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Abstract 

 
  
The number of victims in vehicles in Spanish motor crashes is analyzed by 
bodily injury (BI) severity level. Generalized linear mixed models (GLMMs) 
are applied to model the number of non-serious victims, serious victims and 
fatalities. Dependence between vehicles involved in the same crash is 
captured including random effects. After comparing between error 
distributions, the binomial GLMM is selected. The effect of the driver, vehicle 
and crash characteristics on the number of BI victims by severity level is 
analyzed, paying special attention to the influence of the age of the driver 
and the age of the vehicle. We found a nonlinear relationship between 
driver’s age and severity, with young and older drivers being the riskiest 
groups. On the other hand, the expected severity of the crash linearly 
increased with the vehicle age until the vehicle was 18 years old and then 
remained constant at the highest severity level from that age. These results 
are relevant in countries such as Spain with increasing longevity of drivers 
and aging of the car fleet. 
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1. Introduction 

 

This paper analyzes the number of victims in the vehicle in a motor crash by bodily injury 

(BI) severity level. We investigate those factors related to the vehicle, the driver and the 

crash that have a significant impact on the expected numbers of occupants with non-

serious (slight) injuries, with serious injuries and who die as a result of the crash. We use 

the official police dataset of motor crashes involving victims on Spanish roads in the year 

2016. We apply generalized linear models with random effects, called generalized linear 

mixed models (GLMMs) to take into account dependence between vehicles involved in 

the same crash. The inclusion of random effects into fixed linear models allows the 

analysis of multilevel data when data have more than one source of random variability. 

As indicated by Mannering et al. (2016), multivariate issues may arise with vehicle 

crashes that involve multiple occupant injuries from the same accident. In such cases, 

unobserved factors influencing the injury levels would be correlated, such as the structural 

characteristics of the vehicles involved, among others (Mannering et al., 2016; Abay et 

al., 2013; Eluru et al., 2010). 

 

Identifying factors affecting safety and understanding the different impacts of vehicle 

features will help to develop new safety features and improved transportation safety 

programs. A vast number of studies have analyzed risk factors that affect the severity of 

bodily injuries in road traffic crashes. Some studies focus on analyzing the type of vehicle 

involved and the resulting damage (Wang and Kockelman, 2005; Quin et al., 2013; 

George at al., 2017, among others). For instance, two-wheeled motor vehicles present a 

greater risk of serious injury or fatality (Quddus, 2002; Donate-López et al., 2010; 

Jackson and Mello, 2013; Schneider et al., 2012), whereas heavier vehicles are more 

protective of their passengers but cause more damage to the other vehicles involved 

(Fredette et al., 2008). Other researchers have also examined differences between types 

of crashes and their impact on the severity of victim injury. The injury severity increases 

when the accident involves frontal impact rather than rear impact (Abu-Zidan and Eid, 

2015). In rollover and drop collisions, passengers are more exposed to the likelihood of 

serious head and cervical spine injuries (Frunt et al., 2012; Ivarsson et al., 2015). Also, 

analysis shows that driving under conditions of dark or non-optimal road surfaces plays 

an important role in crash severity (Sullivan and Flannagan, 2002; Wanvik, 2009; Uddin 

and Huynh, 2017). But as Eluru et al. (2010) indicate, there is strong evidence of the 



presence of correlated unobserved factors that affect the injury severity levels among 

vehicle occupants.  

 

We apply regression models with random effects which are a particular case of random 

parameter models (see, for a discussion, Mannering et al., 2016). A number of previous 

research studies have used random-parameter models to account for heterogeneity from 

unobserved factors related to road geometrics, vehicle types and spatial areas (see 

Washington et al, 2020, Chap.18). Anastasopoulos and Mannering (2009) show that the 

marginal effects generated by the standard (fixed effect) negative binomial model and the 

random effect negative binomial model can be quite different. They suggest that ignoring 

the possibility of random parameters when estimating count data models can result in 

changes to the magnitude of the effect of factors affecting crash frequency. A similar 

conclusion is noted in Anastasopoulos and Mannering (2011), where the authors show 

that random parameter models using less detailed crash-specific data can still provide a 

reasonable level of accuracy. Osman et al. (2018) indicate that injury severity conditional 

on crash occurrence can depend on numerous factors, none of which are observed in crash 

databases. In this sense they indicate that the unobserved heterogeneity derived from these 

unobserved factors can moderate the influence of other observed covariates in the model, 

leading to variation in the parameter effects across different observations. The authors 

properly refer to Mannering et al. (2016) to analyze alternate modeling methods for 

handling the problem, random parameter methods being the most prominent. Also, 

Hosseinpour et al. (2018) estimate crash counts for four different multi-vehicle collision 

types, with dependencies between collision types and spatial correlation between adjacent 

sites.  

