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Abstract
Aims: Pinus uncinata is the major treeline-forming species in the Pyrenees. Yet, the 
role of its reproduction and dispersal as drivers of treeline dynamics remains un-
known. Here we quantify seed production, dispersal and germination changes along 
the elevation gradient to assess whether they may constrain the foreseen treeline 
advance in the Pyrenees.
Location: Central Pyrenees, Catalonia, NE Spain.
Methods: We established four plots along an elevation gradient from the closed sub-
alpine forest to the krummholz zone at five study sites. In each plot, we collected 
cones from five to six trees, measured their length, and triggered their opening in 
the laboratory to count the number of empty seeds and the number and weight of 
full seeds. We used the collected seeds in a germination experiment under controlled 
conditions in growth chambers. Additionally, we installed seed traps along the for-
est–alpine grassland transition to measure seed rain for three consecutive years in 
three of the study sites.
Results: The number of full seeds per cone decreased along the elevation gradient 
and was correlated with cone length. However, the proportion of full seeds per cone 
and their weight did not differ between elevation positions. Seed rain decreased 
drastically with elevation and no seeds arrived into the alpine grassland traps con-
sistently across study years. Although germination success did not significantly differ 
between elevation provenances (i.e., elevation position of origin), we found signifi-
cant differences in germination dynamics between study sites and between eleva-
tion provenances within sites.
Conclusions: Our results indicate that whereas the viability of Pinus uncinata seeds is 
not limited by elevation, seed production and dispersal are constraining the ongoing 
rates of treeline advance in the Pyrenees.
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1  | INTRODUC TION

Alpine treelines represent the upper altitudinal limit of the forest in 
mountain regions, a boundary that is globally constrained by tem-
perature (Körner & Paulsen, 2004). The thermal limitation for forest 
growth above the treeline explains that the position, dynamics, and 
structural changes in this ecotone mirror in many cases the effects 
of climate warming (e.g., Cazzolla Gatti et al., 2019; Harsch, Hulme, 
McGlone, & Duncan, 2009; Holtmeier & Broll, 2005). However, 
not only climate but also geomorphological and topographical 
constraints, as well as anthropogenic activities, determine the cur-
rent location and physiognomy of treelines across the globe (e.g., 
Ameztegui, Coll, Brotons, & Ninot, 2016; Holtmeier & Broll, 2005; 
Leonelli, Pelfini, Cella, & Caravaglia, 2011; Treml, Šenfeldr, Chuman, 
Ponocná, & Demková, 2016). In fact, many reported treeline ad-
vancements in elevation may be explained by the decrease and even 
cessation of anthropogenic activities in the last century. In such 
cases, treelines are not expanding beyond their historical thermal 
limits, but recovering their past altitudinal distribution (Ameztegui 
et al., 2016; Cudlín et al., 2017). Regardless, the treeline advance, 
either through range expansion or through re-colonisation, may lead 
to changes in extant plant diversity and ecosystem function through 
displacement of alpine species and shifts in carbon and nutrient dy-
namics (Greenwood & Jump, 2014).

Production of viable seeds is the first step for a seed-based re-
generation process at any treeline (Holtmeier & Broll, 2005). The 
next essential step is the dispersion of the seeds, which represents 
the first spatial demographic process that will determine the posi-
tion of recruit establishment and potential range shifts (Nathan & 
Muller-Landau, 2000). Ultimately, any change in treeline position is 
thus related to successful seed production, viability, dispersal and 
germination, as well as seedling survival, at higher elevations (or 
northern latitudes). Some studies have reported a decrease in cone 
and seed production or seed germination with elevation and latitude 
(Brown et al., 2019; Juntunen & Neuvonen, 2006; Kruse et al., 2019; 
Šenfeldr & Maděra, 2011; Sirois, 2000), pointing to potential repro-
ductive limitations at the treeline. These reproductive constraints 
seem exclusively related to changes in population density in some 
cases (Juntunen & Neuvonen, 2006), whereas in others they seem 
related to changes in the reproductive capacity of individual trees 
(Sirois, 2000), or a combination of both factors (Šenfeldr & Maděra, 
2011). However, the reproductive ecology of treelines is still largely 
unknown (Körner, 2012), especially in relation to the dynamics of 
alpine treeline ecotones.

In the Pyrenees, decades of study have led to a broad compre-
hension of ongoing and recent past treeline dynamics (Ameztegui 
et al., 2016; Angulo, Ninot, Peñuelas, Cornelissen, & Grau, 2019; 
Batllori, Camarero, & Gutiérrez, 2010; Batllori, Camarero, Ninot, 
& Gutiérrez, 2009; Batllori & Gutiérrez, 2008; Camarero, Gazol, 
Galván, Sangüesa-Barreda, & Gutiérrez, 2015; Camarero & Gutiérrez, 
2004; Grau, Ninot, Cornelissen, & Callaghan, 2013). The influence 
of climatic and anthropogenic factors on tree growth, recruitment 
dynamics, and forest expansion has been thoroughly examined. In 

contrast, there is a lack of studies tackling whether and how the re-
productive ecology of Pinus mugo Turra subsp. uncinata (Ramond ex 
DC.) Domin (hereafter Pinus uncinata), the major treeline-forming 
species in the Pyrenees, may modulate the described patterns and 
responses to a changing environment (but see Vitali et al., 2019).

