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Summary
Population aging in most industrialized societies has led to a dramatic increase in 
emergency medical demand among the elderly. In the context of private health care, 
an optimal allocation of the medical resources for seniors is commonly done by 
forecasting their life spans. Accounting for each subject’s particularities is therefore 
indispensable, so the available data must be processed at an individual level. We 
use a large and unique dataset of insured parties aged 65 and older to appropriately 
relate the emergency care usage with mortality risk. Longitudinal and time-to-event 
processes are jointly modeled, and their underlying relationship can therefore be 
assessed. Such an application, however, requires some special features to also be con-
sidered. First, longitudinal demand for emergency services exhibits a non-negative 
integer response with an excess of zeros due to the very nature of the data. These 
subject-specific responses are handled by a zero-inflated version of the hierarchical 
negative binomial model. Second, event times must account for the left truncation 
derived from the fact that policyholders must reach the age of 65 before they may 
begin to be observed. Consequently, a delayed entry bias arises for those individ-
uals entering the study after this age threshold. Third, and as the main challenge 
of our analysis, the association parameter between both processes is expected to be 
age-dependent, with an unspecified association structure. This is well-approximated 
through a flexible f unctional s pecification pr ovided by  pe nalized B- splines. The 
parameter estimation of the joint model is derived under a Bayesian scheme.
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1 INTRODUCTION

1.1 Medical motivation
Nearly all developed countries have experienced a gradual population aging process over the course of the past decades. This
has led to a substantial increase in elderly individuals’ demand for health care, along with the related financial challenges for
health care providers. A reasonable strategy for optimal medical resource allocation consists of monitoring each individual’s
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service demand from the age of 65 onwards, which in turn reinforces affiliates’ loyalty.1 For this purpose, we need precise
data on individuals’ health status according to their age, and we also need to assess the role of other demographic risk factors
affecting the propensity to seek medical attention, such as gender and socio-economic group. From a health care insurance
provider’s standpoint, monitoring the use of critical care services becomes crucial; this is the primary source of information on
the deterioration of senior affiliates’ health, and at the same time it represents the highest costs for the private sector. Since it
is common for health care policies to renew annually, the overall risk assessment period can be properly divided into intervals
of one calendar year. Then, individually analyzing critical care may provide a useful surrogate indicator or proxy variable
when evaluating the subject’s instantaneous mortality hazard. When considering these annually-recorded medical responses,
the variability in a subject’s health status within a specific calendar year is unknown. To deal with this missing information, the
time-dependent Cox model assumes that the level of critical care usage over the past calendar year is directly imputed to the
following one, along which it remains constant. However, such an unrealistic hypothesis usually leads to severely biased results.2
Instead, a more logical smooth evolution over time of the annual emergency demand may be considered by incorporating a
suitable model with time-independent random effects. In this manner, longitudinal and mortality hazard processes are jointly
modeled by assuming that the random terms are shared by both submodels; see Henderson et al.3 and references therein. For
complete overviews in this research field, the reader is referred to Tsiatis and Davidian4 and Rizopoulos5. On the other hand, as
a key feature of our postulated shared-parameter (SP) joint model, we assess the presumed relationship between both outcomes
through a time-varying association. This ultimately quantifies the impact of the expected critical care demand (together with
other secondary factors) on the age-adjusted mortality rate for insured elderly individuals. In summary, measuring the health
characteristics of elderly populations helps identify high-risk individuals6, and opens new avenues for health providers to hedge
against subject-specific longevity risk beyond the age of 65.
Our research is illustrated by a unique and relatively large dataset from the Spanish health insurance sector, henceforth HI

data7, which provides a survey of emergency care demand for 5470 elderly policyholders. All individuals are residents of the
city of Barcelona and are between 65 and 99.5 years old at the initial observation, with a median age of 74.9. The demand for
emergency services is longitudinally recorded in terms of claim counts at the end of each calendar year throughout the entire study
window, from January 1, 2006 to February 1, 2014. The monitoring can be considered sufficiently informative, with roughly
six measurements per subject on average, along with a mean and median follow-up period of 5.1 and 6.3 years, respectively. In
conjunction with critical care demand, gender is presumed to be an important confounding factor in understanding age-related
mortality hazard patterns. Out of all subjects, 3415 (62.4%) are female, who historically have longer life expectancies than
male. In addition, to identify the potential risk effect of the socio-economic profile, the postal code is used to determine which
policyholders reside in neighborhoods with a mean income above the overall city average; this group consists of 911 individuals
(16.7%). The primary longitudinal response is the annual number of reported claims for ambulance services, hospitalizations, and
non-routine visits; these counts are individually recorded in an aggregated manner by each calendar year within the observation
period. Subjects’ entry into the study is registered at their first longitudinal response, after which subsequent responses are yearly
recorded. Because individual follow-up does not necessarily start at the beginning of a calendar year, the exposure-time effect
is considered to correct the first measurement’s frequency. Table 1 displays the distribution of the 32269 longitudinal responses
collected over the study period and nested within individuals, where zeros represent more than half of overall measurements.
This large number of zeros is due to a) the highly infrequent nature of the data itself, and b) the existing interplay in the Spanish
health care system between universal coverage, which provides social security services without cost to the individual, and private
insurance, which represents an optional extra within the publicly-funded universal system. This latter point entails a group of
measurements outside of the private health sector, which systematically supply null values in our data.

TABLE 1Annual count rates for emergency medical claims across all observations collected over time in the HI data and nested
within the 5470 senior policyholders.

Count rate

0 1 2 3 4 5 6 7 8 9 ≥ 10 Total
Number 20357 5580 2849 1488 756 487 280 145 95 78 154 32269
Percentage 63.1 17.3 8.8 4.6 2.4 1.5 0.9 0.4 0.3 0.2 0.5 100
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The end of individual follow-up can be due either to death or to non-informative right censoring; dead subjects have a share
of 9.3%. Since only the trajectories of policyholders who are at least 65 are monitored, all those not living long enough to reach
this fixed truncation age cannot be observed. Life spans are therefore affected by left truncation, and the staggered entry of 4365
individuals (79.8%) into the study after 65 must be incorporated as delayed entries in order to avoid overestimating their event
times. These are properly considered by adopting the subject’s age above 65 as the time scale, in which the difference between
the age of entry and 65 is implicitly considered: t = age.entry − 65. Hence, our particular time zero is set at the age of 65, and
from then onwards, any time point t > 0 is inextricably linked with the corresponding policyholder’s age. This duality makes it
equivalent to talk either in terms of time or in terms of age; for instance, a policyholder’s response at age 75 is recorded at time
t = 10 years. In our empirical data, the within-subject observations may arise at any time point between tmin = 0 and tmax = 37.5,
since 102.5 years old is the maximum age at which observations are collected for any subject. Interestingly, these delayed entries
result in the progressive incorporation of policyholders after the study has already begun. This entails an age-related dynamic
fluctuation of the number of subjects at risk, as illustrated in the left panel of Figure 1. As expected, the number of insured
women at risk is typically higher than insured men at all ages, even though this gap in the at-risk pattern by gender tends to
narrow with increasing age. It is also relevant to compare the average emergency demand patterns between event-free profiles
and trajectories for which death is recorded, as displayed in the right panel of Figure 1. Both of these patterns change across the
above-65 age range, and there appears to be strong linkage between dead subjects and greater demand rates; a yearly average
of 0.80 emergency claims is recorded among subjects who do not die during the study period, whereas this increases to 1.50
for those who experience the event. Further details about the information provided by the HI data can be found in Appendix A
(Tables W1-W5 and Figure W1).

FIGURE 1Age-specific descriptive plots from the time-to-event analysis of the HI data. Left: Dynamic variation of the number
of subjects at risk, overall and by gender. Right: Average trends for annual emergency demand with 95% confidence regions,
separately for event-free subjects and those who die during the study.