 

In the analysis of factors that affect the expected number of injured occupants by severity 

level, including random effects, we pay special attention to the age of the driver and the 

age of the vehicle. We estimate non-parametrically the effect of these regressors to 

investigate whether these factors are linearly related with the dependent variable in the 

GLMM framework or whether another relational form is more appropriate. A number of 

studies suggest that the effect of driver age is not linear with crash severity, as young and 

old drivers represent the riskiest groups (Alam and Spainhour, 2008; Chin and Zhou, 

2018; Regev et al., 2018). Recent research efforts have focused on older drivers, given 

the increasing longevity of the population, and the effects on road traffic crash injury rates 



(Ayuso et al., 2020; Johannsen and Müller, 2013; Clarke et al., 2010). Another relevant 

risk factor investigated for the shape of its relationship with crash severity is vehicle age. 

The incorporation of safety technological improvements in newer vehicles has been 

accelerated in recent decades. The later generations of cars are associated with lower 

probabilities of injury and fatality in car crashes (Rich et al., 2013; Anderson and Searson, 

2015; Høye, 2019; Ayuso et al., 2019; NHTSA, 2013; Blows et al., 2003).  

 

The structure of this paper is as follows. Section 2 defines the GLMM used to model the 

number of injured victims in a motor crash according to different BI severity levels. 

Section 3 describes the dataset, and the key descriptive statistics are presented. Results 

related to the model selection and the binomial generalized linear mixed model estimated 

are reported in Section 4, where a detailed analysis of the impact of driver age and vehicle 

age on BI severity level is carried out. Discussion is provided in Section 5, and Section 6 

concludes.  

 

2. Generalized Linear Mixed Models 

 

Our analysis focuses on the relationship between a set of risk factors and the number of 

victims in a vehicle involved in a crash, according to injury severity. We proceed to model 

the number of non-seriously (slightly) injured occupants in the vehicle, the number of 

seriously injured occupants and the number of fatally injured occupants. Note that injuries 

are considered non-serious if the victim suffered only minor personal injuries and did not 

require hospitalization or was hospitalized for less than 24 hrs. Injuries are defined as 

serious if they required hospitalization for more than 24 hrs. Finally, a victim is defined 

as fatally injured if death occurred within 30 days following and as a result of the accident. 

The unit of observation in the analysis is the vehicle involved in the crash. 

 

We deal with three discrete variables: the number of non-seriously injured occupants in 

the vehicle yns; the number of seriously injured occupants, ys, and the number of fatally 

injured occupants, yf. Generalized linear models (GLMs) for discrete variables assume 

that observations are independent. However, when multiple vehicles are involved in a 

crash, the number of injured victims of the same severity level in each vehicle will be 

presumed to correlate. When data present correlated clusters, GLMMs are a more 



appropriate specification. GLMMs are an extension of GLMs, incorporating random 

effects for the analysis of multilevel data. 

 

The dependent variable 𝑦  reflecting the number of injured victims in the vehicle 

according to the severity level j=(ns,s,f) follows an exponential family distribution 

defined as 𝑓 𝑦 Ɵ, ɸ = exp
Ɵ (Ɵ)

(ɸ)
+ 𝑐(𝑦 , ɸ) , where Ɵ is the canonic parameter 

and ɸ the dispersion parameter, and 𝑎(∙), 𝑏(∙) and 𝑐(∙) are known functions. In the case 

of a Poisson distribution, 𝑦 ~𝑃(µ), the canonic parameter is Ɵ = ln(µ). In the case of a 

binomial distribution, 𝑦  ~𝐵(𝑛, 𝜋), the canonic parameter is Ɵ = ln . Finally, in the 

case of a negative binomial distribution 𝑦  ~𝑁𝐵(𝑘, µ), the canonic parameter is given by 

Ɵ = ln
µ

µ
. The superscript of y is removed to simplify notation. 

 

The number of injured victims is a function of vehicle occupancy. The set of vehicles 

included in the analysis has different passenger capacities and, even if they have the same 

capacity, the number of occupants at the time of the crash could differ. In all model 

specifications the number of occupants of the vehicle at the time of the crash is included 

as an offset term (exposure to risk). Including this offset, the numbers of injured 

occupants per severity level are modeled in relative terms, i.e. the proportion of injured 

victims in relation to the total occupancy of the vehicle. So, vehicles involved in the motor 

crash with different occupancy can now be compared. When the dependent variable is 

expressed in relative terms, the binomial regression specification is equivalent to the logit 

regression model (Milton et al., 2008). In terms of goodness-of-fit, likelihood-based 

measures can be used to compare the binomial regression with the Poisson and negative 

binomial regression with dependent variable measured in relative terms.2 

 

The GLM relates the conditional mean of the distribution µ and the linear regression 

through the link function 𝑔 as follows: 𝑔(µ ) = 𝜂 = 𝑥ᵀ𝛽 for the i-th vehicle, i=1,…, I, 

where 𝜂  is the linear predictor, β is the vector of the regression coefficients and 𝑥  is the 

vector of regressors. When the canonical link function is selected, then Ɵ = 𝜂 . Now, we 