In this study, we aimed to address this gap by focusing on 
seed production, viability, dispersal, and germination dynamics of 
Pinus  uncinata. Our main objective was to analyse whether seed 
production and dispersal can constrain the elevation advancement 
of the treeline in the Pyrenees, and to determine variations in seed 
germination dynamics between different provenances (i.e., elevation 
positions) along the elevation gradient under controlled environ-
mental conditions. We hypothesised that: (a) viable seed production 
would decrease with elevation; (b) that seed rain and seed arrival 
would decrease along the elevation gradient; and (c) that seed germi-
nation rates and dynamics would mirror the provenance in the eleva-
tion gradient, with seeds from lower elevations (where temperatures 
are higher and growing seasons longer) showing higher germination 
success and a more extended germination period than seeds from 
trees growing at higher elevations.

2  | METHODS

2.1 | Study sites and species

Seed production was assessed at five sites in two protected areas 
of the Central Pyrenees, Catalonia, Spain. The study sites Gelada, 
Dellui, Son and Eixol are located in the Aigüestortes i Estany de 
Sant Maurici National Park, and the study site Capifonts is located 
in the Alt Pirineu Natural Park (Figure 1, Table 1). A sixth study 
site, Amitges, was used for the seed rain experiment together with 
Gelada and Dellui (Figure 1, Appendix S1). All the sites occupy NW–
NE facing slopes. The anthropogenic alteration of forests in these 
areas has been minimal since the mid-twentieth century due to 
their protection status, as well as an ongoing reduction in livestock 
numbers and the abandonment of forest clearcutting (Domínguez 
Martín, 2001; Gracia, Meghelli, Comas, & Retana, 2011). Forest 
expansion has been noticeable from 1956 to the present, although 
this phenomenon has produced little displacement of the treeline in 
such near-natural treeline locations (Batllori & Gutiérrez, 2008). The 
mean annual precipitation in climate stations located near the study 
sites for the period 2008–2014 is 1,340 mm, with a mean tempera-
ture of 9.8°C for the growing season months (JJA) and −3.6°C for the 
winter months (DJF) (Servei Català de Meteorologia). For detailed 
climate data, see Appendix S2.

The study species is Pinus uncinata, the dominant tree species in 
most of the treeline ecotones in the Pyrenees (Ninot et al., 2008). It 
forms dense subalpine forests between 1,700 m and 2,200 m a.s.l. 
(above sea level), with a potential treeline position that may reach 
2,200–2,450 m a.s.l. (Carreras et al., 1996; Ninot et al., 2007). It is a 
shade-intolerant conifer with a pre-reproductive period of >18 years 
(Tapias, Climent, Pardos, & Gil, 2004) and masting events every 
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3–4 years (Ceballos & Ruiz de la Torre, 1979). Flowering occurs be-
tween late spring and the beginning of summer; and seeds reach ma-
turity in late summer of the following year and are dispersed in spring 
on the third year (Notivol, Oliet, & Serrada, 2012). The winged seeds 
are wind-dispersed, most frequently over short distances (4–6  m) 
and less frequently over medium distances (up to 27 m) (Camarero, 
Gutiérrez, Fortin, & Ribbens, 2005). The favourable germination pe-
riod runs from late spring (after snowmelt) until the end of summer. 
It occurs massively at temperatures exceeding 10°C, and it is not 
significantly affected by variations in the range 15–25°C (Escudero, 
Pérez-García, & Luzuriaga, 2002).

2.2 | Sampling and data collection

2.2.1 | Seed production along the elevation gradient

We carried out the sampling from mid-October to mid-November 
2010. At each of the five study sites, we established a transect 
along the elevation gradient where we set four plots corresponding 
to different elevation positions and plant communities: dense for-
est at mid-elevation within the subalpine belt (DFM), dense forest 
at maximum elevation within the subalpine belt (DFH), scattered 
trees (ST), and krummholz zone (KZ) (Figure 1, Table 1). The three 
highest sampling plots were close to each other and encompass the 
treeline ecotone. At each plot we sampled 5–6 mature trees and col-
lected 5–13 cones per tree. In total, we collected 635 cones across 
plots and study sites. The minimum distance between sampled 
trees was 50 m, and they were selected to include the local forest 

heterogeneity (e.g., tree size). To include variability linked to position 
within the canopy, cones were collected at different orientations 
across the canopy.

We applied a cold treatment to the collected cones. We placed 
them in growth chambers for one week at 4°C, one month at −18°C, 
and 2.5 months at temperatures ranging between −10°C and 9°C, 
to simulate natural conditions. We triggered cone opening with a 
moderate heat treatment that consisted of an initial temperature 
of 30°C that was gradually increased over 8 hr up to 55°C, which 
was maintained for 10 min. This temperature does not affect the vi-
ability of Pinus uncinata seeds (Escudero, Sanz, Pita, & Pérez-García, 
1999). We mechanically opened those cones that were not com-
pletely open after the heat treatment to extract all their seeds. For 
each cone, we measured the maximum length (from base to apex) 
and assessed the number of empty seeds (without embryo) and the 
number and weight of fully developed seeds (hereafter full seeds). 
Additional information on the assessment of cone production at two 
of the study sites can be found in Appendix S3.