1.2 Joint modeling techniques adapted to health care sector
As stated above, we work within the scope of SP joint models for longitudinal and time-to-event data. Recent advances in
joint modeling have been made to address different types of non-Gaussian longitudinal responses, including new approaches
to better account for a high frequency of zeros with respect to a Poisson process.8,9,10 Furthermore, other novel extensions to
accommodate left-truncated event times within the scope of SP joint modeling have been also examined.11,12 However, none
of the previous studies have combined longitudinal counts exhibiting both excess zeros and marked heterogeneity with left-
truncated event times. Simultaneously, and as the main challenge of this article, we aim to appropriately measure the relationship
between the need for intensive care and the corresponding mortality hazard. The functional shape that interrelates both processes
is completely unknown, and so a flexible time-varying association structure is hypothesized. Song and Wang13 proposed a
joint model in which time-varying regression coefficients are assumed for the hazard process. More recently, Barrett et al.14
postulated a joint model approach in which the association between survival and random effects can also vary over a discrete
set of potential time points. Köhler et al.15 focused on a flexible Bayesian additive joint model capable of integrating strongly
non-linear individual trends and time-varying effects in the association parameter via a penalized B-spline based approach. They
summarized their developments by means of the R package bamlss.16 Also within the Bayesian framework, Andrinopoulou
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et al.17 improved the classical SP joint model scheme by expanding the association parameter into penalized B-spline basis
functions with quadratic splines of time, and illustrated the benefits in the context of dynamic predictions. Building on their
contribution, we propose a joint model to associate zero-inflated discrete responses with left-truncated event times, while also
using a time-varying association approximated by penalized cubic B-splines. This modeling framework allows us to incorporate
the particular features necessary when analyzing the HI data and provides the tools to properly manage applications beyond the
insurance domain.
To appropriately associate the observed emergency claims per year and mortality risk in our empirical data, the main chal-

lenges tackled in our analysis are threefold: 1) developing an SP joint model to accommodate correlated count rates with an
overabundance of zeros and left-truncated event times, 2) incorporating a flexible time-varying association structure between
the longitudinal and time-to-event processes through a penalized B-spline approach with cubic splines, and 3) demonstrating the
validity of the proposed model, both empirically and numerically. The article is developed under a Bayesian paradigm by using
Markov chain Monte Carlo (MCMC) algorithms. This approach allows for a clearer and more straightforward coding imple-
mentation for the referred tasks in comparison to the maximum likelihood approach. In addition, a full posterior inference for
any parameter can be obtained, as well as a wide range of diagnostic tools for checking the model fit. These benefits, however,
usually go hand-in-hand with a high computational burden derived from using MCMC sampling, especially for sizable datasets.
The remainder of the paper proceeds as follows. Section 2 specifies the Bayesian formulation for jointly tackling the mea-

surements of longitudinal emergency care demand and the time to death. Section 3 describes the estimation procedure under the
Bayesian framework. Section 4 conducts an extensive simulation study to assess the performance of the proposed joint model.
Section 5 illustrates the application of our model to the motivating dataset. Section 6 describes the model assessment through
posterior predictive checking and residual diagnostics. Lastly, Section 7 provides a discussion of the main results and suggests
some topics for future research.

2 THE PROPOSED JOINT MODEL

2.1 Longitudinal submodel for zero-inflated count rates
Denote yi = {yi(tij), i = 1,… , n} as the observed response vector for the i-th subject, recorded at a sequence of time points tij ,
j = 1,… , ni. For convenience, suppose that every longitudinal count rate can be formally expressed as yi(tij) = vi(tij) yCi(tij);
here vi(t) ∼ Bernoulli{�Bi(t)} is a latent indicator that captures subject’s probability �Bi(t) to use private health care at a specific
time t, while yCi(t) is the count response derived from an adequately chosen model fC(⋅) such that E{yCi(t) ∣ biC} = �Ci(t) is
its mean response, conditional on the random effects biC . Specifically, vi(t) = 1 if the longitudinal measurement corresponds
to a senior policyholder who uses private services within a specific time interval. In this case, yCi(t) comes from fC(⋅) and may
logically include zeros if the subject’s health status is good enough. In contrast, if vi(t) = 0, then yi(t) = 0 systematically. These
two zero-generation sources affecting longitudinal count rates are combined into a zero-inflated response as

yi(t) ∼

{

0 if vi(t) = 0, with probability 1 − �Bi(t)

fC{yCi(t) ∣ biC} if vi(t) = 1, with probability �Bi(t)
(1)

with probability mass function

py{yi(t) ∣ bi} = {1 − �Bi(t)}I{vi(t) = 0} + �Bi(t) fC{yCi(t) ∣ biC}I{vi(t) = 1}, (2)

where I(⋅) is the indicator function and bi = (b⊤iB, b
⊤
iC)

⊤ encompasses the common and unobserved subject-level random effects
for the binary and count parts, respectively. The corresponding overall conditional mean and variance expressions are

E{yi(t) ∣ bi} = �Bi(t)�Ci(t), V{yi(t) ∣ bi} = �Bi(t)�Ci(t) + {1 − �Bi(t)}�Bi(t)�2Ci(t). (3)

Apart from the excess of zeros, the discrete measurements yCi(t) can also be affected by a marked level of patchiness among
subject-specific responses, so the conditional variance exceeds the conditional mean. The hierarchical approach to the standard
negative binomial (NB) model, commonly termed as NB2 model, arises as the traditional modeling option for fC(⋅), since this
model provides a second-degree dependence of the variance upon the mean. This quadratic relationship, however, can be relaxed
by assuming a NB-Power (NBP) distribution18,19:
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fC{yCi(t) ∣ biC} =
Γ
{

yCi(t) + � �2 − PCi (t)
}

Γ
{

� �2 − PCi (t)
}

yCi(t)!

{ � �2 − PCi (t)
�Ci(t) + � �2 − PCi (t)

}� �2 − P
Ci (t){ �Ci(t)

�Ci(t) + � �2 − PCi (t)

}yCi(t)

,

V{yCi(t) ∣ biC} = �Ci(t) + �PCi(t)∕�.

(4)

Above, the heterogeneous nature of yCi(t) is explicitly accommodated through a common shape parameter � > 0 for all subjects,
whereas the ancillary parameter P > 0 allows for a P -th degree mean-variance relationship. The combination of (2) and (4)
yields a hierarchical zero-inflatedNBP (ZINBP)model, yi(t) ∼ ZINBP{�Bi(t), �Ci(t), �, P }. From this, two common hierarchical
models for discrete data with excess zeros can be straightforwardly derived: the zero-inflated NB (ZINB2) longitudinal model
is obtained by setting P = 2, whereas the zero-inflated Poisson (ZIP) longitudinal model is considered if � ←→ ∞ for all P .
On the other hand, both �Bi(t) and �Ci(t) can be respectively related to linear mixed predictors, �Bi(t) and �Ci(t), through

prescribed link functions. Specifically, let

�Bi(t) = x⊤Bi(t)�B + z⊤Bi(t)biB, �Ci(t) = x⊤Ci(t)�C + z⊤Ci(t)biC , (5)

where x⊤Bi(t) and z
⊤
Bi are the i-th subject’s rows of the fixed- and random-effects design matrices in the binary part, respectively,

while x⊤Ci(t) and z⊤Ci are the corresponding rows of analogous matrices in the count part. These matrices can be defined to sum-
marize the subject-specific evolutions using simple regression patterns, such as linear trends, or to approximate these trajectories
through more flexible functional forms, such as splines. Moreover, �B = (�B0 , �B1 ,… , �BpB )

⊤ and biB = (biB0 , biB1 ,… , biBqB )
⊤

denote the pB + 1 fixed and qB + 1 random effects for modeling the binary response, while �C = (�C0 , �C1 ,… , �CpC )
⊤ and

biC = (biC0 , biC1 ,… , biCqC )
⊤ include the pC + 1 fixed and qC + 1 random effects for modeling the count rates. This yields the

two-part model

logit
[

Pr{vi(t) = 1 ∣ biB}
]

= logit{�Bi(t)} = �Bi(t), log
[

E{yCi(t) ∣ biC}
]

= log{�Ci(t)} = log{ei(t)} + �Ci(t). (6)

Here, ei(t) acts as an offset term which accounts for the existence of an exposure-time effect related to a specific subject interval.
Given that count rates are from 1-year periods in our analysis, we have ei(t) = 1 except for the first longitudinal response of
those subjects whose trajectory does not start to be observed at the beginning of a calendar year; for these responses, ei(t) ranges
from 0.5 to 1. Moreover, the distribution for the random effects is established to be bi ∼ Nq(0,D), q = qB + qC + 2, with an
unspecified structure for the q × q covariance matrix D. The latter can be decomposed into the symmetric block matrix