                                                           
2 A more appropriate specification would be a Poisson or negative binomial regression with right censoring 
in which the censoring value is the number of occupants. Mean parametrization of these models is not 
available. As a result, the interpretation of coefficient estimates is more complex. For that reason, right 
censored models with discrete dependent variables are not included.  



introduce a Q-dimension vector of cluster-specific parameters Ɵ = (Ɵ  , . . . , Ɵ  ) and 

a vector 𝑧  of predictors corresponding to the random effects, for n=1,…,N. In our case, 

n indicates the crash and only one cluster-specific parameter is considered, so Ɵ  and 𝑧  

are scalars. In the GLMM with a cluster-specific variable, the conditional mean µ  is 

regressed on the predictors as follows: 𝑔(µ ) = 𝑥ᵀ 𝛽 + 𝑧 Ɵ . The constant term of the 

linear predictor is no longer the same for all observations but varies for each group of 

vehicles involved in the same crash. Thus, unobserved individual-specific heterogeneity 

associated with the crash in which the vehicle was involved is introduced into the 

regression modeling (for a review of statistical methods to deal with unobserved 

heterogeneity in motor data, see Mannering et al., 2016). 

 

Assuming that the random effect is normally distributed with a mean of zero and 

dispersion matrix depending on unknown variance components, the marginal probability 

of response 𝑦 = (𝑦 , … , 𝑦 ) is given by: 

 

𝑝(𝑦 |𝛽) = 𝑝(𝑦 |𝛽, Ɵ )Φ(Ɵ |0, σ )𝑑Ɵ

= 𝑝(𝑦 |𝛽, Ɵ )Φ(Ɵ |0, σ )𝑑Ɵ , 

 

where Φ(Ɵ |0, σ ) is the normal distribution with a mean equal to zero and variance σ . 

To estimate parameters 𝛽 and σ , we have to maximize the likelihood function, 

𝐿(𝛽, σ |𝑦 , … , 𝑦 ) = ∏ 𝐿 (  𝛽, σ |𝑦 ) = ∏ 𝑝(𝑦 |𝛽). There are several methods 

for maximizing the marginal likelihood. These methods are based on approximation or 

simulation to obtain an analytic solution. We focus on the Gauss-Hermite quadrature 

(McCulloch and Searle, 2001; Naylor and Smith, 1982). This non-stochastic numerical 

approximation is useful when the random effects are assumed to be normally distributed 

(Golub and Welsh, 1969). 

 

3. Data 

 

The dataset of motor crashes involving victims was provided by the Spanish Traffic 

Authority (DGT). It contains information recorded by traffic agents who monitored the 



evolution of victims over the thirty days following an accident. The complete database 

contains information for 100,494 police-reported motor vehicle crashes with victims from 

the period January 2016 to December 2016. There are 179,295 vehicles involved in 

102,362 crashes, in which 73,611 vehicles did not present any victims and 105,684 

vehicles had at least one victim. Only those vehicles with full records according to our 

research are selected. We analyze 96,472 vehicles involved in 59,040 crashes. Of these, 

46.67% of crashes are associated with one vehicle, and 45.88% of them are associated 

with two vehicles. The remaining 7.45% of crashes are associated with more than two 

vehicles. In 42.27% of the vehicles, no occupants were injured as a result of the crash, 

and in 57.73%, at least one occupant was injured.  

 

Table 1 shows the variables used in the analysis. The dataset contains information on the 

number of victims in each vehicle by BI severity level, differentiating between non-

injury, non-serious or slight injury, serious injury and fatalities. Information related to the 

driver includes age and gender. Information related to the vehicle involved in the crash 

includes type, age, and number of occupants (including the driver). Finally, the dataset 

contains other information related to the accident such as type of crash, type and 

conditions of the road, and visibility conditions.  

 

Table 1. Description of variables 

Name Categories Description Mean* 
Victims (dependent variable)    

Non-injury  Number of non-injury victims in the vehicle 0.65 
Slight  Number of non-serious victims in the vehicle 0.69 

Serious  Number of serious victims in the vehicle 0.06 
Fatalities  Number of fatalities in the vehicle 0.01 

Vehicle     
Vehicle age  Age of the vehicle involved in the crash 10.35 

Vehicle Car Cars (category of reference)  69.83 
 Van Vans and minibuses  7.03 
 Motorcycle Motorcycles  12.00 
 Moped Bicycles, Mopeds and ATVs  5.05 

 
Heavy 
vehicle 

Trucks, tractors and other heavy vehicles  6.09 

Occupants  
Number of occupants in the vehicle (including 
the driver) 

1.41 

Driver    
Driver age 

 
Age of the driver involved in the crash 
(divided by 10) 

4.14 

Gender Female  Driver is female (category of reference)  28.51 
 Male  Driver is male  71.49 

Crash    



 

The average age of the drivers involved in crashes with victims was 41.4 years and the 

vehicle age was 10.35 years, on average. The number of occupants per vehicle averaged 

1.41. Most occupants suffered non-serious injuries (0.69 averaged per vehicle), followed 

by occupants who did not suffer injuries (0.65 averaged per vehicle), serious injuries (0.06 

averaged per vehicle) and fatalities (0.01 averaged per vehicle). Table 2 and Figure 1 

show descriptive statistics and empirical density plots for the number of occupants per 

vehicle (Occupants), and the number of victims per vehicle, respectively, for each BI 

severity level. 