2.2.2 | Germination experiment

We carried out a germination experiment to test the potential vi-
ability and germination dynamics of all full seeds under comparable 
environmental conditions. We used a growth chamber under con-
trolled conditions at the facilities of Serveis de Camps Experimentals 
of the University of Barcelona. We set long-day conditions defined 
by 16  hr light and 8  hr darkness at 20°C and 15°C, respectively. 
These conditions favour germination of Pinus  uncinata (Escudero 

F I G U R E  1   (Left) Location of the study sites: 1, Gelada; 2, Dellui; 3, Son; 4, Eixol; 5, Capifonts; 6, Amitges. (Right) Distribution of the 
sampling plots along the elevation gradient near the study site Capifonts: DFM (dense forest at mid-elevation); DFH (dense forest at high 
elevation); ST = scattered trees; KZ = krummholz [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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et al., 2002) and are close to those found in the subalpine belt in 
the most favourable period for germination in early summer (Ninot 
et al., 2008). We sowed all full seeds from the same cone in one pot 
(7.5 cm × 7.5 cm × 8 cm), or in two pots when cones had more than 50 
full seeds, always at 1-cm depth. We used a sterile substrate of 1:1 
perlite and vermiculite, watered weekly to saturation with deionised 
water and let the pots drain freely. We recorded seedling emergence 
and removed seedlings twice a week to avoid possible competition 
or inhibition. The germination trial lasted 121 days.

2.2.3 | Seed rain and seed dispersal along the 
altitudinal gradient

To explore in more detail seed production and dispersal of Pinus un-
cinata, we performed a seed rain experiment at three of the study 
sites, Gelada, Dellui and Amitges (Figure 1, Appendix S1). To account 
for the interannual variability in seed production, we carried out this 
experiment during three consecutive years. At each site we estab-
lished one transect with four plots (elevation positions) along the 
elevation gradient. Plots corresponded to the subalpine dense for-
est (SDF), subalpine fragmented forest (SFF), krummholz zone (KZ), 
and alpine grassland (AG). Note that in Gelada and Dellui, seed rain 
plots do not correspond to the plots used in the seed production 
experiment (Appendix S1). In Amitges, due to its characteristics, the 
KZ and AG plots could not be established. Between 28 September 
and 5 October 2011 we installed six seed traps per plot at each site. 
Seed traps were 1 m2 and were made of artificial tuft grass. In each 
plot, the six traps were installed forming a circumference of 7–8 m 
in diameter. From 2012 to 2014 we collected all seeds in each trap 
during summer and counted them at the laboratory. Since dispersal 
distances of Pinus uncinata are frequently within 10 m from the pa-
rental tree (Camarero et al., 2005; Vitali et al., 2019), we established 
a circular area adding a supplementary radius of 10 m from where 
the circumference of seed traps was located. Within this circular 
area (seed trap area + external circumference), we counted all the 
trees present, we measured their diameter at breast height (DBH), 
and classified them as reproductive trees (DBH > 5 cm), potentially 
reproductive trees (non-reproducing sexually mature trees with 
DBH > 5 cm), non-reproductive trees (DBH < 5 cm), and dead trees. 
We used these data to calculate reproductive tree density and the 
mean DBH of reproductive trees in the area covered by the seed 
traps at each study site and elevation position (see Appendix S4).

2.3 | Statistical analyses

We used linear and generalised linear mixed-effects models to ana-
lyse our data. For all the study variables, we performed model selec-
tion following the Akaike information criterion (AIC) to select the 
most suitable model (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). 
When two models did not differ in more than two AIC units, we ap-
plied a model average function (Bartoń, 2019).TA
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We used generalised linear mixed-effects models to assess the 
effects of the elevation gradient on the number of seeds and number 
of full seeds per cone (fitted with a Poisson distribution) and on the 
proportion of full seeds per cone (fitted with a binomial distribution). 
We used linear mixed-effects models fitted with the restricted max-
imum-likelihood method (REML) to test the effects of the elevation 
gradient on cone length and weight of full seeds. For all these vari-
ables, we used the elevation position as a fixed-effect factor and 
site and tree identity as random factors as a starting point for model 
selection. Additionally, we explored the relationship between cone 
length and number of full seeds per cone with Pearson correlation 
tests and exponential regression.

To analyse differences in the germination success (i.e., seed via-
bility) at the end of the germination experiment (seeds germinated 
out of seeds sown), we used generalised linear mixed-effects models 
fitted with a binomial distribution. We included elevation position 
and site as fixed effects and tree identity as a random factor prior 
to model selection.

For the analysis of germination dynamics, we used meta-analytic 
random-effects models, which allow incorporating random factors 
in log-logistic models of germination data (Keshtkar, Mathiassen, 
Beffa, & Kudsk, 2017; Ritz, Pipper, & Streibig, 2013). For this, we 
carried a two-step approach. First, we fitted a three-parameter 
log-logistic model to the cumulative germination data according to 
Ritz et al. (2013):

where F(t) is the cumulative seed germination at time t, d is the upper 
limit parameter denoting the proportion of seeds that germinated 
during the experiment out of the total number of seeds sown, t50 is the 
time when 50% of the seeds that germinated during the experiment (d) 
have germinated, and b is the slope of F at time t = t50.

In the second step, we separately fitted the meta-analytic ran-
dom-effects model to our parameters of interest. Therefore, we an-
alysed the estimates of t50, b and d obtained with the event-time 
model (first step) with a linear mixed-effect model where tree was 
defined as a random factor and elevation position, site and the in-
teraction elevation position × site were defined as fixed effects. Site 
was included here as a fixed effect to specifically investigate poten-
tial effects of the different provenances (i.e., elevation positions) of 
the seeds on the dynamics of germination. The estimated standard 
errors for the parameters of interest were also included in the mod-
els. We made pairwise comparisons to find significant differences 
between the factor levels.