D =

[

DB DBC

DBC DC

]

(7)

where DB and DC are the (qB +1)× (qB +1) and (qC +1)× (qC +1) covariance submatrices for biB and biC , respectively, whereas
DBC is the (qB + 1) × (qC + 1) cross-covariance submatrix that includes the prior correlations between biB and biC . Specifically,
the diagonal terms of D correspond to the variances of random effects, �2kk, for k = 1,… , q, whereas the off-diagonal elements
denote the corresponding covariances, �kl�k�l , for k,l = 1,… , q. By combining the overall conditional expectation from (3)
with the two equations of (5), we have the globally-expected longitudinal response at time t:

�i(t) = ei(t) exp{�Bi(t) + �Ci(t)}∕
[

1 + exp{�Bi(t)}
]

. (8)

2.2 Joint modeling with a time-varying association
2.2.1 Structural features
Let age beyond 65 be the time scale of the study, and let the non-negative random variable T ∗i denote the i-th true event time.
Time-to-event data may be subject to a random left truncation process, denoted by the variable Li = age.entryi − 65 ≥ 0, as
well as to random right censoring, denoted by the variable Ci. Suppose further that {Li, T ∗i , Ci} are conditionally independent
given the covariate history, and also suppose that Li and Ci are not related to the subject’s death event. For those individuals
with T ∗i > Li, we observe both the event time Ti = min{T ∗i , Ci} and the random event indicator Δi = I(T ∗i ≤ Ci). In
contrast, individuals with T ∗i ≤ Li are not observed since they either do not reach 65 within the study window or pass away
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before reaching this age. Our primary research interest lies in assessing the time-dependent relationship between the expected
zero-inflated response �i(t), from the longitudinal process, and the hazard for death at time t, from the event history process.
These two components are jointly modeled using a shared vector bi of time-independent random effects, while also relating both
processes with an unknown functional shape whose trajectory varies over the course of time. Our proposed SP joint model with
a time-varying association parameter (JMTV-ZINBP) can be expressed as the instantaneous hazard rate

ℎi {t ∣i(t),wi(t)} = ℎ0(t) exp{
⊤wwi(t) + �(t)�i(t)}, t > 0, (9)

which is conditioned on: the truncation process, the underlying history i(t) = {�i(s) = �Bi(s)�Ci(s), Li ≤ s ≤ t}, and a
vectorwi(t) of exogenous, possibly time-varying, covariates, with related regression parameters 
w. Additionally, ℎ0(⋅) is usually
an arbitrary and unspecified function to describe the baseline hazard at the population level, while �(⋅) denotes some flexible
function of time that assesses the effect of the longitudinal outcome on the conditional hazard rate. Thus the quantity exp{�(t)}
evaluates the hazard ratio at time point t for a one-unit increase in the value of �i(t), while keeping the rest of variables constant.
A typical major concern when dealing with JM techniques is the specification of the unknown baseline hazard as a func-

tion of age. This masks underlying mortality risks in the target population, which may vary gradually over time and ultimately
determine the distribution of the event times. Consequently, even though in our analysis the original experience data is aggre-
gated over 1-year calendar periods, survivorship needs to be continuously modeled over the entire individual’s lifetime. This
guarantees that a subject’s conditional hazard rate will reasonably and smoothly rise with increased age. Notice that taking nat-
ural logarithms in (9) directly leads to a numerically advantageous linear relationship with time, and so any approximation of
the baseline hazard function is usually performed with its logarithmic version, log{ℎ0(⋅)}. A first alternative for mimicking the
baseline hazard consists of approximating its true functional shape through a predefined survival law. The use of a parametric
function of age confers two major advantages: the model itself automatically imposes smoothness across the age-related mortal-
ity hazard trend, and only a small number of parameters need to be estimated.20 The most basic law to describe mortality trends
in human populations is the Gompertz survival model, in which a continuous exponential increase in death risk over time is
hypothesized. Although other more general forms are also extensively considered in the literature21, for illustrative purposes we
set the Gompertz distribution as the default parametric law for describing the baseline hazard in our empirical data. A common
parameterization is ℎ0(t) = �0 exp(�tt), where �0 > 0 and �t ≥ 0 represent the initial mortality intensity and the annual propor-
tional growth rate in mortality, respectively. Caution is advisable if �0 is close to zero, due to the fact that numerical instabilities
are likely to affect this parameter estimation. This can be circumvented by setting �0 = exp(�), so that ℎ0(t) = exp(�+�t t). Tak-
ing natural logarithms of this equation does not merely linearize it, but also provides an appealing direct relationship between
the logarithm of the baseline hazard and the parameters themselves, log{ℎ0(⋅)} = � + �t t .
Despite the benefits of using a suitable law to estimate the baseline hazard’s functional shape, previous knowledge of risk

behavior is required from the researcher when handling complex data. Otherwise, using a predefined law which relies on few
parameters could seriously hinder the analysis. An alternative and more flexible option to model this underlying risk is the use
of penalized B-spline basis functions, called P-splines24, requiring no precedent for handling this kind of data and allowing
as much smoothness as desired. Essentially, the most appealing feature of such a generalized proposal is that the underlying
functional shape behind log{ℎ0(⋅)}, along with that of �(⋅), are properly approximated through expanding each of these time-
dependent functions into P-splines, with respective degrees dℎ0 and d� . For these two P-spline regressions, the corresponding
B-spline basis can be immediately calculated as differences of truncated power functions, as suggested by Dierckx;25 we also
refer to Eilers and Marx26 for computing details and some examples discussed herein. To control smoothness, one can impose
discrete penalties on finite differences of the estimated coefficients from adjacent B-splines. Using this strategy, assuming a
relatively large number of knots within the time domain is generally recommended, so that potential overfitting problems are
circumvented with a penalty that counterbalances the flexibility. This is of primary importance because it solves one of the major
questions when approximating an unspecified shape by a smoothing curve. In parallel with the penalty specification, the other
cornerstone lies in the adequate selection of the number of knots for each approximation, Qℎ0 and Q� , respectively. The great
advantage of Bayesian P-splines is precisely the fact that choosing the number of knots is not a critical step, since the penalty
corrects possible overfitting concerns. This does not mean, however, that in practice one can indefinitely increase the number
of knots placed, since a trade-off between enough smoothness in the fitted curve and an acceptable computational burden is
necessary. Eilers and Marx24 suggested including between 15 and 20 knots to avoid thinking about the number of knots needed,
especially when dealing with large samples. Along the same lines, Ruppert33 pointed out that, in the case of functions which are
expected to have few oscillations and slow changes, one can barely observe any improvement when using more than 20 knots
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(he provides an example with a sample size of n = 25000). Taking these previous references into account, the maximum number
of knots considered in our generalized proposal is set at 15 for large datasets in which the time-dependent function is expected
to have a smooth trajectory without marked oscillations.
To provide a unified and flexible modeling framework, a Bayesian P-spline approach is the default option utilized in our

proposal to examine the functional shapes of log{ℎ0(⋅)} and �(⋅)within the joint model. Moreover, for comparison, the parameter
estimates and the corresponding time-varying profile for a Gompertz approximation of the baseline hazard function are also
included in the results section.

