
Shot, scene and keyframe ordering for interactive video re-use

Lorenzo Baraldi1, Costantino Grana1, Guido Borghi1, Roberto Vezzani1, Rita Cucchiara1

1Dipartimento di Ingegneria “Enzo Ferrari”, Università degli Studi di Modena e Reggio Emilia
Via Vivarelli 10, Modena MO 41125, Italy

{name.surname}@unimore.it

Keywords: Shot Detection, Scene Detection, Performance Measures, Clustering

Abstract: This paper presents a complete system for shot and scene detection in broadcast videos, as well as a method to
select the best representative key-frames, which could be used in new interactive interfaces for accessing large
collections of edited videos. The final goal is to enable an improved access to video footage and the re-use of
video content with the direct management of user-selected video-clips.

1 INTRODUCTION

Videos are nowadays the largest and richest source of
information in the multimedia universe: as a matter
of fact, some estimations suggest that more than 70%
of big data in the world consists of videos. One of the
main issues, for content producers and owners, like
broadcasting networks, is to re-use and make video
content accessible in an enjoyable, efficient and inter-
active way.

We argue that there is a growing need of auto-
matic tools to de-structure video content in useful
and semantically consistent clips, especially when the
length of the video makes the usage of common seek
operations unfeasible to get an insight of the video
content. The final goal is that of managing videos
as pieces of text, allowing signicant parts to be eas-
ily identified, selected, copy-and-pasted, and thus re-
used. The basic unit for this purpose cannot be the
single frame, as a character cannot be the basic unit
for a text copy-and-pasting task. It also cannot be
something like a DVD chapter, since either it is too
long, or it is defined by the editor with a specific in-
terpretation, which not necessarily matches the re-use
needs.

In this work, we present a pipeline of automatic
video analysis which includes shot detection, scene
detection, and keyframes selection with importance
ordering. The output is an XML based description,
that allows a web interface to provide the user with
an easier navigation system, and a way for selecting
and extracting meaningful video parts. We publicly
release the source code of our shot segmentation al-
gorithm.

2 RELATED WORK

Video decomposition techniques aim to partition a
video into sequences, like shots or scenes. Shots are
elementary structural segments that are defined as se-
quences of images taken without interruption by a sin-
gle camera. Scenes, on the contrary, are often defined
as series of temporally contiguous shots characterized
by overlapping links that connect shots with similar
content (Hanjalic et al., 1999).

Most of the existing shot detection techniques
relies on the extraction of low level features, like
pixel-wise comparisons or color histograms. Other
techniques exploit structural frame features, such as
edges. After the introduction of SVM classifiers,
moreover, several approaches exploited them to clas-
sify candidate transitions (Ling et al., 2008). Re-
cently, algorithms that rely on local descriptors (such
as SIFT or SURF) were also proposed. One of the
most recent approaches to shot detection, presented
in (Apostolidis and Mezaris, 2014), is indeed based
on local SURF descriptors and HSV color histograms.

On a different note, semantically coherent shots
which are temporally close to each other can be
grouped together to create scenes. Existing works in
this field can be roughly categorized into three cat-
egories: rule-based methods, graph-based methods,
and clustering-based methods. They can rely on vi-
sual, audio, and textual features.

Rule-based approaches consider the way a scene
is structured in professional movie production. Liu et
al. (Liu et al., 2013), for example, propose a vi-
sual based probabilistic framework that imitates the
authoring process and detects scenes by incorporat-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/389869898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ing contextual dynamics and learning a scene model.
In (Chasanis et al., 2009), shots are represented by
means of key-frames, clustered with spectral cluster-
ing, and then labeled according to the clusters they
belong to. Scene boundaries are then detected from
the alignment score of the symbolic sequences.

In graph-based methods, instead, shots are ar-
ranged in a graph representation and then clustered
by partitioning the graph. The Shot Transition Graph
(STG), proposed in (Yeung et al., 1995), is one of the
most used models in this category: here each node
represents a shot and the edges between the shots
are weighted by shot similarity. In (Rasheed and
Shah, 2005), color and motion features are used to
represent shot similarity, and the STG is then split
into subgraphs by applying the normalized cuts for
graph partitioning. More recently, Sidiropoulos et
al. (Sidiropoulos et al., 2011) introduced a new STG
approximation that exploits features extracted from
the visual and the auditory channel.