We used a zero-inflated negative binomial (ZINB) model to as-
sess the effects of the elevation gradient on seed rain per area. 
We used these models to account for data overdispersion and zero 
inflation (their AIC values were lower than in generalised linear 
models fitted with Poisson and negative binomial distributions). 
We used site, elevation position, study year and the interactions 
position × year and site × year as fixed-effect factors in the count 

part of the model. In the binomial part, we used the three factors 
without interactions following the model selection procedure. 
We excluded the alpine grassland plots from all the analyses on 
seed rain because no seeds were found in these plots at any of the 
study sites and years.

We tested for normality and homoscedasticity of the residuals 
and applied data (sqrt- and log-) transformations when necessary to 
reach these assumptions in the linear regression models. We also 
used varIdent structure when the homogeneity of residuals was not 
reached (Zuur et al., 2009). When fixed terms were selected in the 
final model, we used post-hoc Tukey HSD tests to identify significant 
differences between fixed term levels.

For all statistical analyses we used r software v. 3.6 (R Core 
Team, 2018). We used the lme4 package (Bates, Maechler, Bolker, 
& Walker, 2015) and the nlme package (Pinheiro, Bates, DebRoy, & 
Sarkar, 2019) for linear mixed-effects models, the MuMIn package 
(Bartoń, 2019) for model average, and the multcomp package for post-
hoc tests (Hothorn, Bretz, & Westfall, 2008). For the meta-analytic 
random-effects models on germination data, we used the drc pack-
age (event-time model; Ritz, Baty, Streibig, & Gerhard, 2015) and 
the metafor package (Viechtbauer, 2010). Finally, we used the pack-
age ggplot2 (Wickham, 2016) for graphical display, and the createD-
HARMa function in the DHARMa package (Hartig, 2019) to plot the 
ZINB residuals. A summary of all the final models used for each of 
the study variables is shown in Table 2.

3  | RESULTS

3.1 | Seed production

The number of total seeds per cone decreased 65% along the el-
evation gradient from DFM to KZ. Values were significantly lower 
at KZ (16.4  ±  0.9) than in the other three elevation positions 
(DFM = 46.8 ± 1.8, DFH = 36.6 ± 1.7, ST = 33.3 ± 1.7, Tukey post-
hoc test p < 0.05). The number of full seeds per cone also decreased 
along the gradient, from 37.5 ± 1.8 full seeds per cone at DFM to 
14.0 ± 0.8 at KZ (Table 3, Figure 2a), which represents a 63% reduc-
tion. Post-hoc tests showed significant differences between KZ and 
the forest sites (DFM and DFH, p < 0.05) but not between KZ and 
ST (p = 0.171). The elevation position showed no significant effect 
on the proportion of full seeds to empty seeds per cone and on the 
weight of the full seeds (mean across sites and elevation positions of 
9.15 ± 0.2 mg/seed) (Table 3).

The elevation gradient also had an effect on cone length, which 
decreased with increasing elevation (Table 3). Post-hoc tests 
showed that at the two higher elevations, KZ (3.92  ±  0.05  cm) 
and ST (4.35 ± 0.06 cm), cone length was significantly lower than 
in the two forest plots, and within these two, the lower sub-
alpine forest DFM (4.79  ±  0.05  cm) showed longer cones than 
the higher subalpine forest DFH (4.43  ±  0.06  cm). Correlation 
analyses showed a significant exponential correlation between 
cone length and total full seeds per cone (no. viable seeds = exp 

(1)F(t)=
d

1+exp
[

b
{

log (t)− log
(

t50

)}] =
d

1+
(

t

t50

)b
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(0.67  +  0.57  ×  cone length), p  <  0.001 for both parameters; 
Figure 2b), and also with the total number of seeds per cone (no. 
seeds = exp (1.06 + 0.54 × cone length), p < 0.001 for both param-
eters). Within a given position along the elevation gradient, how-
ever, the exponential relationship between cone length and seed 
production was only maintained at DFH, whereas it was linear at 
the other elevation positions (Appendix S5).

3.2 | Seed germination

A mean of 65% of the sown seeds across the four assessed eleva-
tion positions germinated after 121 days (Figure 3, Appendix S6). 
For the analysis of the germination success (proportion of germi-
nated seeds at the end of the experiment) we selected two gener-
alised linear mixed-effects models with a difference in AIC lower 
than two units. Elevation, study site, and their interaction were 
included in one model whereas only site was included in the other. 
Model average only showed a significant effect of study site on 
the germination success (Table 4, Appendix S6), with the largest 
differences between Dellui and Eixol (post-hoc Tukey test run for 
each model, p < 0.01).

The meta-analytic random-effects models did not show consistent 
patterns in the germination dynamics between elevation plots across 
study sites for any of the estimated parameters (Figure 3). However, 
when looking at the study sites independently we found significant 
differences between elevation positions (Appendix S7). We focus here 
on t50 to illustrate the time (number of days) when 50% of the seeds 
at a given elevation had germinated; for results on parameters b and 
d see Appendix S8. The largest differences in t50 between elevation 

plots occurred in Gelada, where the forest at high altitude (DFH) 
had a lower t50 than the lower forests (DFM; estimated difference of 
29.3 ± 11.7 days, p = 0.012) and in Son, where the krummholz zone (KZ) 
had a lower t50 than DFH (estimated difference of 26.6 ± 11.9 days, 
p = 0.025). At the study site Capifonts, the scattered trees (ST) had a 
higher t50 than (KZ; estimated difference of 25.3 ± 9.7 days, p = 0.009) 
and higher than DFM (estimated difference 25.2  ±  11.6  days, 
p = 0.030). Finally, Dellui KZ had a lower t50 than DFM (estimated dif-
ference 21.9 ± 11.2 days, p = 0.05, respectively).