2.2.2 Prior setting
Regarding the ZINBP longitudinal approach, the univariate prior distributions for the fixed-effects regression coefficients of
the binary and count parts are �B,lB ∼ N(0, ��B ), lB = 0,… , pB and �C,lC ∼ N(0, ��C ), lC = 0,… , pC , respectively, with
��B = 1∕�

2
�B

and ��C = 1∕�
2
�C
. Here prior variances are allowed to be sufficiently large by assuming small precision parameters,

��B = ��C = 0.01, say. Furthermore, the priors assumed for the scale and power parameters are � ∼ U(1, 5) and P ∼ U(1, 5).
The prior assignment within the survival approach starts with independent and diffuse normal distributions for the components

of vector 
w, namely N(0, 0.01). For the B-spline approximation of the time-dependent functions log{ℎ0(t)} and �(t), an equally-
spaced vector �ℎ0 of Qℎ0 knots is placed on the time domain [tmin, tmax], tmin = �ℎ0,1 <… < �ℎ0,Qℎ0

= tmax, while a vector �� of
Q� knots is located over [tmin, tmax], tmin = ��,1 < … < ��,Q�

= tmax, thus dividing the domain for each case into Qℎ0 + 1 and
Q� + 1 subintervals. Hence, the baseline hazard function on the log-scale can be approximated through a linear combination
of Rℎ0 = (Qℎ0 − 1) + dℎ0 B-spline functions, while the true correlation between longitudinal responses and event times can be
captured via R� = (Q� − 1) + d� B-splines:

log{ℎ0(t)} =
Rℎ0
∑

r=1

ℎ0,r Bdℎ0 ,r(t, �ℎ0), �(t) =

R�
∑

r̃=1

�,r̃ Bd� ,r̃(t, ��). (10)

Here {Bdℎ0 ,r(t, �ℎ0), r = 1,… , Rℎ0} denotes the set of Rℎ0 B-spline basis functions when approximating log{ℎ0(t)}, while

ℎ0 = (
ℎ0,1,… , 
ℎ0,Rℎ0 )

⊤ is the corresponding vector of unknown regression coefficients (without biological or physical inter-
pretation). Similarly {Bd� ,r̃(t, ��), r̃ = 1,… , R�} embraces the R� B-spline functions to mimic the shape of �(t), while

� = (
�,1,… , 
�,R� )

⊤ reports the regression coefficients. The curve-fitting solutions for log{ℎ0(t)} and �(t) are positively defined
over the dℎ0 + 2 and d� + 2 adjacent knots, respectively, being zero everywhere else. Because of boundary conditions from the
B-spline definition, the original support of knots is extended in each approximation by respectively adding dℎ0 and d� knots to
the left and right of their border-knots, namely {�ℎ0,1, �ℎ0,Qℎ0

} and {��,1, ��,Q�
}. The resulting Qℎ0 + 2dℎ0 and Q� + 2d� knots

will be used to generate two complete basis with B-splines of degrees dℎ0 and d� . In this article, we use Bayesian penalized
B-splines27 to obtain a parsimonious parameterization of the baseline hazard and, especially, of the time-varying association
parameter. Following such an approach, the joint prior distributions for vectors 
ℎ0 and 
� are conditional on the amount of
smoothness introduced by the positive-valued hyperparameters �ℎ0 and �� , which penalize the roughness of log{ℎ0(t)} and �(t),
respectively. Concretely, these overall reference priors are assumed to be

�(
ℎ0 ∣ �ℎ0) ∝ �
rank(Mℎ0

)∕2
ℎ0

exp
(

−
�ℎ0
2

⊤ℎ0Mℎ0
ℎ0

)

, �(
� ∣ ��) ∝ �
rank(M�)∕2
� exp

(

−
��
2

⊤�M�
�

)

, (11)

yielding the hierarchical multivariate Gaussian priors 
ℎ0 ∣ �ℎ0 ∼ NRℎ0
(0, �ℎ0 Mℎ0) and 
� ∣ �� ∼ NR� (0, �� M�), where the

symmetric and positive-definite precision matrices Mℎ0 and M� play in turn the role of appropriate penalty matrices. Validity
of such a priors then yields the global penalties pen(
ℎ0) = (�ℎ0∕2) 


⊤
ℎ0
Mℎ0
ℎ0 and pen(
�) = (��∕2) 
⊤� M�
� . Here Mℎ0 =

Δ⊤
u Δu + " I and M� = Δ⊤

v Δv + "I, where Δu and Δv are the difference matrices based upon u-th and v-th order squared finite
differences of adjacent B-splines, respectively, while the term "I introduces a small “ridge penalty” to avoid a linearly dependent
system. This is done by providing a small enough value for ", for instance " = 10−6. We assume here onwards penalties based
on second-order differences, yielding rank(Mℎ0) = Rℎ0 − 2 and rank(M�) = R� − 2 in (11). The sets of parameters {
ℎ0 , �ℎ0}
and {
� , ��} are in each case simultaneously estimated by assuming a prior distribution which delivers a large positive support
for the unknown smoothing hyperparameters �ℎ0 and �� . For these, the standard prior choice is Gamma(a� , b�) with expectation
a�∕b� and variance a�∕b2� , where a� and b� are chosen to be minimally informative. Traditional options advocate for assigning
highly diffuse but proper priors, with small values for a� = b� 28,29, or, alternatively, combining a� = 1 with a small value for
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b� .27,30,17 Both options are generally proven to supply quite similar results when the sample size is large enough.31,32 In our
approach, we have considered with �ℎ0 ∼ Gamma(1, 0.005) and �� ∼ Gamma(1, 0.005).
The prior setting concludes with the specification of the normally distributed random effects, which is completed by assigning

a proper hyperprior distribution for the q(q + 1)∕2 distinct entries of the covariance matrix D. Within the Bayesian framework,
the hierarchical covariance matrix of a multivariate normal variable is combined in a natural way with the inverse-Wishart (IW)
prior distribution, so D ∼ IWq(S−1, �). Here S−1 is a q × q positive definite scale matrix and � denotes the degrees of freedom,
with � ≥ q to ensure the properness of the prior. This in turn equates to picking a Wishart prior for the precision covariance
matrix, D−1 ∼Wq(S, �). A classical prior setting is usually established as S = I and � = q + 1.23

3 POSTERIOR INFERENCE

Let � = (�⊤y ,�
⊤
t ,�

⊤
b )

⊤ denote the unknown complete parameter vector, where �y = (�B, �C , �, P )⊤ collects the fixed-effect
parameters of the longitudinal submodel, �t = (
w, �ℎ0 , 
ℎ0 , �� , 
�)

⊤ the fixed quantities related to the time-to-event response,
and �b ≡ D the shared variance components. Letn = {(yi, Li, Ti,Δi), i = 1,… , n} summarize the observed information from
the target population. To construct the full conditional likelihood for the joint model, we assume that, given the random effects
of the i-th subject, these two processes are independent, as are the subject’s ni longitudinal responses.5 Under this conditional
independence assumption, the complete conditional joint likelihood can be factorized as

p(n ∣ bi,�) =
n
∏

i=1
py(yi ∣ bi,�) pt{Ti,Δi ∣ T ∗i > Li,i(t),�}

=
n
∏

i=1

ni
∏

j=1
py{yi(tij) ∣ bi,�}

pt{Ti,Δi ∣i(t),�}
Pr{T ∗i > Li ∣i(t),�}

,
(12)

where py(⋅) is the conditional likelihood function of the zero-inflated count rates and pt(⋅) is the conditional likelihood for the
event times. The resulting posterior distribution of parameters �(�,bi ∣ n) is obtained through the celebrated Bayes’ rule,
�(�,bi ∣n) ∝ p(n ∣bi,�)�(�,bi). Here, the prior distribution for the unknown parameters (�,bi) can in turn be factorized as

�(�,bi) = pb(bi ∣ �b)�(�), (13)

where pb(bi ∣ �b) follows a zero-mean multivariate Gaussian distribution. In addition, prior independence is assumed between
the components of �, so the posterior distribution for the parameters satisfies

�(�,bi ∣ n) ∝
n
∏

i=1

ni
∏

j=1
py{yi(tij) ∣ bi,�y}

pt{Ti,Δi ∣i(t),�t}
Pr{T ∗i > Li ∣i(t),�t}

× pb(bi ∣ �b)�(�B)�(�C)�(�)�(P )�(
w)�(�ℎ0)�(
ℎ0 ∣ �ℎ0)�(��)�(
� ∣ ��)�(D).
(14)

The resulting expression, however, is analytically intractable, so we approximate it using MCMC algorithms. The specific form
presented by py(⋅), pt(⋅), and pb(⋅) is derived in Appendix B.

