ

The function dif(P) is a continuous and positive function in D = {(α, a)|α 2 (0, 1), a> 0}.

We evaluate dif(P) at the boundaries of D: limα! 1 dif(P) = lima!1 dif(P) = 0, limα! 0 dif(P)

equals to dif(P) in the absolute deductible case and lima! 0 dif(P) equals to dif(P) in the pro-

portional deductible case. As in the proportional deductible with limit B, this analysis does not

Table 6. Optimal B if the proportional deductible with limit is applied in the Poisson-Lognormal case for a > 1

2
.

α 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

B� 11.79 3.17 2.01 1.59 1.38 1.26 1.18 1.128 1.088 1.058

https://doi.org/10.1371/journal.pone.0247030.t006

Table 7. Definition of A and C if a mixture of absolute deductible a> 0 and proportional deductible α 2 (0, 1) is

applied.

X A C

X< a X 0

a < X < a
a

a X − a

X > a
a

αX (1 − α)X

https://doi.org/10.1371/journal.pone.0247030.t007
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allow us to assure the existence of a global maximum for any N and X. However, if N is Poisson

distributed, we proof (see Proposition 5) that a global maximum does not exist and, addition-

ally, we obtain marginal maximums.

Proposition 6. If N� Pois(λ), there is no value of (a, α) that maximizes (25), but marginal

optimums exist. For a fixed a, a� ¼ 1

2
maximizes the difference. For a fixed a � 1

2
, the maxi-

mum does not exist, and if a < 1

2
the maximum point, if it exists, fulfills

R a
a

a ðx � 2aÞf ðxÞdx ¼ 0.

Proof. If N� Pois(λ),

dif ðPÞ ¼ 2dEðNÞ ða � a2Þ EðX2Þ � HX2

a
a

� �h i
þ a HX

a
a

� �
� HXðaÞ

h in o

� 2dEðNÞ a2 �FðaÞ � �F
a
a

� �h in o
;

and the system of Eq (24) is

HX
a
a

� �
� HXðaÞ � 2a �FðaÞ � �F

a
a

� �h i
¼ 0;

ð1 � 2aÞ EðX2Þ � HX2

a
a

� �h i
¼ 0;

or alternatively

R a
a

a ðx � 2aÞf ðxÞdx ¼ 0;

ð1 � 2aÞ
R1

a
a

x2f ðxÞdx ¼ 0:
ð25Þ

From the second equation of (25), knowing that
R1

a
a

x2f ðxÞdx 6¼ 0, we obtain a� ¼ 1

2
. Substitut-

ing this value in the first equation, we obtain
R 2a

a ðx � 2aÞf ðxÞdx ¼ 0, which is impossible because

the integral is always different from 0. Then, there is no value of (a, α) that maximizes (25).

From
@dif ðPÞ
@a
¼ 0, a ¼ 1

2
is the critical point. As the sign of

@2dif ðPÞ
@2a

at a ¼ 1

2
is negative, the criti-

cal point is a maximum.

From
@dif ðPÞ
@a ¼ 0, the first equation of (25), if a � 1

2
, the value of a that maximizes does not

exist because
R a
a

a ðx � 2aÞf ðxÞdx is always different from 0. If a < 1

2
the value of a that maxi-

mizes has to fulfill
R a
a

a ðx � 2aÞf ðxÞdx ¼ 0.

Poisson-Exponential case: For X� exp(γ), if a > 1

2
, the value of a that optimizes the differ-

ence is obtained from the equation
2a� a

a�
1
g

a� 1
gð Þ
¼ e

1
a� 1ð Þga that has no explicit solution.

We can visualize graphically the behavior of dif(P) and its optimal values. For example, if

γ = 0.6, δ = 0.03 and λ = 1, dif(P) is plotted in Fig 4.

The function dif(P) is plotted for different values of α, with δ = 0.03, λ = 1 and γ = 0.6 (Fig

5) and for different values of a with δ = 0.03, λ = 1 and γ = 0.6 (Fig 6).

Poisson-Pareto case: If X� Pareto(θ, 1), θ> 2, the value of a that optimizes the difference is

obtained from the equation
2aðg� 1Þ� ga� 1

2aðg� 1Þ�
g
aa� 1
¼

a
aþ1

aþ1

� �� y
.

In Fig 7, a graphical illustration of dif(P) is included for θ = 3, δ = 0.03 and λ = 1.

Partial analysis of dif(P) with respect to a and α are plotted in Fig 8 and in Fig 9, respectively.