 

Table 2. Descriptive statistics for the number of occupants of the vehicle according to 

the BI severity level 

  Occupants Non-injury Slight Serious Fatalities 

Minimum  1 0 0 0 0 

Maximum  61 58 45 21 13 

Standard Deviation  1.12 0.92 0.70 0.07 0.01 

1st quartile  1 0 0 0 0 

3rd quartile  2 1 1 0 0 

 

 

 

 

 

Illumination Visibility Driving with visibility (category of reference)  88.53 

 
No 
visibility 

Driving without appropriate visibility  11.47 

Road Local 
City streets and township roads (category of 
reference)  

47.67 

 Principal 
Highways, freeways and other principal 
arterials  

17.18 

 Minor Minor arterials and collectors  27.98 

 Other  
Subsidiary roads, unpaved roads, cycling lanes 
and others  

7.17 

Condition road Optimal 
Optimal driving conditions of the road surface 
(category of reference)  

84.11 

 
Non-
optimal 

Non-optimal driving conditions of the road 
surface (wet, frozen, muddy)  

15.89 

Type of crash Collision 
Collision involving another vehicle (category 
of reference)  

61.89 

 Pile-up  Multiple vehicle collision  7.82 
 Run-over Collision involving a pedestrian or an animal  8.73 
 Rollover Rollover, drop or collision with an object  14.89 
 Other Other types of crash 6.67 

* Relative frequency in % for categorical variables  
 



Figure 1. Empirical densities of the number of victims in the vehicle according to the BI 

severity level 

 

3.1 Percentage of occupants injured, by BI severity level 

 

A univariate analysis is carried out for classification variables to analyze differences in 

the distribution of BI severity levels among the occupants of the vehicle. Table 3 shows 

the percentage of occupants of the vehicle by BI severity level for each category of the 

classification variables. The Chi-square statistic is significant at 5% for all variables. So, 

the distribution of the severity level of injury to occupants is statistically different between 

the categories of the classification variables. In comparison to female drivers, when the 

driver is male, occupants are more likely to suffer no injuries or severe injuries and 

fatalities. As expected, most riders of motorcycles and mopeds are injured in motor 

crashes. On the other hand, 67.34% of occupants of heavy vehicles involved in crashes 

are not injured.  

 

Driving without good visibility increases the likelihood that occupants will suffer injuries, 

and crashes on minor arterials and collectors are associated with more severe damage. 

Roads with non-optimal surface conditions are associated with a higher percentage of 

slightly injured victims and a lower percentage of serious and fatal victims, as compared 

to roads with optimal surface conditions. This result may be associated with more careful 

driving by the driver who perceives that the road surface condition is not good or the 

weather is bad, or when there are signs indicating this (Mondal et al., 2011). In relation 

to the type of crash, most run-over crashes do not result in injury to the vehicle occupants 
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(91.61%). By contrast, in rollovers, drops or collisions with objects, only 16.74% of 

vehicle occupants escape without injury. 

 

 

Table 3. Percentage of occupants of the vehicle by BI severity level 
  Victim’s severity  

  Non-
injury 

Slight Serious Fatal χ2 

     

Gender Female 43.56 53.54 2.55 0.35  
 Male  48.50 44.79 5.47 1.24 1,308.9 (df: 3, p-value< 0.01) 

       
Vehicle Car  53.83 42.81 2.64 0.72  

 Van  61.35 35.35 2.49 0.81  
 Motorcycle   5.15 76.45 15.96 2.44  
 Moped  5.93 83.66 9.37 1.04  
 Heavy vehicle  67.34 27.4 3.96 1.3 19,372 (df: 12, p-value < 0.01) 

       
Illumination Visibility   48.45 46.47 4.26 0.82  

 No visibility  36.67 53.57 7.50 2.26 1,273.5 (df: 3, p-value<0.01) 
       
Road Local  54.88 42.18 2.68 0.26  

 Principal  44.31 50.4 4.23 1.06  
 Minor  36.37 53.18 8.25 2.20  
 Other  43.87 50.78 4.46 0.89 4,974.7 (df: 9, p-value<0.01) 