4 SIMULATION STUDY

4.1 General design
A simulation study is conducted to firstly check that the general algorithm proposed to run the JMTV-ZINBP is indeed working,
and then to determine the main effects of using more elementary joint model structures to fit data generated from a JMTV-
ZINBP. In particular, we begin with a base scenario in which a set of M = 500 independent datasets are both simulated and
fitted using our complex joint model. Then, three additional scenarios are considered, using in every case a particular simplified
version of our proposed joint model to fit the same 500 datasets generated in the first scenario. Each of these three alternative
joint models lacks a noteworthy feature of the JMTV-ZINBP, thus enabling us to examine which aspect of the generated data is
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not properly characterized. The four distinct scenarios are named according to the joint model assumed therein to fit the common
datasets. We therefore have (i) JMTV-ZINBP, (ii) JMTV-NBP, (iii) JMTV-ZIP, and (iv) JM-ZINBP. A replicated dataset reports
the longitudinal counts observed over a 7.5-year observation window for n = 250 subjects, whose distribution by age is similar
to that observed in the HI data. All subjects are 65 or older at the time of their first measurement, and subsequent measurements
are then taken annually. To properly account for this age adjustment in the event time process, the time scale is measured in
years above the age of 65, so this fixed truncation age is directly linked to our time zero. Particularly, 30% of individuals are
assumed to enter the study at t = 0, while the remaining percentage enter at any time between t = 0 and t = 30 years; such
a substantial proportion of left-truncated event times typically arises when the observation of a non-selected cohort of senior
individuals is conditioned on a fixed age. Aside of truncation, the event times are potentially affected by a non-informative
censoring mechanism, expressed by independent and uniformly distributed random variables Ci with a mean of 20 years. This
results in about 45% of all subjects being right-censored, so each subject’s longitudinal information is gathered through at most
ni ≤ 8 observations. Additionally, the baseline hazard function for all scenarios is taken to be Gompertz distributed over time.
The parameter setting for the datasets common to all scenarios is established as follows. The binary part only includes fixed

and random baseline terms, whereas the count part is described using cubic natural B-splines of time, with a single internal
knot ' at the median of time measurements related to each dataset, and considering both a fixed and a random baseline effect.
Specifically, the two longitudinal predictors are �Bi(t) ≡ �Bi = �B0 + biB0 , and �Ci(t) = �C0 + biC0 + �C1B3,1(t, ') + �C2B3,2(t, '),
where the random intercepts of binary and count parts are assumed to be uncorrelated, i.e. �BC = 0; this way, the specification for
the random effects is reduced to biB0 ∼ N(0, �2B0) and biC0 ∼ N(0, �2C0), with �B0 = 0.500 and �C0 = 0.400. We let �B0 = 1.525,
(�C0 , �C1 , �C2) = (0.405, 0.165, 0.070), � = 1.950, P = 1.100, and the exposure period is set at 1 for all measurements. This
yields count values in the range 0-20, with 45% of overall zero counts. The relative risks model in (9) includes a single baseline
zero-one indicator group wi(t) ≡ grpi ∼ Bernoulli(0.70), with 
w = −0.150. Likewise, the baseline risk function is fixed as
ℎ0(t) = exp(−3.910 + 0.027 t), while the underlying association curve is assumed to be �(t) = 2.1610 − 0.0752 t + 0.0005 t2.

4.2 Computed information
The time-varying association �(t) is approximated through a P-spline basis of degree d� = 3, placing Q� = 8 internal knots
between tmin = 0 and tmax = 37.5 years. The marginal posterior density for a particular component � from vector � is computed
within each scenario for the corresponding m-th fitting, m = 1,… ,M . By averaging over the M posterior results of �, we
report: the average of the means, �̄av =

∑M
m=1 �̄m∕M ; the average bias, biasav = �̄av − �; the average standard error, SEav =

∑M
m=1 SEm∕M ; the empirical standard error of the mean estimates, SEemp =

{
∑M
m=1(�̄m−�̄av)∕(M−1)

}1∕2; and the average 95%
credible interval, CIav =

[

p2.5,av, p97.5,av
]

, where p2.5,av =
∑M
m=1 p2.5,m∕M and p97.5,av =

∑M
m=1 p97.5,m∕M denote the average 2.5th

and 97.5th percentiles of �, respectively. The estimation procedure is handled using an MCMC algorithm, which sequentially
draws random and independent samples from the posterior distribution. We use Gibbs sampling to fit our model by means of
the Bayesian software JAGS v. 4.3.034. For each simulated dataset, we run two parallel chains with 10000 iterations per chain,
while discarding the first 9000 iterations per chain as a burn-in period. Thinning is set to keep 500 posterior samples from each
chain, thus using a total of 1000 samples for estimation. Convergence is checked via the visual examination of traceplots, as
well as through the potential scale reduction factor R̂, defined by Gelman and Rubin35, and the effective sample size, neff.

4.3 Simulation results
The average posterior mean estimates for the joint model parameters of each scenario are listed in Tables W6-W9, provided in
Section C.1. of Appendix C. Along with the fitting of each dataset under a particular scenario, a new dataset of size n = 250
is simulated from the corresponding posterior parameter distribution. Thereby, an average count distribution can be derived for
each of the four scenarios from the 500 replicated datasets generated therein, and these frequency distributions can in turn be
compared to the theoretical distribution from the initially generated 500 datasets. Such a comparison is presented in Table W10,
which appears in Section C.2. of Appendix C.
The average results of scenario (i) suggest that the JMTV-ZINBP algorithm yields little bias in most of the parameter esti-

mates, while the average of the estimated standard errors shows a strong concordance with the empirical standard error. It is
also interesting to note the great similarity between the fitted and theoretical frequency distribution of the count rates. In the
remaining three scenarios, however, some significant disparities between the average posterior result and the true magnitude may
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be consistently observed because of the simplified joint model assumed. In scenario (ii), the the JMTV-NBP does not explic-
itly account for the excess of zeros, so the additional variability from this source of overdispersion is absorbed by the catch-all
parameter �. In comparison with its theoretical value when generating the data, this term exhibits an average posterior mean
that is nearly half, � = 1.950 versus �̄av(t) = 1.058. Hence, the longitudinal part becomes highly efficient in accommodating
the overall proportion of zeros, even if these are slightly underestimated. Conversely, lower counts are likely to be overfitted.
With respect to the shape of the association parameter, we can observe that its corresponding average estimate is fairly close
to the true time-varying shape. In scenario (iii), the specific features of the two-component ZIP response are specifically devel-
oped to deal with an excess of zeros. The JMTV-ZIP alternative, however, assumes a Poisson model for its count part, thereby
neglecting the non-linearities coming from unobserved heterogeneity among clustered observations. This lack of flexibility is
well-reflected as a significant reduction of the corresponding average posterior mean of the binary part’s intercept, �B0 = 1.525
versus �̄B0,av = 0.903, yielding a serious overestimation for the excess of zeros. Nonetheless, the fitted frequency of overall
zeros remains in line with the theoretical frequency. A further examination of the fitted responses from this model reveals that
the relatively long tail displayed by the original data is not captured; there is definitively more latent variability in the data than
the model can adjust for. Regarding the estimation of the trajectory �(t), similar results to the previous scenarios are derived,
providing the model with a high capability to mimic the true association shape. Scenario (iv) retains the same longitudinal
assumptions as the model which generates the data, but the constant association parameter assumed for the JM-ZINBP leads
to substantial departures of the longitudinal coefficients from their true corresponding values. This ultimately gives rise to an
underprediction of the frequency of zeros, along with an overrepresentation of small and intermediate counts. As a key feature
of this scenario, it summarizes the time-varying relationship between longitudinal and event time with a single average poste-
rior mean, �̄av = 1.517; this is actually a particular value within the range covered by the true �(t). For illustrative purposes,
Figure 2 displays the 500 time-varying correlation profiles under scenario (i), while Figure W2 in Section C.3 of Appendix C
presents the time varying-profiles derived for each of the four scenarios.

FIGURE 2 Simulation results for the time-varying association under scenario (i). The target shape of �(t) is compared to the
average posterior mean �̄av(t), which is obtained by averaging over theM = 500 posterior mean profiles from simulations.