In the figures obtained for the exponential case (Figs 5 and 6) and for the Pareto case

(Figs 8 and 9), we can observe a similar behavior in the optimization problem with respect to a
and α.
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Fig 4. dif(P) in the Poisson-exponential case with δ = 0.03, λ = 1, γ = 0.6.

https://doi.org/10.1371/journal.pone.0247030.g004

Fig 5. dif(P) for α = 0.1, 0.2, 0.3, 0.4, 0.5 in the Poisson-exponential case with δ = 0.03, λ = 1, γ = 0.6.

https://doi.org/10.1371/journal.pone.0247030.g005
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Fig 6. dif(P) for a = 1, 1.2, 1.4, 1.6, 1.8 in the Poisson-exponential case with δ = 0.03, λ = 1, γ = 0.6.

https://doi.org/10.1371/journal.pone.0247030.g006

Fig 7. dif(P) in the Poisson-Pareto case with δ = 0.03, λ = 1, θ = 0.6.

https://doi.org/10.1371/journal.pone.0247030.g007
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Fig 8. dif(P) for α = 0.1, 0.2, 0.3, 0.4 in the Poisson-Pareto case with δ = 0.03, λ = 1, θ = 3.

https://doi.org/10.1371/journal.pone.0247030.g008

Fig 9. dif(P) for a = 1, 1.2, 1.4, 1.6, 1.8 in the Poisson-Pareto case with δ = 0.03, λ = 1, θ = 3.

https://doi.org/10.1371/journal.pone.0247030.g009

PLOS ONE Is a Refundable Deductible Insurance an advantage for the insured?

PLOS ONE | https://doi.org/10.1371/journal.pone.0247030 February 17, 2021 18 / 22

https://doi.org/10.1371/journal.pone.0247030.g008
https://doi.org/10.1371/journal.pone.0247030.g009
https://doi.org/10.1371/journal.pone.0247030


Poisson-Lognormal case: If X� LN(μ, σ), in order to obtain the optimal value of a that maxi-

mizes dif(P) for values of a � 1

2
, the integral

R a
a

a ðx � 2aÞf ðxÞdx ¼ 0 can be written as,

EðXÞ F
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5 ¼ 0:

Due to the impossibility of analytically solving the previous equation, Table 8 shows some

numerical results from which we see that a� decreases with α.

3.4 All-nothing deductible

In this section, we analyze the all-nothing deductible with participation M> 0. The idea is that

if the individual claim amount, X, is less than M, the insurer pays the whole claim, but if X is

greater than M, the insurer does not pay anything (see [15]).

In Table 9, A and C are defined.

This deductible does not fulfill Proposition 1 because A and C are not commonotic risks.

Then, the following results are not focused on obtaining the optimal deductible for the insured

because it is not possible to maintain that the function dif(P) is always positive.

If the all-nothing deductible is applied, E(AX) = E(A2) = E(X2) − HX2(M), and E(A) = E(X)

− HX(M). Hence, the expression for dif(P) is

dif ðPÞ ¼ 2d½EðXÞ � HXðMÞ�HXðMÞ½VðNÞ � EðNÞ�: ð26Þ

If N� Pois(λ), then dif(P) = 0 regardless of the claim amount distribution. Then, in the

Poisson case, for the insured it is the same to purchase a Zero Deductible Insurance policy or a

Deductible Insurance policy together with a Refundable Deductible Insurance policy.

Knowing that E(X) − HX(M)>0, we can observe in (26) that the sign of dif(P) depends on

the sign of V(N) − E(N). Then, dif(P) can be positive or negative. The explanation is that, in

this deductible, A and C are not commonotic risks (see [21]), and therefore the initial hypothe-

sis of this paper is not fulfilled. That is to say, in this deductible, Cov(A, C) is not a positive

value. In fact, knowing that E(AC) = E(AX) − E(A2) = 0, Cov(A, C) = −E(A)E(C)<0. From (3),

the positiveness of Cov(A, C) is a sufficient, but not necessary, condition for the positiveness of

dif(P). We are only interested in the situations in which dif(F) is positive, therefore we impose

that V(N)>E(N).

Table 8. Optimal value of a in the Poisson-Lognormal case for a < 1

2
.

α 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

a� 1.053 1.052 1.042 1.007 0.934 0.81 0.625 0.377 0.096

https://doi.org/10.1371/journal.pone.0247030.t008

Table 9. All-nothing deductible with participation M.

X A C

X<M 0 X
X>M X 0

https://doi.org/10.1371/journal.pone.0247030.t009
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In order to obtain the value that maximizes dif(P), we need the following two previous

derivatives,

E0ðAXÞ ¼ E0ðA2Þ ¼ � M2f ðMÞ;

E0ðAÞ ¼ � Mf ðMÞ;

and from (5), the first order condition is,

EðXÞ ¼ 2HXðMÞ: ð27Þ

Considering that HX(M) is a continuous and increasing function in D = {M|M> 0}, with

HX(0) = 0 and limM!1HX = E(X), we can assure the existence of a critical point. It is easy to

see that dif00(P) is always negative, then the critical point is a maximum.

In the exponential case, (27) is (2γM + 2)e − Mγ = 1 and for the Pareto(θ, ν), it is

n

nþM

� �y

¼
n

2ðnþMyÞ
: ð28Þ

In Table 10, some numerical results for the exponential distribution are obtained.

If X follows a Pareto(θ, ν) distribution, the optimal values of M are obtained solving numer-

ically (28). The results are shown in Table 11.