       
Road 
condition  

Optimal condition  48.49 45.73 4.78 1.00  

 Non-optimal 
condition 

39.70 55.53 3.87 0.90 718.7 (df: 3, p-value<0.01) 

       
Type of crash Collision 48.92 46.42 3.92 0.74  

 Pile-up  56.22 42.44 1.14 0.20  
 Run-over  91.61 7.43 0.81 0.15  
 Rollover  16.74 70.67 10.21 2.38  
 Other  28.91 61.01 7.94 2.14 17,976 (df: 12, p-value< 0.01) 

Total  47.09 47.28 4.63 0.98  

 

 

4. Modeling the number of occupants injured by severity level  

 

4.1 Model selection 

 

Three regression models were compared to model, in relative terms, the number of non-

seriously injured occupants in the vehicle, the number of seriously injured occupants and 

the number of fatally injured occupants. In a first stage, GLMs were fitted for three 

distributions of the exponential family: binomial, Poisson and negative binomial. 



Secondly, to capture the dependence among vehicles involved in the same crash a GLMM 

with a random effect was fitted to the data. The Akaike Information Criterion (AIC) and 

the Bayesian Information Criterion (BIC) for the three GLMs and GLMMs are presented 

in Table 4.  

 

Table 4. Comparison of binomial, Poisson and negative binomial regressions  
 

  BINOMIAL  POISSON  
NEGATIVE 
BINOMIAL 

 

  
Generalized 

Linear 
Model 

Generalized 
Linear 
Mixed 
Model 

Generalized 
Linear 
Model 

Generalized 
Linear 
Mixed 
Model 

Generalized 
Linear 
Model 

Generalized 
Linear 
Mixed 
Model 

Slight 
victims 

AIC 147,940.4 146,992.0 176,808.1 176,810.1 176,811.7 176,812.7 

 BIC 148,101.6 147,162.6 176,969.2 176,980.7 176,982.3 176,992.7 

Serious 
victims 

AIC 38,800.7 37,443.0 38,871.0 38,382.7 38,611.6 38,382.6 

 BIC 38,961.8 37,613.6 39,032.1 38,553.2 38,782.1 38,562.7 

Fatalities AIC 11,752.0 11,430.0 11,675.9 11,456.3 11,463.9 11,448.9 

 BIC 11,913.2 11,600.6 11,837.0 11,626.9 11,634.5 11,629.0 

 

Analyzing the GLM for slight injury victims, the binomial model has lower AIC and BIC 

when compared to the Poisson model and the negative binomial model. The same order 

pertains when we consider the GLMM. In the case of serious injury victims and fatalities, 

the GLM with the lowest AIC and BIC is the negative binomial. However, the binomial 

model has the lowest AIC and BIC when GLMMs are considered. In fact, the binomial 

GLMM always has the lowest AIC and BIC among the set of models considered. These 

results suggest that when we introduce the random effect, this model is a better fit and 

captures the correlation between vehicles in the same car crash.  

 

4.2 Relationship between vehicle age, driver age and the BI severity level 

  

Both the GLMM and GLM frameworks assume that the relationship between continuous 

variables and the transformed dependent variable is linear. However, this is not always 

true. Here, we investigate the relationships between vehicle age and driver age, 



respectively, and the severity of injury sustained by occupants of the vehicle involved in 

the crash. In this sense, a semiparametric binomial GLMM is fitted to the data. This 

flexible modeling approach defines the linear predictor of the GLMM as a linear 

relationship between the categorical variables and smooth functions of the two 

explanatory continuous variables, Vehicle age and Driver age. Even though the 

estimation process frequently has less stability and the coefficients’ interpretation is more 

complex, this flexible modeling is a powerful tool for understanding the effect of the 

explanatory continuous variables on the dependent variable, in a multivariate context. 

Figure 2 shows the estimated effect of vehicle age on the linear predictor of the binomial 

GLMM model. There is an appreciable change in the trend at around 20 years in the case 

of slight injury victims. This effect is less visible for serious injury and fatality victims. 

 
 
 

Figure 2. Estimated effect of age of vehicle in the semiparametric binomial GLMM, by 
bodily injury severity level 

 

 

The same analysis is conducted for driver age and results are displayed in Figure 3. In 

this case we observe a quadratic shape for serious injury victims (b) and fatalities (c). A 

more complex relationship is observed in the case of the slight injury victims (a), for 

which a quadratic shape would not capture the initial increase that occurs up to the age of 

around thirty.  

 



Figure 3. Estimated effect of age of driver in the semiparametric binomial GLMM, by 
injury severity level 

 

 

Different transformations of the two explanatory variables were analyzed to capture the 

relationships shown in Figures 2 and 3, including polynomials and linear approximations. 