3.3 | Seed rain and dispersal

Seed rain significantly decreased along the elevation gradient. The 
number of seeds recovered at each elevation position was signifi-
cantly lower than at the elevation directly below within the eleva-
tion gradient, and it was zero at alpine grasslands (Table 5, Figure 4, 
p < 0.001 after Tukey post-hoc tests between each elevation plot). 
The study site and the study year also had a significant influence on 
seed rain values. The number of seeds recovered in the seed traps 
was significantly larger at Amitges (44.30  ±  8.59) than at Gelada 
(15.06 ± 4.05, p < 0.001 after Tukey post-hoc test) and at Gelada than 
at Dellui (22.15 ± 4.30, p = 0.035 after Tukey post-hoc test) across all 
years and elevation plots. Seed rain was significantly larger in 2012 
(50.79 ± 8.87) than in the other two years (in 2013 15.47 ± 2.81, and 
in 2014 15.38 ± 3.88, p < 0.001 after Tukey post-hoc test in both 
cases) across sites and elevation positions. In addition, we found sig-
nificant interactions between elevation and year and between site 
and year (Table 5), but the patterns showed the same direction in all 
cases (Appendix S9).

TA B L E  2   Explanatory models selected following the AIC criteria for each of the study variables

Variable Fixed factors Random factors Model and error distribution Explanatory power

No. seeds per cone Gradient Gradient|Site/Tree glmm Poisson R2m: 0.34, R2c: 0.97

No. full seeds per cone Gradient Gradient|Site/Tree glmm Poisson R2m: 0.27, R2c: 0.96

Proportion of full 
seeds per cone

– Site/Tree glmm Binomial R2m: –, R2c: 0.19

Weight of full seeds – Tree lme Gaussian R2m: –, R2c: 0.53

Cone length Gradient Site/Tree lme Gaussian R2m: 0.14, R2c: 0.62

Total germination 
(model average)

Site Tree glmm Binomial R2m: 0.02, R2c: 0.14

  Site × Gradient Tree glmm Binomial R2m: 0.05, R2c: 0.14

Germination dynamics 
(t50)

Gradient × Site Tree Meta-Analytic Random Effects Pseudo-R2: 0.30

Seed rain per area (Site + Gradient) × Year – zinb Negative binomial 
(zero-inflated)

Pseudo-R2 
(Nagelkerke) 0.75

Note: When the function model average was applied, the two models are shown.
R2m and R2c for lme and glmm models calculated with the r.squaredGLMM function (MuMIn package in R) (for binomial models, the theoretical 
values are shown). Pseudo-R2 for the meta-analytic random-effects model calculated as the proportional reduction in the variance components 
[(variance of the model fitted without coefficients − variance of the model fitted with coefficients)/ variance of the model fitted without 
coefficients]. Pseudo-R2 for zinb model calculated with the function nagelkerke (rcompanion package): [(null deviance − residual deviance)/null 
deviance].
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4  | DISCUSSION

Our study investigated the reproductive and dispersal patterns of 
the treeline-forming species Pinus uncinata along the treeline eco-
tone in the Pyrenees. Our findings on seed production, viability, and 
dispersal provide evidence of reproduction as a limiting factor for 
treeline advance.

4.1 | Seed production and viability at the treeline

Our results show a clear decrease in seed production of Pinus unci-
nata along the elevation gradient from the dense subalpine forest 
to the krummholz zone. Our analysis suggests that such decrease is 
directly related to the size of the cones.

Heat sum fluctuations, thermal limitations, and shorter grow-
ing seasons at high elevations may affect both cone production 
and development, and may have negative effects on fertilisation 
and embryo growth processes (Almqvist, Bergsten, Bondesson, & 
Eriksson, 1998; Sirois, 2000). Climate may act in synergy with other 
factors such as forest structure, resulting in lower pollen availabil-
ity and an increased self-fertilisation (selfing) with the decrease in 

forest density along the elevation gradient (Iwasaki et al., 2013; 
Smith, Hamrick, & Kramer, 1988). We did not find a reduction in 
the proportion of full seeds with elevation, which would be the first 
negative outcome of selfing in other Pinus species (Iwasaki et al., 
2013). Contrarily, our results suggest that seed development on the 
Pinus uncinata alpine treeline could be more influenced by low pol-
len supply at higher elevations (Iwaizumi & Takahashi, 2012). The 
decrease in the production of full seeds found along the gradient in 
our study sites is not accompanied by a reduction in the number of 
cones produced per tree (see Appendix S3), nor in the weight of the 
seeds or in their viability. This suggests that the effect of harsher 
conditions at the upper treeline on reproductive output may con-
strain pollen production, pollen viability and pollination, as well as 
investments in cone growth.

Previous studies have reported the influences of climate and for-
est structure on the reproduction of other treeline species. Sirois 
(2000) found a significant decrease in the number of seeds and the 
percentage of filled seeds of black spruce (Picea mariana) in a boreal 
forest treeline transect in northern Québec, Canada. This author did 
not find differences in cone production along the transect (similar to 
our results), and suggested that the decrease in seed production and 
viability was related to a low viability of the pollen at the treeline. 

TA B L E  3   Results of the statistical models for the parameters related to seed production

Parameter Fixed effects Estimate SE z/t-value p Random effects Variance St. Dev.