5 ANALYSIS OF THE EMPIRICAL DATA

5.1 Longitudinal results
We first consider a Bayesian longitudinal model with a ZINBP response to accommodate the observed emergency claims per
year from the HI data. Although this is not a necessary step, it provides a reliable guide about the prior choice for the longitudinal
parameters in the subsequent JMTV-ZINBP fit, especially when faced with a relatively large dataset such as ours. For the binary
response, we assume that the probability of private medical usage is explicitly dependent on subject-specific behavioral habits,
where both fixed and random intercept terms are considered. Such usage is also influenced by two zero-one indicators: the
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subject’s gender, sexi = I(sexi = female), and the household income, inci = I(inci > average), which establishes who has
a monthly income above the municipal average. By contrast, the count response accounts for non-linear patterns over time by
using natural cubic B-splines, with a random term also assumed at a baseline level. The gender and household income factors
are also included in this count part. Following (5), we set

�Bi(t) ≡ �Bi = (�B0 + biB0) + �Bsexsexi + �Bincinci,

�Ci(t) = (�C0 + biC0) + �C1N3,1(t, ') + �C2N3,2(t, ') + �Csexsexi + �Cincinci,

where bi = (biB0 , biC0)
⊤ ∼ N2(0,D). Correlation between the binary and count responses is defined through �BC = Cor(biB0 , biC0),

which controls how the subject’s need for emergency care at time t relates to the claim intensity at other time points. In this
regard, if our general model only accounts for random intercepts in both the binary and count parts (i.e. q = 2), an easy-to-
handle alternative to the standard inverse Wishart prior could be based on the factorization �(biB0 , biC0) = �(biB0)�(biC0 ∣ biB0),
where biB0 ∼ N(0, �B0) and bi,cond ∼ N( biB0 , �cond), with  ∈ ℝ.36 See also Neelon et al.37 for a detailed example of such
a strategy in the hierarchical zero-inflated setting. The two referred approaches to account for random effects were previously
tested and led to similar results. In this article, however, we only follow the procedure of assigning an IW prior to the random
effects in order to provide a general overview of the proposed model.
The Bayesian estimation is conducted via JAGS using 10000 iterations for the adaptation, and then running two parallel chains

of 25000 iterations each after a burn-in period of 15000. We kept 1000 posterior samples from each chain. Mean, standard error,
and 95% credible interval are sampled for each parameter from the corresponding marginal posterior distribution. The posterior
summary statistics for the unknown parameters are provided in Table W11, within Section D.1 of Appendix D.

5.2 Application of the JMTV-ZINBP
The proposed JMTV-ZINBP for the empirical data is concretized as

ℎi {t ∣i(t), sexi} = ℎ0(t) exp{
sex sexi + �(t)�i(t)}, t > 0,

in which the profiling of age-related functions log{ℎ0(t)} and �(t) can be approximated using P-splines of the same degree,
dℎ0 = d� = d, while also placing the same quantity Qℎ0 = Q� = Q of equally-spaced knots between tmin = 0 and tmax = 37.5
years; this indicates that the overall observations occur between the ages of 65 and 102.5 years old. We particularly set d = 3
and Q = 15, which results in computing R = 17 regression coefficients within each approximation of the function. Taking
advantage of the previous section’s results, the univariate normal priors for {�B0 , �Bsex , �Binc , �C0 , �C1 , �C2 , �Csex , �Cinc} are now
centered on their corresponding longitudinal mean estimates, while the distance between the lower and upper support of the
uniform priors for � and P is reduced. Furthermore, the only survival covariate considered is gender,wi(t) ≡ sexi. The posterior
distribution of the parameters, �(�,bi ∣ n), is approximated by running an MCMC algorithm. Similarly to the longitudinal
fitting, the number of iterations required in the adaptation phase is unusually high, at 25000. The fitting of the JMTV-ZINBP
accounts for two parallel chains with 100000 iterations each after a burn-in of 50000, and a total of 2000 posterior samples
are drawn. The JAGS code within the R environment is given in the supplementary files. Sections D.2 and D.3 of Appendix D
(Tables W12-W15) provide the main posterior statistics of the unknown parameters for the joint model fit with constant and
time-varying associations, respectively, while distinguishing for each case whether the log-baseline hazard is approximated
using a Gompertz model or a P-spline approach. Further, the traceplots and the posterior densities for the parameters are shown
in Section D.4 (Figures W3-W11), from which a correct mixing and convergence of the chains can be concluded. The results
of the two fitted JMTV-ZINBP give rise to the shapes for ℎ0(t) and �(t) depicted for each case in the four-panel plot shown
in Figure 3. Looking at this, it appears that the baseline hazard function exhibits an increasing convex trend for the target
population, whether a Gompertz model is assumed or its underlying shape is approximated using P-splines. However, with the
former approach, the uncertainty around the mean trend is higher. These functional forms seem reasonable, since mortality risk
increases as people get older. The top and bottom right panels show hardly any differences and demonstrate that the annual
demand for emergency medical care and the mortality hazard are positively correlated over time, while the posterior statistics
obtained for the regression coefficients 
� provide evidence that this correlation is higher than zero. Most remarkably, these
two plots show that the relationship between these outcomes is not stationary from the age of 65 onwards, but instead varies
significantly with age. From the age of 65 to the ages around 75, the mortality risk decreases sharply with each one-unit increase
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in the annual emergency claims rate. In consistency with this, for relatively younger individuals (within the total range of 65-
102.5), seeking emergency services is likely indicative of a more critical health status because the intensity of use itself is lower
and because younger retirees are usually more mobile. Additionally, for 75- to 95-year-olds, medical emergency services are
relatively more frequently used but not necessarily indicative of a terminal illness. As a result, the time-varying association
trend shows barely any noticeable variation in the 75-95 age range. Also recall that the abundance of data for the ages around 85
allows for a reduction of the 95% credible intervals for that age range. Finally, the risk exhibits an increasing trend from the age
of 95 onwards, even though emergency service usage typically reduces sharply at very old ages. Here, the survival probability
itself is so low that any unusual occurrence leads to an increase in the mortality risk.

FIGURE 3Time-varying parameters derived from the two JMTV-ZINBP fitted to the HI data. Top left: Baseline hazard function
when assuming a Gompertz survival model for ℎ0(t). Top right: Comparison between a constant association parameter and
a time-varying association when assuming a Gompertz survival model for ℎ0(t). Bottom left: Baseline hazard function when
approximating ℎ0(t) with P-splines. Bottom right: Comparison between a constant association parameter and a time-varying
association when approximating ℎ0(t) with P-splines. The 95% credible intervals are displayed for all graphs.

The implications of these results are of vital importance within the health care field, giving rise to wider applications that
improve resource allocation across different age groups. Indeed, the postulated joint model allows for contouring the age-related
hazard ratio HR(t) = exp{�(t)ΔEC} for a specific change in the annual amount of emergency claims, ΔEC. Then, a first option
to concisely capture the age effect on mortality risk relies on transforming �̄(t) into a piecewise-constant trend over a predefined
age intervals. These can be chosen in accordance with the three distinct trends for �̄(t) displayed in Figure 3, 65-75, 75-95, and
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95-102.5. Constant association values can be separately derived within each of these three age intervals, namely �̄k, k = 1, 2, 3,
so that each value is obtained by averaging �̄(t) over the corresponding interval. In particular, we obtain the following mean
values (with their associated 95% CI): �̄1 = 0.873 (0.607, 1.134), �̄2 = 0.593 (0.471, 0.723), and �̄3 = 0.895 (0.553, 1.284).
These quantities provide a simple but useful piecewise expression for the hazard ratio, based on the age range in which the age
t of a certain policyholder is located.
A more accurate option for communicating the results is through the use of the shaded contour graph shown in Figure 4,

which illustrates the hazard ratio estimations for both a specific age t above 65 and a variation ΔEC, regardless of the number
of claims observed in the immediately preceding year. The graph is consistent with the shape of the time-varying association in
Figure 3, showing that emergency care usage has a greater impact on survival at the lower and very advanced ages among the
senior policyholders. For example, let us consider three policyholders aged 65, 85, and 100, each of them having experienced
an increase of one emergency claim. From the graph, the corresponding mortality risk projections lead to a HR = 2.51 for the
individual aged 65, a HR = 1.69 for the individual aged 85, and a HR = 2.59 for the centenarian. To gain insight into the impact
of emergency care usage on survival at different ages, in Section D.5 of Appendix D, Table W16 presents the estimated hazard
ratios that correspond to different increases in emergency claims per year at the given ages between 65 and 102.5 years old.