Finally, the transformation associated with the lowest AIC when the model was fitted was 

selected.3 In the case of vehicle age, the variable is replaced by two new regressors; Young 

vehicle is defined as a quantitative variable with a continuous part for those vehicles under 

18 years old. This regressor takes the value of the vehicle age when it is under 18 years, 

and 0 otherwise. Old vehicle is defined as vehicles of 18 years or older. This regressor is 

defined as a dichotomous variable that takes the value 1 if the vehicle age is equal to or 

higher than 18, and 0 otherwise. In relation to driver age, a quadratic form returned the 

best fit for the three severity levels, including the number of slight injury victims. So, a 

new regressor is aggregated into the model recording the squared age of the driver 

(Squared age).  

 

4.3 Binomial Generalized Linear Mixed Model 

 

A binomial GLMM is fitted for the number of slight, serious and fatal injury victims in 

the vehicle, including the new regressors associated with vehicle age and driver age. Table 

5 shows the estimated coefficients for the three binomial GLMMs. A negative (positive) 

                                                           
3 Not shown for simplicity.  



coefficient indicates a decrease (increase) on the expected number of victims with non-

serious, serious or fatal injuries in the vehicle, respectively.  

 
 
Table 5. Coefficient estimates of the binomial GLMM according to injury severity level 

of victims 
  Slight Serious Fatal victims 
  Coef. Std. Error Coef. Std. 

Error 
Coef. Std. Error 

Intercept  0.175*** 0.052 -4.840*** 0.129 -7.308*** 0.266 
Gender Male -0.494*** 0.015 0.213*** 0.043 0.613*** 0.097 
Driver age Driver age -0.146*** 0.022 -0.180*** 0.053 -0.226** 0.098 

 Squared age  0.008** 0.002 0.029*** 0.006 0.047*** 0.010 
Vehicle age Young vehicle 0.022*** 0.001 0.021*** 0.004 0.023** 0.007 

 Old vehicle 0.390*** 0.024 0.467*** 0.061 0.660*** 0.110 
Vehicle Van -0.180*** 0.025 -0.061 0.077 -0.125 0.140 

 Motorcycle 1.606*** 0.026 2.144*** 0.043 1.34*** 0.085 
 Moped 1.966*** 0.042 1.782*** 0.065 0.869*** 0.162 
 Heavy vehicle -0.694*** 0.028 0.080 0.071 0.107 0.123 

Illumination No visibility 0.179*** 0.021 0.502*** 0.046 0.602*** 0.078 
Condition 
road 

Non-optimal 
0.261*** 0.018 -0.358*** 0.048 -0.338*** 0.090 

Road Principal 0.244*** 0.020 0.827*** 0.055 1.356*** 0.118 
 Minor 0.260*** 0.017 1.191*** 0.043 1.721*** 0.100 
 Other  0.127*** 0.027 0.503*** 0.071 0.967*** 0.151 

Crash Pile-up  -0.093*** 0.025 -0.982*** 0.108 -1.28*** 0.238 
 Run-over -2.310*** 0.039 -1.117*** 0.126 -0.9*** 0.260 
 Rollover 0.698*** 0.000 0.654*** 0.040 0.811*** 0.074 
 Other 0.450*** 0.026 0.581*** 0.056 0.745*** 0.099 

Stand. Dev. (Random effect) 0.523 1.453 1.551 
AIC 146,930.2 37,417.6 11,403.4 
BIC 147,119.8 37,607.1 11,592.9 

Note: *** p-value<0.001; ** p-value<0.05; * p-value<0.10. 

 

When the driver involved in the crash is male, this increases the expected number of 

seriously injured occupants and fatalities and decreases the number of slightly injured 

occupants. The driver’s age also has an impact on the expected number of all victims. 

The expected number of victims decreases with increasing driver age until reaching a 

minimum, and later increases, and this holds for all types of victim. In the case of slight 

injury victims, the minimum is reached at the age of 91 years; for serious injury victims 

the minimum is reached at the age of 31 years, and for fatalities the minimum is reached 

at the age of 24 years. Driving old vehicles increases the expected number of injured 

occupants. The expected number of injured occupants increases per year of vehicle age 

up to 18 years, when the effect on the expected number of injured victims remains stable 

at the highest level for vehicles of 18 years and older, mainly for seriously injured victims 

and fatalities.    



 

Compared to cars, the expected number of injured occupants increases for all three 

severity levels when they are traveling on two wheels: motorcycles, mopeds and bicycles. 

In the case of vans or heavy vehicles, the number of slightly injured victims is lower than 

in cars, but no significant differences are found in relation to the number of serious and 

fatal injury victims. Illumination, road surface conditions and type of road are significant 

factors in explaining the number of injured occupants. Driving under less than good 

visibility conditions increases the expected number of all types of injured victims. 

However, where the road surface is non-optimal, this increases the number of slightly 

injured victims but decreases the number of seriously injured victims and fatalities.  