If X� LN(μ, σ), then (27) is,

F
lnM � ðmþ s2Þ

s

� �

¼
1

2
;

that implies ln M = (μ + σ2), hence the value of M that maximizes dif(P) is M = e(μ + σ2).

4 Conclusions

In this paper, we present a theoretical framework to analyze the advantage that the insured can

obtain by purchasing a Refundable Deductible Insurance policy. Several principles can be

applied by the insurer to calculate premiums: if the mean principle is applied, this advantage is

null, whereas with the variance principle, the commonotonicity of the parts of the claim cov-

ered by the insurer and the insured guarantees the advantage.

The deductible parameters that maximize the advantage obtained by the insured depend on

the expected value and variance of the number of claims and the distribution of the individual

claim amount. We conclude that the existence and the value of the maximums depend on the

type of deductible applied. We proof the existence of a global maximum if an absolute

Table 10. Optimal value of M in the exponential case.

E(X) 1 2 3 4 5 6 10 20

M 1.6783 3.3567 5.035 6.7134 8.3917 10.07 16.783 33.567

https://doi.org/10.1371/journal.pone.0247030.t010

Table 11. Optimal value of M in the Pareto case.

ν θ 2.1 2.5 3 3.5 4 5

1 2.1189 1.4176 1 0.771650 0.627942 0.457323

1.5 3.17833 2.12645 1.5 1.15747 0.941913 0.685984

2 4.23778 2.83527 2 1.5433 1.2559 0.914645

2.5 5.29722 3.54409 2.5 1.92912 1.5698 1.14331

https://doi.org/10.1371/journal.pone.0247030.t011

PLOS ONE Is a Refundable Deductible Insurance an advantage for the insured?

PLOS ONE | https://doi.org/10.1371/journal.pone.0247030 February 17, 2021 20 / 22

https://doi.org/10.1371/journal.pone.0247030.t010
https://doi.org/10.1371/journal.pone.0247030.t011
https://doi.org/10.1371/journal.pone.0247030


deductible or a proportional deductible are applied. In the proportional deductible case, we

find that if the insured chooses to pay the fifty per cent of each claim, the advantage obtained

by purchasing a Refundable Deductible Insurance policy is the maximum one. In the absolute

deductible case, explicit expressions of the part of the claim paid by the insured that maximizes

the advantage are obtained for several distributions of the claim amount and the number of

claims. In the other cases (proportional deductible with limit and mixture of absolute and pro-

portional deductible), if the number of claims is Poisson distributed, we proof that the global

maximum does not exist.

The results of the paper can help the insured in his/her decision-making process regarding

risk coverage.
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16. Cizek P, Härdle WK and Weron R. Statistical Tools for Finance and Insurance. Springer-Verlag Berlin

Heidelberg; 2005.

17. Dickson D. Insurance Risk and Ruin. Cambridge University Press; 2016.

18. Panjer H and Willmot GE. Insurance Risk Models. Society of Actuaries; 1992.

19. Goovaerts MJ, De Vylder F and Haezendonck J. Insurance Premiums: theory and applications. ASTIN

Bulletin, 1984: 15(1):70–72.

20. Kass R, Goovaerts M, Dhaene J and Denuit M. Modern Actuarial Risk Theory. New York. Kluwer Aca-

demic Publishers; 2002.

21. Wang S and Dhaene J. Comonotonicity, correlation order and premium principles. Insurance: Mathe-

matics and Economics, 1998; 22(3):235–242.

22. Egozcue M, Fuentes Garcia L, Wong WK and Zitikis R. The covariance sign of transformed random var-

iables with applications to economics and finance. IMA Journal of Management Mathematics, 2011; 22

(3):291–300. https://doi.org/10.1093/imaman/dpq012

23. Dhaene J and Goovaerts MJ. Dependency of risks and stop-loss order. Astin Bulletin, 1996; 26:201–

212. https://doi.org/10.2143/AST.26.2.563219

24. Dhaene J, Wang S, Young VR and Goovaerts M. Comonotonicity and maximal stop-loss preiums. Bul-

letin of the Swiss Association of Actuaries, 2000; 2:99–113.

25. Dhaene J, Denuit M, Goovaerts MJ, Kaas R and Vyncke D. The concept of comonotonicity in actuarial

science and finance: theory. Insurance: Mathematics and Economics, 2002; 31(1):3–33.

26. Winkler R, Roodman GM and Britney RR. The Determination of Partial Moments. Management Sci-

ence, 1972; 19(3):290–296. https://doi.org/10.1287/mnsc.19.3.290

PLOS ONE Is a Refundable Deductible Insurance an advantage for the insured?

PLOS ONE | https://doi.org/10.1371/journal.pone.0247030 February 17, 2021 22 / 22

https://doi.org/10.1093/imaman/dpq012
https://doi.org/10.2143/AST.26.2.563219
https://doi.org/10.1287/mnsc.19.3.290
https://doi.org/10.1371/journal.pone.0247030