FIGURE 4 Two-dimensional death hazard map between the ages of 65 and 102.5 years old, showing potential variations of up
to eight additional emergency claims per year above the previous level of demand.

6 BAYESIAN MODEL ASSESSMENT

6.1 Posterior predictive checking
A basic level of performance assessment consists of judging how well the posited model captures the main features of the
observed longitudinal data yi, that is, examining the plausibility that such data have really been generated by our model. Indeed,
the ultimate goal of our model assessment is to inform about possible misspecifications in the model or, more generally, to
identify those aspects in which the model may be improved to provide a better data fitting. A validation procedure should,
ideally, consider external data which have not been used for estimating the joint model parameters, but such information is not
always available. Nevertheless, the model checking can still be accurately carried out using replicated datasets yrep,i of the same
size and shape as the observed one, each of these replications comprising a new dataset that would theoretically be obtained
from our applied JMTV-ZINBP fitting if assuming the estimated {�̄y, b̄i} from the HI data for {�y, bi}. The replicated datasets
are merely simulated from the posterior predictive distribution p(yrep,i ∣ yi) = ∫∫ p(yrep,i ∣ bi,�y) p(�y,bi ∣ yi) d�y dbi, so such
replications can thereby actually be understood as predictions. Hence, it makes sense to consider that the more indistinguishable
the replications are when compared to the original data, the more accurate the fitting is. This approach has sometimes been
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criticized by arguing that the data are used twice, both for fitting the model and for checking how this model mimics any relevant
aspect of the data; however, within the Bayesian framework, the posterior predictive p-value can be directly interpreted as a
conditional probability statement given the data, so in that sense the data would really only be used once.38
The degree of agreement between yi and yrep,i may be expressed either quantitatively or qualitatively. The first option relies

on naturally extending some of the classic goodness-of-fit methods to the Bayesian framework, thus informing in probability
terms about the potential discrepancies between the HI data and its replications. This is achieved through the construction of
specific auxiliary test statistics T (⋅), which can depend on the data as well as the parameters. The information provided by
these diagnostic quantities can be summarized by a 95% credible interval for Trep,i ≡ T (yrep,i ∣ bi,�y), so a narrow-enough
95% credible interval around the observed quantity Tobs ≡ T (yi ∣ bi,�y) contributes to providing strong evidence that the
hypothetical replications can suitably account for a particular feature of the HI data. Additionally, a Bayesian p-value pB can
be calculated. This, in particular, shows the probability that some of the replicated test statistics exceed the quantity Tobs, that
is, pB = Pr(Trep,i > Tobs ∣ bi,�y) + (1∕2) Pr(Trep,i = Tobs ∣ bi,�y), for the count rates. Hence, pB should tend to be close to
0.50 if the fitting of the model is appropriate, due to the uncertainty in {�y,bi} from Tobs. As an example, Table 2 provides the
checking results when analyzing how the model approximates two key aspects of our data distribution: the two types of zeros
and the extreme values at the right tail. The results provided on the left-hand side of Table 2 summarize the posterior predictive
test performed to assess how the replications yrep,i, i = 1,… , 2000 are able to capture the overall percentage of zeros and the
percentage of subjects for which all measurements are zero count rates. In general, the assessment of the number of zeros yields
reasonable posterior intervals and Bayesian p-values. On the other hand, as displayed on the right-hand side of Table 2, the
predictive checks for the existence of measurements above 20 (the maximum observed value) lead to unexpected near-one p-
values. However, although almost all the replications contain some count rate above 20, so this itself is not a problematic result
for our model validation since the percentage of such measurements is negligible. Note the agreement between p-values when
assessing the percentage of count rates above 20 and those p-values derived from the percentage of subjects with at least one
extreme count; it may be concluded that over-20 measurements appear exactly once within each of these subjects. As another
numerical check, Table 3 compares the overall distribution of the observed data to the distribution which results from averaging
the 2000 replicated datasets from the posterior predictive density.

TABLE 2 Summary of posterior predictive checks for two test statistics regarding the fitting of the zeros in the HI data: (a)
percentage of recorded zero values, and (b) subjects without utilization of private health services.

Assessment for zeros Assessment for values > 20

Discrepancy Tobs T 2.5
rep,i T 97.5

rep,i pB Discrepancy Tobs T 2.5
rep,i T 97.5

rep,i pB

Perc. zeros Perc. > 20
Overall 63.1 62.6 63.7 0.609 Overall 0 0 0.025 0.985
Male 63.8 62.8 64.7 0.454 Male 0 0 0.043 0.911
Female 62.7 62.1 63.6 0.645 Female 0 0 0.024 0.923

Perc. subjects all zeros Perc. subjects any > 20
Overall 21.8 21.2 23.1 0.602 Overall 0 0 0.146 0.985
Male 22.6 21.8 24.9 0.683 Male 0 0 0.243 0.911
Female 21.4 20.1 22.7 0.517 Female 0 0 0.146 0.923

TABLE 3 Comparison between the observed distribution of count rates in the HI data and the distribution that results from
averaging the 2000 replicated datasets from the posterior predictive distribution.

Assessment for count rates

0 1 2 3 4 5 6 7 8 9 ≥ 10 Total
Perc. observed 63.1 17.3 8.8 4.6 2.4 1.5 0.9 0.4 0.3 0.2 0.5 100
Perc. simulated 63.2 17.1 8.7 4.6 2.5 1.4 0.9 0.5 0.3 0.2 0.5 100
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Alternatively, the comparison between the characteristics of the reference data and its replications can be graphically expressed
by plotting some of the checks undertaken. In this regard, there is a broad range of checking plots which are proven to be
useful23,39. For instance, Figure 5 assesses whether the model is adequate to capture the health care usage by accounting for age
and the mortality risk. With this purpose, each subject’s measurement is first allocated to one of three possible age categories,
namely [65, 75), [75, 95), and [95, 102.5] years, and is then assigned to one of two possible subgroups distinguishing between
alive and deceased subjects. The observed amount of emergency claims is recorded within each of the six possible groups, and
observations are compared to the 2000 simulated distributions of annual emergency claims by age and event status. The position
of Tobs with respect to the histogram generated from the replicated datasets allows us to illustrate how precisely our model fits the
annual emergency demand when stratifying by the aforementioned groups. The more centered the observed test statistic is with
respect to its corresponding histogram, the better the model captures the distribution of the yearly count rates in that category.

FIGURE5Observed amount of emergency claims per year per age group and survival status (vertical line at each plot) compared
to 2000 replicated datasets from the posterior predictive distribution.

6.2 Residual diagnostics
Beyond posterior predictive methodology for model diagnostics, a qualitative analysis of residuals arises as a primary step to
validate the model, especially residual plots. These can in fact be considered a classical type of checking plots within the wide
group of graphical posterior predictive tools. Since there are two simultaneous processes considered in our model, the analysis
of the subject-specific (conditional) residuals must be separately performed for both approaches.5
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6.2.1 Residuals of the longitudinal submodel
For the longitudinal part, the analysis of the residuals is focused on a count-responsemodel, so normality and homoscedasticity in
the residuals is generally not observed. Instead, the corresponding scatterplot of the residuals versus the fitted values is expected
to exhibit a non-homogeneous configuration, with the data being concentrated around as many nearly-parallel curves as there
are possible integer responses in the observed data yi. An appropriate assessment of longitudinal residuals cannot therefore
be directly conducted; a different procedure is necessary to achieve continuous residuals which allow for interpretable results.
Going through this idea, Dunn and Smyth40 define the so-called randomized quantile residuals, which enable the obtainment of
continuous residuals in the case of non-Gaussian responses. To obtain this type of residuals, let us first consider the theoretical
cumulative distribution of the current data, F {yi(t) ∣ bi,�y}, which in turn can be viewed as a continuous random variable
distributed as U(0,1). The subject-specific quantile residuals are therefore defined by

rq,i(t ∣ bi,�y) = Φ−1
[

F {yi(t) ∣ bi,�y}
]

, (15)

where Φ−1 refers to the inverse cumulative distribution function of the standard normal model, and rq,i(t ∣bi,�y)
D
←←←←←←←→ N(0, 1) if

�y and bi are consistently estimated. We next introduce a randomization process to derive continuously distributed residuals;
we specifically use the replications yrep,i from the posterior predictive distribution to estimate the residuals:

rq,i(t ∣ b̄i, �̄y) = Φ−1
[

Pr{yrep,i(t) < yi(t) ∣ b̄i, �̄y} + (1∕2) Pr{yrep,i(t) = yi(t) ∣ b̄i, �̄y}
]

.