 

Principal and minor arterials are associated with a higher expected number of injured 

occupants than local roads. The estimated coefficients in minor arterials are slightly 

higher than in principal arterials, regardless of the severity level. So, the expected number 

of injured victims is higher in minor arterials than in principal arterials. Finally, when the 

crash is a pile-up or run-over, the expected number of injured victims in the vehicle 

decreases in comparison to collisions involving other vehicles, collisions with an 

obstacle, rollovers or drops.  

 

5. Discussion 

 

This study analyzes several factors of risk in road crashes that affect the expected number 

of BI victims in a vehicle by severity level, taking into account dependence between 

vehicles involved in the same crash. The observation unit in the analysis is the vehicle. 

Dependence between vehicles involved in the same crash is considered, including random 

effects, in the regression. It is shown that the model performance improves when 

dependence is considered. Even the selected conditional error distribution for serious 

injuries and fatalities varies when this phenomenon is considered. So, the inclusion of 

random effects captures, at least partially, the heterogeneity due to the involvement of 

more than one vehicle in the same motor crash. 

 

When two or more vehicles are involved in the same crash one could expect to derive a 

relationship between their respective resulting damage and injury. Various papers inform 



us about the incidence injury among different types of vehicles affected (for example a 

car and a heavy vehicle) or the positions of the occupants inside the vehicles. Dependence 

between the BI severity levels of people involved in the same crash can be very relevant 

if we want to predict the expected number of victims and their injury severity; for 

example, as a consequence of a safety policy or, more specifically, in the insurance 

context, when we want to calculate provisions for automobile claims coverage. 

Methodologically speaking, this objective accords with previous studies that suggest that 

ignoring the possibility of including random parameters when estimating count-data 

models could affect the magnitude of the coefficients (Anastasopoulos and Mannering, 

2009, 2011; Osman et al., 2018; Hosseinpour et al., 2018).  

 

Our results confirm conclusions previously drawn in the literature. Male drivers are 

associated with more seriously injured victims (see a review, for example, in Regev et al., 

2018). Two-wheeled motor vehicles are more likely to be associated with serious or fatal 

injuries than four-wheeled or heavier vehicles (Donate-López et al., 2010; Schneider et 

al., 2012). This result is expected since two-wheeled vehicles offer less protection to 

riders. For instance, previous literature suggests that heavy vehicles (pickup trucks, 

minivans and sport utility vehicles -SUVs-) are safer for their own occupants and cause 

more damage to the other vehicles involved in a crash (Fredette et al., 2008; George et 

al., 2017). A number of studies have found that driving in dark conditions increases 

expected accident severity (Sullivan and Flannagan, 2002; Wanvik, 2009; Uddin and 

Huynh, 2017). Sullivan and Flannagan (2002) concluded that the risk of fatally injury to 

pedestrians involved in crashes is between 3 and 6.75 times higher in the dark than in 

daylight. Wanvik (2009) found that the risk of injury from crashes in darkness increases 

on average by 17% on lit rural roadways and by 145% on unlit rural roadways. Uddin and 

Huynh (2017) also confirm the importance of examining crashes based on lighting 

conditions on rural and urban roadways. Here, we have found that the expected numbers 

of slight, serious and fatal injuries to victims increase when there is less than good 

visibility.  

 

We found that non-optimal road surface conditions increase the expected number of 

slightly injured occupants, but they reduce the expected number of serious and fatal injury 

victims. Although we could expect an increase in crash BI severity because of bad road 

conditions (bad weather, poor surface, ...), we argue that unobserved factors may have an 



opposite effect, such as increased attention to driving, higher traffic density or higher 

signaling rates. Different studies have shown that the influence of good road conditions 

on traffic crashes and levels of injury is not clear, with positive effects in some cases and 

negative in others (see, for example, Mondal et al., 2011).   

 

The expected number of injured victims is higher on principal and minor arterials than on 

local roads. While the number of crashes in local areas is usually higher than on arterials 

and collectors, they are associated with a lower severity (DGT, 2017). The type of crash 

analyzed has an explicit influence on the expected number of occupants injured. When a 

vehicle is involved in a multiple collision the expected number of injured occupants falls 

as compared to a two-vehicle collision. Collisions involving multiple vehicles (pile-up) 

are more frequently rear impact crashes, which are associated with less severe BI 

outcomes (Abu-Zidan and Eid, 2015; DGT, 2017). Abu-Zidan and Eid (2015) indicated 

that injury severity among those involved in front and side impacts was double that of 

rear impacts. Also, the expected number of injured occupants falls when the type of crash 

is a run-over as compared to a two-vehicle collision. Note that in a crash collision 

involving a pedestrian, the pedestrian is expected to sustain the highest BI damage (Pour-

Rouholamin and Zhou, 2016; Islam and Jones, 2014), while the occupants of the vehicle 

(whom we are analyzing in this study) are more protected road users. Finally, when the 

vehicle is involved in a rollover, drop or collision with an object, an increased number of 

injured occupants is expected for all levels of severity. Note that our results are based on 

motor crashes involving injured victims. In the literature, when crashes with victims are 

analyzed, single-vehicle crashes are frequently associated with more severe BI damages 

than collisions involving two or more vehicles (Daniels et al., 2010; Abu-Zidan and Eid, 

2015; DGT, 2017). 