No. seeds/cone Intercept 3.774 0.161 23.441 <0.001 Tree:Site Intercept 0.080 0.284

GradientDFH −0.266 0.126 −2.103 0.035   GradientDFH 0.115 0.339

GradientST −0.428 0.364 −1.175 0.240   GradientST 0.038 0.195

GradientKZ −1.159 0.212 −5.474 <0.001   GradientKZ 0.347 0.589

          Site Intercept 0.114 0.338

            GradientDFH 0.005 0.072

            GradientST 0.59 0.768

            GradientKZ 0.138 0.372

No. full seeds/cone Intercept 3.518 0.201 17.48 <0.001 Tree:Site Intercept 0.105 0.324

GradientDFH −0.269 0.155 −1.735 0.083   GradientDFH 0.320 0.566

GradientST −0.453 0.413 −1.096 0.273   GradientST 0.049 0.222

GradientKZ −1.083 0.251 −4.311 <0.001   GradientKZ 0.545 0.738

          Site Intercept 0.183 0.427

            GradientDFH 0.033 0.183

            GradientST 0.771 0.878

            GradientKZ 0.219 0.468

Proportion of full seeds/cone Intercept 1.652 0.157 10.530 <0.001 Tree:Site Intercept 0.692 0.832

          Site Intercept 0.085 0.292

Weight full seeds Intercept 9.149 0.190 48.120 <0.001 Tree Intercept 3.206 1.791

Cone length Intercept 4.810 0.130 37.095 <0.001 Tree:Site Intercept 0.299 0.547

GradientDFH −0.382 0.157 −2.429 0.017 Site Intercept 0.022 0.150

GradientST −0.433 0.173 −2.502 0.014        

GradientKZ −0.838 0.158 −5.304 <0.001        

Note: The estimated coefficient and standard error, z- or t-value, and p-value are shown for the fixed terms, including the interaction between two 
fixed terms when selected in the final model. The estimated variance and standard deviation are shown for the random effects in the mixed-effects 
models.
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Šenfeldr and Maděra (2011) also found a clear decrease in the repro-
ductive output of Norway spruce (Picea abies) in a former pastoral 
timberline ecotone in the Czech Republic, namely fewer seeds per 
cone, fewer cones per ha, and fewer cones per fertile specimen at 
the upper part of the ecotone than at the lower part. Another study 
in northern Finland found slight differences in seed anatomical ma-
turity between timberline and treeline populations for Scots pine 
(Pinus sylvestris) but no differences in the number of cones per tree 
(Juntunen & Neuvonen, 2006). Overall, it seems a common pattern 
to find a decrease in reproductive output related to seed set of the 
treeline-forming species across elevation or latitudinal gradients, 
whereas patterns related to cone production and the proportion of 
viable seeds produced seem more variable among species.

Our findings strongly suggest that the production of viable 
seeds is the first limiting factor for forest expansion at the Pyrenean 
treeline. Even under the ongoing climate warming (IPCC, 2018), 
and unlike the situation in other treeline-forming species (Kullman, 
2002), this suggests that the reproduction of Pinus uncinata at the 
treeline is still strongly limited by the present climate conditions. We 
acknowledge that fluctuations in the reproductive output due to in-
ter-annual climate variations may occur (see section 4.2, Seed rain 
and dispersal, below), but we believe that the reported patterns and 
the relationship between the parameters studied (e.g., proportion 

of full seeds) would not be altered by including additional sampling 
years. The projected temperature increase could enhance reproduc-
tion at high elevations by the alleviation of low temperatures in such 
temperature-limited ecosystems (Körner, 2012), but forecasted drier 
conditions in the Pyrenees (López-Moreno & Beniston, 2008) could 
hamper the effects of increased temperatures.

Contrary to our expectations, we did not find a significant ef-
fect of elevation provenance on seed viability (i.e., germination 
success) and germination dynamics across sites, although the in-
fluence of elevation was marginally observed when assessing the 
sites separately. The lack of a consistent effect on the germination 
success by the elevation provenance reported here contrasts with 
other studies showing that germination is an adaptive trait that 
can vary largely with elevation (Castanha, Torn, Germino, Weibel, 
& Kueppers, 2013; Rehfeldt, 1989). Sirois (2000) showed that, 
30  days after sowing, the percentage of total germination from 
seeds originating in trees closer to the treeline was lower than in 
those from the dense boreal forest. Results of Šenfeldr and Maděra 
(2011) reflected a similar pattern after 21  days, but they did not 
find significant differences. The different study species and the 
longer length of our germination trial (121 days) make it difficult to 
compare between these studies and our experiment. We did find, 
however, large differences in the germination success of seeds from 

F I G U R E  2   (a) Production of full seeds in Pinus uncinata cones along the elevation gradient. Capital letters indicate significant differences 
between elevation positions. DFM = dense forest at mid-elevation; DFH = dense forest at maximum elevation; ST = scattered trees; 
KZ = krummholz. (b) Relationship between number of full seeds per cone and cone length. Dots correspond to individual values, the green 
line depicts an exponential regression fit, and the shaded area indicates the 95% confidence interval (residual standard error = 16.51). See 
correlation plots between cone length and number of full seeds for each elevation position separately in Appendix S5 [Colour figure can be 
viewed at wileyonlinelibrary.com]
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different study sites. This suggests that there are stronger genetic 
barriers between sites than within sites, which may be explained by 
the gene flow along the elevation gradient being less constrained 
by altitudinal winds than by topographic barriers between neigh-
bouring valleys. Indeed, topography can be a considerable barrier 
for gene flow (Ohsawa & Ide, 2008) and populations from neigh-
bouring valleys may show local adaptations that differentiate them 
from each other (Di Pierro et al., 2017). It is thus important to con-
sider several study areas when trying to find general patterns in 
seed-based regeneration at the treeline. Further analyses should 
determine the extent of local adaptation within sites vs. the extent 
of seed germination plasticity in Pinus uncinata.