The above simulation-based strategy now allows us to obtain continuously distributed residuals for each response observation,
and thus perform the usual residuals assessment based on the Q-Q plot. Figure W12 in Appendix E (left panel) displays the
residuals assessment for our ZINBP longitudinal outcomes, where most of the plotted points tend to be concentrated around the
45-degree reference line, that is, the uniform cumulative distribution function. There are, however, two small groups of data for
which the corresponding empirical quantiles are clearly larger than the theoretical ones. Specifically, the arrangement of points
at the lower-left corner is probably due to the lack of left tail in the distributions of both our original and replicated datasets
when comparing them to the Gaussian ones, whereas the group of points at the upper-right corner suggests a heavy right tail in
the aforementioned distributions as a consequence of some extreme values.

6.2.2 Residuals of the relative risk submodel
The residuals diagnostic for the survival part is assessed here through the Cox-Snell residuals41:

rcs,i{t ∣i(t),�t} = i {t ∣i(t),wi(t)} = ∫

Ti

Li
ℎi{s ∣i(t),wi(t)} ds. (16)

The basic idea behind this type of residuals comes from the principle that if the assumed model fits the data accurately, then

i {t ∣ T ∗i > Li, i(t),wi(t)} = Pr{T ∗i > t ∣ T
∗
i > Li, i(t),wi(t)} ∼ U (0, 1),

and consequently,
i {t ∣i(t),wi(t)} = − log

[

i {t ∣ T ∗i > Li, i(t), wi(t)}
]

∼ Exp (1).

We can therefore assess the fitting of the survival part by examining if the Cox-Snell residuals approximately follow an expo-
nential distribution of mean one. To properly account for left truncation and right censoring in the residuals’ values, we compare
the exp(t) = exp(−t) curve with the Kaplan-Meier (KM) estimates of the survival function associated with the set of residuals
rcs,i{t ∣i(t),�t}. In our case, such residuals are obtained from the posterior mean estimates �̄:

rcs,i{t ∣i(t), �̄t} = ∫

Ti

Li
ℎ̄0(s) exp{
̄⊤w sexi + �̄(s) �̄i(s)} ds.

We can use the Bayesian computational tools to obtain a large number of replicates for the Cox-Snell residuals, thus including
their corresponding KM survival curves in the final comparison. The results are shown on the right panel of Figure W12 in
Appendix E, where the survival curve estimates are approximated through KM(t) ≈ a exp(bt) + c, with a, b, c ∈ ℝ.



PIULACHS ET AL 17

7 DISCUSSION

Seeking a better understanding of mortality risk evolution among elderly beneficiaries of private care, we have simultaneously
tackled different statistical challenges which may arise within the joint modeling framework. Specifically, our article sets itself
apart from previous works by combining different aspects into a single estimation procedure. We have proposed a Bayesian joint
model where the relationship between the longitudinal and time-to-event processes is flexibly modeled over time through cubic
P-splines, while also accounting for the special features of each process. Assessing the longitudinal response involves tracking
data with count rates that are affected by both an abundance of zeros and an inherent heterogeneity among subject-specific
measurements. The hierarchical ZINBP regression model has been found to offer an especially optimal level of generality. In
the survival process, the usual right censoring is accounted for, along with left truncation. This situation typically arises when
individuals are subject to a determined age threshold for study entry, and the subsequent delayed entry bias can be properly
addressed by translating each subject’s starting point to the corresponding age above the aforementioned threshold. Moreover,
an accurate estimation of the baseline hazard function is also proposed using a P-spline based approach. However, based on the
researcher’s previous knowledge of the data, this assumption may be eventually simplified to use an adequate survival model
which has built-in smoothness.
A number of health care databases include survey information that is ideal for assessment via a joint model which combines

a time-varying association with the aforementioned features. The proposed JMTV-ZINBP is exemplified using the relationship
between the yearly counts for emergency health care usage and the mortality risk for a relatively large sample of policyholders
over 65. Although it is broadly accepted that senior policyholders’ morbidity increases with age, precisely determining the
impact of health deterioration (measured here by an increase in claims, reflecting a rise in emergency care needs) on mortality
risk projections at a specific age over 65 is not something that can be done intuitively. In contrast with the stationary hazard ratio
for a one-claim increase provided by a traditional joint model approach, our time-varying joint model quantifies the dynamic
nature of the true relationship between emergency demand and risk. The association shape obtained from our empirical data
shows it to depart from a stationary relationship, exhibiting significant variation across the ages from 65 to 100. Concretely, the
emergency care requirement turns out to be much more defining in the mortality risk for subjects under 75 years old, and not
so much for ages around 85, where the aging process itself entails the need for greater medical attention. At ages above 95, the
relationship between emergency care requirements and mortality risk is again higher than the constant parameter association
obtained under a traditional joint model approach. This means that, as in the 65-75 age category, the emergency claims at 95-
102.5 are more meaningful in terms of risk, albeit for different reasons. In this latter age group, human biology itself establishes
immediate limits on the remaining life expectancy, so requiring emergency care services becomes very critical indeed in this
age range. To conclude, our joint model allows for the estimation of the specific age-related hazard ratio for any age above 65.
This provides a genuine output in private health care, supplying professionals with an initial measure for determining who is
likely to require more emergency attention and thus allowing for the optimal assignment of policies over time.
A numerical study has been performed to test both the consistency of our general model and its advantageous features when

compared to simpler joint model alternatives. In addition, a Bayesian model assessment has been performed by comparing the
predictive distribution to the observed data, along with using residual plots related to both longitudinal and survival submodels.
This makes headway in applying the proposed joint model in a wide range of potential studies focused on assessing the time-
changing effect of a zero-inflated discrete outcome on the hazard process. Nonetheless, despite the unified modeling framework
provided, further research remains on the agenda. Firstly, it would be very interesting to be able to estimate how many policy-
holders do not reach the age of 65 in our study due to major health problems. These missing subjects might ultimately lead to a
bias in the estimates for both the longitudinal and time-to-event parameters42, inasmuch as healthier individuals from our target
population are more likely to be observed. Although we expect that the number of policyholders who die before 65 is not very
high, we do not currently have this information available, so this issue has not been addressed. Secondly, it would be extremely
useful to include multiple longitudinal outcomes in the joint model43,44,45, in order to allow for discerning between the three
analyzed reasons for emergency medical attention. Thus, insurers could then identify the types of emergency claims which more
decisively contribute to increases in the hazard risk. Delving deeper into this idea, an individual could then be assigned mul-
tiple health behaviors over time based on the amount and type of claims experienced, therefore extending survival techniques
to model multistate event history data. More concretely, the observation times between sequentially-observed claims could be
efficiently modeled using the hazard risk information, through the methodology applied in Richards.22 A third important exten-
sion to this work would be rooted on the idea that our data most likely masks a certain number of unknown sub-populations or
latent classes46; we could then focus on identifying how many individuals belong to each class in order to optimally fit the data.
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Implementing the second and third points of improvement would not only entail methodological changes, but would also con-
siderably increase the processing time for the joint model, and these have therefore remained beyond the scope of the present
study. In connection with this, several authors have pointed out that the computation time may become the main constraint when
applying Bayesian joint models.47 For relatively large datasets such as ours, a key point of enhancement would be exploring
alternative Bayesian procedures due to the associated computational complexity. For instance, in some fields of investigation,
one might be interested in analyzing the main longitudinal response over periods of time shorter than a year, using monthly,
weekly, or even daily count rates. From a conceptual point of view, there is no methodological constraint that would prevent the
use of these interval lengths. In our case, however, this would entail splitting each of the current longitudinal responses into as
many measurements as required for the time frame chosen. In practice, this could lead to unfeasible computational times.
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