 

Our analysis pays special attention to the age of the driver and the vehicle age as factors 

explaining the number of occupants injured with different severity levels as a result of a 

crash. We demonstrate that the relationship between these factors and the (transformed) 

dependent variable is not linear. Both factors were redefined to reflect their association 

with the expected number of injured occupants.  

 

For the age of the driver, we found a quadratic relationship with occupants’ injury 

severity. Indeed, young drivers and old drivers were the riskiest groups. Previous studies 



have identified these two high risk groups of drivers (Rakotonirainy et al., 2012; Zhou et 

al., 2015; Regev et al., 2018). Here, we found that young drivers presented a high risk of 

accidents resulting in slightly injured occupants, but old drivers were the riskiest age 

group in the case of seriously and fatally injured crash victims. This does not mean that 

older drivers are necessarily more dangerous drivers since older drivers (and likely their 

old passengers) are inherently more likely to be seriously injured in crashes due to their 

physical fragility (Regev et al., 2018; Noh & Yoon, 2017). Previous studies have 

suggested the need for the effect of an increasing proportion of elderly road users to be 

very present in road safety policies (Loughran et al., 2007; Boot et al., 2014; Ayuso et al., 

2020). The number of older drivers is increasing in many countries as a result of the 

general population aging. As the number of older drivers is becoming more significant, 

researchers have access to an increasing amount of data about this group of drivers, 

opening an important area of future research.  

 

The age of vehicles is also gaining attention in road safety research. In fact, previous 

studies have suggested that vehicle age is positively associated with driver age (Ayuso et 

al., 2019; Eby et al., 2016; Simões y Pereira, 2009, among others). New vehicles are safer 

as a result of technological and safety advances implemented in the new generation of 

automobiles. Here, we found that the expected number of occupants injured by severity 

level increases with the vehicle age up to 18 years and then remains constant at the highest 

level. This finding is very relevant in countries with old fleets of automobiles, such as 

Spain, where the average age of automobiles has increased from 7.65 years in 2002 to 

12.42 years in 2018 (ANFAC, 2019). In the EU, passenger cars were on average 10.8 

years old in 2018 (ACEA, 2019).  

 

The high level of significance of most parameter estimates provides a better 

understanding of the effect of automobile and crash characteristics on the expected 

number of occupants injured by severity level. Nevertheless, this study has limitations. 

We control heterogeneity due to multiple vehicles being involved in the same crash, but 

other sources of unobserved heterogeneity were not controlled in the study. For example, 

count BI severity models were estimated separately for the different levels of injury 

severity experienced by occupants, but some unobserved factors could impact all levels 

of severity, simultaneously. In addition, relevant information to explain the severity of 

the crash was not available in the dataset. For instance, the age and position of passengers 



in the vehicle, the use of safety measures or the place where the crash occurred have been 

extensively investigated as factors influencing crash severity (Abdel-Aty, 2003; Smith 

and Cummings, 2006; Abay et al., 2013). All these unavailable factors constitute 

unobserved heterogeneity as well as a lack of information related to driving behavior. 

Research in the context of telemetry shows a close relationship between driving behavior 

and crash severity (Ayuso et al., 2019; Perez-Marín et al., 2019; Paetgen et al., 2013, 

2104, among others). The incorporation of driving behavior information into the model 

could differentiate aspects that would allow a deeper knowledge of the influence of 

traditional risk factors. For example, the driving behavior of old drivers may help to 

distinguish the proportion of the higher crash severity risk attributable to declining skill 

and the proportion associated with increased physical frailty.  

 

 

 

6. Conclusions 

 

Modeling the number of slight, serious and fatal injury victims in a vehicle involved in a 

crash should include the dependence between all vehicles involved in the same crash. The 

inclusion of random effects in the regression to capture this phenomenon significatively 

improves the quality of fit. The gender of the driver, the type of road, the type of vehicle 

involved in the crash, the visibility and road conditions, and the type of crash are factors 

with explanatory capacity for the expected number of occupants injured in each vehicle 

according to BI severity level. The age of the driver and the age of the vehicle have a 

nonlinear influence on severity. The expected number of victims increases for both young 

and old drivers. The age of the vehicle increases the expected number of injured occupants 

with the highest impact being for cars of 18 years or older. Accurate modeling of the 

number of injured occupants by severity level that takes into account the dependence 

between vehicles involved in the same crash is relevant for traffic authorities in every 

country as well as for motor insurance companies who cover damages for victims 

involved in motor crashes. The premium design could be improved if the expected 

number of victims by severity level is included in the estimation of the crash severity.     
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