4.2 | Seed rain and dispersal

The seed rain experiment showed large differences between 
study sites and study years, emphasising the importance of local 
and inter-annual conditions for the reproduction dynamics of 
Pinus uncinata. However, despite the seed rain being much larger 

in 2012 than in the following years (2013 and 2014), we found a 
clear decrease in the number of seeds recovered in the seed traps 
along the elevation gradient that was constant through time. No 
seeds were found in the alpine grassland beyond the treeline, in-
dicating that seed arrival, which is the first step for an eventual 
forest colonisation of alpine grasslands, is a limiting factor for 
treeline advance. Although the area covered by our seed traps is 
relatively small for concluding that no seeds arrive at alpine grass-
lands, our findings strongly suggest that important limitations for 
seed arrival beyond the krummholz zone exist. We acknowledge 
the possibility that seed predation influences our results, since it 
has been found to largely affect regeneration beyond the upper 
elevation limit in some species (Brown & Vellend, 2014; Castro, 
1999). However, results from an extra plot for seed traps in a 
grassland area below the krummholz zone at Amitges showed the 
recovery of seeds in the traps (0–4 seeds in most of the traps in 
2012–2014, and up to 20 seeds in one trap in 2012). This validates 
the seed trap methodology in grassland areas, and lines up with 
our reasoning that we did not capture seeds in the alpine grass-
lands because their arrival there is much more limited as a result 

F I G U R E  3   Percentage of germinated seeds (germinated seeds/sown seeds × 100) through time. Lines show the mean across trees 
and sites for each elevation position. Dots correspond to each individual tree (average of all cones per tree). For more detailed data on 
germination dynamics at each study site and elevation position see Appendix S7. DFM = dense forest at mid-elevation; DFH = dense forest 
at high elevation, ST = scattered trees, KZ = krummholz [Colour figure can be viewed at wileyonlinelibrary.com]
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of dispersal constraints for Pinus uncinata seed (Camarero et al., 
2005; Vitali et al., 2019).

The decrease in seed recovery with elevation was not signifi-
cantly correlated with reproductive tree density, although the 
number of reproductive trees per area also decreased along the 
elevation gradient (Appendix S4). We believe these results need 
to be taken cautiously because there was a large variation in tree 
density among sites in the two subalpine forest positions (SFF and 
SDF), and the forest structure of the study sites was complex. There 
is, however, a clearly lower density of reproductive trees in the 
krummholz zone, which suggests that the lower number of seeds 
per area recovered there may be driven both by a lower reproduc-
tive capacity of individual trees and a decrease in tree density, as 
reported in other studies (Juntunen & Neuvonen, 2006; Šenfeldr 
& Maděra, 2011). Contrarily, the decrease in seed recovery from 
the subalpine dense forest (SDD) to the subalpine fragmented for-
est (SFF) may be mostly driven by a decrease in the reproductive 
capacity of individual trees, as shown by Sirois (2000). We found a 
positive correlation between the mean DBH of reproductive trees 
and the number of seeds recovered per area (Appendix S4), sim-
ilarly to results found by Vitali, Camarero, Garbarino, Piermattei, 
and Urbinati (2017) on cone production. This reinforces the notion 
that the performance and characteristics of individual trees play 
an important role in explaining the reproductive output at treeline 
regardless of the forest structure.

We suggest that seed dispersal is of utmost importance in lim-
iting treeline advance in the Pyrenees. Forest movement upslope 
will mainly depend on the establishment of seedlings germinating 
from nearby, scattered trees located at high elevation and rarely 
from long-distance dispersed seeds (Camarero et al., 2005; Kruse 
et al., 2019; Nathan, 2006). This may explain why, at the regional 
scale, ecotone densification (i.e., between the forest and the tree 
limit) is a more common response to global change in the Pyrenean 
treelines (Batllori et al., 2010; Batllori & Gutiérrez, 2008) than 
treeline advance. Johnson, Gaddis, Cairns, and Krutovsky (2017) 
argued that seed dispersal was extensive enough in mountain hem-
lock (Tsuga mertensiana) in Alaska to ensure the advancement to 
higher elevations. However, this species has an average dispersal 
distance of 73 m, and has a long-distance dispersal capacity of up to 
450 m, values much greater than those reported for Pinus uncinata 
(Camarero et al., 2005; Vitali et al., 2019). Therefore, the biology of 
the treeline-forming species may be of paramount importance in 
their reproductive dynamics, precluding any generalisation in terms 
of the reproduction-related limiting factors for treeline advance at 
the global scale. Additionally, seedling recruitment and the eventual 
treeline advance will not only depend on the arrival of the seeds, 
but also on the subsequent biotic and abiotic processes affecting 
seedling establishment and survival (Lett & Dorrepaal, 2018; Nathan 
& Muller-Landau, 2000), such as the environmental harshness and 
scarcity of favourable sites for establishment (Smith, Germino, 

Fixed effects Estimate SE Adjusted SE z-value Pr(>|z|)