3 VIDEO ANALYSIS

Videos can be decomposed at three different granu-
larity levels: frames, shots and scenes. A video, in-
deed, is an ordered set of frames; sequences of adja-
cent frames taken by a single camera compose a shot,
and two consecutive shots can be spaced out by a tran-
sition, which is in turn a set of frames. Finally, sets
of contiguous and semantically coherent shots form a
scene.

Since scenes are sets of shots, the first step in
scene detection is the identification of shot bound-
aries. We propose a shot segmentation approach that
assures high accuracy levels, while keeping execu-
tion times low. Our method identifies shot bound-
aries by means of an extended difference measure,
that quantifies the change in the content of two differ-
ent positions in the video. Shots are then grouped into
scenes with a clustering approach that includes tem-
poral cues. We also describe a solution to sort key-
frames from a scene to let the user select the level
of detail of a scene summary. Finally, every shot is
enriched by a number of tags, automatically detected
on the selected keyframes, using the API provided by
Clarifai, Inc.1.

3.1 Shot Boundaries Detection

Given two consecutive shots in a video sequence, the
first one ending at frame e, and the second one start-
ing at frame s, we define the transition length as the

1https://developer.clarifai.com/docs/

number of frames in which the transition is visible,
L = s− e− 1. An abrupt transition, therefore, is a
transition with length L = 0. The transition center,
n = (e+ s)/2, may correspond to a non-integer value,
that is an inter-frame position: this is always true in
case of abrupt transitions.

Having selected a feature F to describe frames in
a video, we define the extended difference measure
Mw

n , centered on frame or half-frame n, with 2n ∈ N,
and with a frame-step 2w ∈ N, as

Mn
w =

d(F(n−w),F(n+w)), if n+w ∈ N
1
2

(
M

n− 1
2

w +M
n+ 1

2
w

)
, otherwise

(1)

where d(F(i),F(j)) is the distance between frames
i and j, computed in terms of feature F . The second
term of the expression is a linear interpolation adopted
for inter-frame positions. This is necessary because
feature F is relative to a single frame and cannot be
directly computed at half-frames. The selected fea-
tures should have the property to be almost constant
immediately before and after a transition, and to have
a constant derivative during a linear transition.

The algorithm starts by thresholding the Mn
w val-

ues at all frames and half frames positions with w =
0.5. This gives a set of candidate positions for transi-
tions. Two operations are then needed: merging and
validation. Merging is the aggregation of adjacent
candidate positions, which provides a list of candi-
date transitions C = {ti = (fi, li)}, where fi is the first
position of the transition, and li is the last position.
These may be real transitions (most likely hard cuts),
or false positives, i.e. shots with high level differences
due to motion. A validation step is then performed
to prune false positives, by measuring the transition
Peak value, which is defined as:

Peakw(t) = max
f≤n≤l

(Mn
w)−min(M f−2w

w ,Ml+2w
w) (2)

Peakw(t) measures the variation in difference values
between the transition and the adjacent shots. In or-
der to validate the transition, therefore, a significant
variation must be observed on at least one side of the
candidate transition.

To detect gradual transitions, previous steps are
repeated at increasing values of w. This would pos-
sibly cause other positions to surpass the threshold
value, thus changing and eventually invalidating pre-
viously found transitions. For this reason, every vali-
dated transition is protected by a safe zone: only po-
sitions between previous transitions with distance su-
perior to a certain number of frames are further ana-
lyzed.