(Intercept) 1.194 0.237 0.237 5.034 <0.001

GradientDFH −0.164 0.307 0.307 0.533 0.594

GradientDFM −0.319 0.393 0.394 0.811 0.417

GradientKZ 0.312 0.425 0.425 0.733 0.464

SiteCapifonts −0.746 0.348 0.348 2.143 0.032

SiteEixol −1.247 0.484 0.484 2.574 0.010

SiteGelada −0.078 0.343 0.343 0.228 0.820

SiteSon −0.710 0.356 0.356 1.993 0.046

GradientDFH:SiteCapifonts 0.400 0.515 0.516 0.775 0.439

GradientDFM:SiteCapifonts 0.089 0.407 0.408 0.217 0.828

GradientKZ:SiteCapifonts 0.080 0.444 0.445 0.181 0.857

GradientDFH:SiteEixol 0.232 0.480 0.481 0.483 0.629

GradientDFM:SiteEixol 0.787 0.782 0.783 1.006 0.315

GradientDFH:SiteGelada 0.117 0.408 0.409 0.287 0.774

GradientDFM:SiteGelada −0.051 0.408 0.409 0.125 0.901

GradientKZ:SiteGelada −0.734 0.749 0.749 0.980 0.327

GradientDFH:SiteSon 0.160 0.427 0.427 0.374 0.708

GradientDFM:SiteSon 0.756 0.748 0.749 1.009 0.313

GradientKZ:SiteSon −0.493 0.614 0.615 0.803 0.422

Note: The estimated coefficient and standard error, z-value, and p-value are shown for the fixed 
terms and the interaction between the two fixed terms. Full average means that model average is 
calculated by assuming that all the variables are included in both models, but the corresponding 
coefficient (and variance) is set to zero in the model where the variable was originally absent 
(Bartoń, 2019).

TA B L E  4   Results of the model average 
(full average) for germination success
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Hancock, & Johnson, 2003), seed and seedling predation (Cairns & 
Moen, 2004; Speed, Austrheim, Hester, & Mysterud, 2010), and fa-
cilitation and competition with coexisting mosses, shrubs and herba-
ceous species (Dullinger, Dirnböck, & Grabherr, 2004; Lett, Wardle, 
Nilsson, Teuber, & Dorrepaal, 2018; Liang et al., 2016). Former 

studies on Pinus uncinata at nearby study areas showed high seed-
ling mortality rates above the tree limit when seedlings were planted 
without the protection of krummholz or shrubs (Batllori et al., 2009), 
and clear positive effects of shrubs on seedlings through their pro-
tection against winter damage and browsing (Grau et al., 2013).

  Estimate SE z-value Pr(>|z|)

Count model coefficients

Intercept 5.055 0.213 23.768 <0.001

SiteDellui −0.328 0.256 −1.280 0.201

SiteGelada −1.967 0.315 −6.236 <0.001

GradientSFF −1.065 0.238 −4.485 <0.001

GradientKZ −3.413 0.452 −7.550 <0.001

Year2013 −1.303 0.316 −4.126 <0.001

Year2014 −2.329 0.366 −6.363 <0.001

SiteDellui:Year2013 0.024 0.387 0.061 0.951

SiteGelada:Year2013 1.537 0.463 3.320 <0.001

SiteDellui:Year2014 0.382 0.393 0.972 0.331

SiteGelada:Year2014 3.093 0.484 6.387 <0.001

GradientBSF:Year2013 −0.165 0.352 −0.467 0.640

GradientLA:Year2013 1.109 120.228 0.923 0.356

GradientBSF:Year2014 0.860 0.379 2.267 0.023

GradientLA:Year2014 −14.975 1,145.702 −0.013 0.990

Log(theta) 0.792 0.155 5.108 <0.001

Zero-inflation model coefficients

Intercept −23.768 3,665.699 −0.006 0.995

SiteDellui 1.327 1.428 0.929 0.353

SiteGelada 3.698 1.378 2.684 0.007

Year2013 1.444 0.813 1.776 0.076

Year2014 0.619 1.037 0.597 0.550

GradientSFF 19.696 3,665.698 0.005 0.996

GradientKZ 21.700 3,665.699 0.006 0.995

TA B L E  5   Results of the zero-inflated 
negative binomial model for seed rain

F I G U R E  4   Seeds collected in 
the seed traps along the elevation 
gradient (SDF = subalpine dense forest; 
SFF = subalpine fragmented forest; 
KZ = krummholz; AG = alpine grassland). 
Data are plotted across the three study 
sites (Dellui, Amitges and Gelada) and the 
three study years (2012–2014). Capital 
letters indicate significant differences 
between elevation positions. The asterisk 
for AG indicates that no seeds were found 
in any of the seed traps, and thus it was 
excluded from the analysis. See Appendix 
S9 for the number of seeds recovered in 
the seed traps at each elevation position 
per study year and site [Colour figure can 
be viewed at wileyonlinelibrary.com]
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5  | CONCLUSIONS

Our study provides the first evidence of reproductive output as a 
limiting factor for the advance of the treeline in the Pyrenees. The 
decrease in seed production along the elevation gradient together 
with a lack of seed arrival at higher elevations (i.e., alpine grass-
land) strongly suggests that seed production and dispersal are con-
straining the ongoing rates of treeline advance in the Pyrenees. By 
contrast, the lack of clear differences in germination success and 
germination dynamics from the subalpine forests to the krummholz 
zone seems to indicate a limited role of genetic constraints at the 
site level, although genetic variability may have a more important 
role in treeline dynamics at the regional scale (differential site dy-
namics). Overall, despite potential positive effects of warming on 
seed production, our findings suggest that the poor dispersal ca-
pacity of Pinus uncinata seeds to the alpine grasslands beyond the 
treeline will slow down the upslope advancement of the forest. This, 
together with other climate change-related events such as increased 
droughts, which may imply higher seedling mortality rates, may re-
duce the expected climatic sensitivity of treeline position to warm-
ing climates.
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