In total four parameters need to be set up for our
algorithm: T , the threshold on difference levels; TP,

Algorithm 1: Shot detection
T ←{} ; // set of transitions
for w← 0.5 to W do

C←{} ; // set of candidates
for n← 0 to N do

if Mn
w > T then

C←C∪ (n,n) ; // add a
candidate abrupt transition

end
end
Merge consecutive elements of C ;
// make candidates gradual
foreach c ∈ {ti ∈C : Peakw(ti)> TP} do

if distance between c and its nearest
element in T ≤ TS then

T ← T ∪ c ; // make candidate
a confirmed transition

end
end

end

(a) α = 0 (b) α = 0.5 (c) α = 1
Figure 1: Effect of α on distance measure d(i, j). Higher
values of α enforce connections between near shots and in-
crease the quality of the detected scenes (best viewed in
color).

a threshold on the Peak value, which in practice was
set to T/2; TS, the number of frames composing the
safe zone; finally, W , the maximum value for w. A
summary of the approach is presented in Algorithm
1.

3.2 Scene Detection via Hierarchical
Clustering

Having detected shot boundaries, scenes can be iden-
tified by grouping adjacent shots. In contrast to other
approaches that used clustering for scene detection,
we build a distance measure that jointly describes
appearance similarity and temporal proximity. The
generic distance between shots i and j is defined as

d(i, j) = 1− exp
(
−d2

1(ψ(i),ψ(j))+α ·d2
2(i, j)

2σ2

)
(3)

where ψ(i) is the visual feature vector describing shot
i, d2

1 is the Bhattacharyya distance and d2
2(i, j) is the

normalized temporal distance between shot i and shot
j, while the parameter α tunes the relative importance
of visual similarity and temporal distance. To de-
scribe temporal distance between frames, d2

2(i, j) is
defined as:

d2
2(i, j) =

|mi−m j|
l

(4)

where mi is the index of the central frame of shot i,
and l is the total number of frames in the video. As
shown in Fig. 1, the effect of applying increasing val-
ues of α to d is to raise the similarities of adjacent
shots, therefore boosting the temporal consistency of
the resulting groups.

We then cluster shots using hierarchical clustering
methods based on complete linkage, where the dis-
similarity between two clusters Cx and Cy is defined
as the maximum distance of their elements

d(Cx,Cy) = max
i∈Cx, j∈Cy

d(i, j) (5)

To cluster N shots, we start with N clusters, each
containing a single shot, then we iteratively find the
least dissimilar pair of clusters, according to Eq. 5,
and merge them together, until everything is merged
in a single cluster. This process generates a hierarchy
of shots, with N levels and i clusters at level i, each
level representing a clustering of the input shots.

Once a particular level is selected, the aforemen-
tioned distance does not guarantee a completely tem-
poral consistent clustering (i.e. some clusters may
still contain non-adjacent shots); at the same time, too
high values of α would lead to a segmentation that ig-
nores visual dissimilarity. The final scene boundaries
are created between adjacent shots that do not belong
to the same cluster.

3.3 Importance ordering of keyframes

Presenting video content in reduced form is not
straightforward: a random selection of frames, for ex-
ample, may show the same subject many times, while
disregarding the visual variability of a scene. The
number of keyframes per scene, moreover, should be
a parameter controlled by the user, based on the avail-
able space on the interface: for this reason we devise
a solution to sort the keyframes in order of “presen-
tation importance”, which allows to show the more
significant ones before the others.

In the extreme case of summarizing a scene with
just one shot, the selected shot should convey some-
thing which is shared by all keyframes, thus a rea-
sonable choice is to pick the median of the set of
keyframes. If we then want to add another frame
to the summary, this should be as different as possi-
ble from the already selected frames, so the keyframe

Figure 2: Ten shots keyframes for a sample scene. The left column shows, in row major order, the frames in temporal
order, the right column by “presentation importance”. In right column, the first keyframe is the scene median (an example of
buildings), the second one is a car with blurred background which is definitely different. The third one is a couple of people,
and so on. With just the first three frames most of the scene variability has been summarized.

with the maximum distance from the nearest element
in the summary could be selected.

To sum up, every scene is described by a set of
keyframes obtained by selecting the center frame of
every shot in the scene. Distance between frames is
measured as for the scene detection, and all keyframes
are ordered based on their “presentation importance”.
Fig. 2 shows an example of a scene shots reordering:
shots are included in order of importance, if the user
requests to reduce their number.

3.4 XML Description

The output of the video analysis module has to be pro-
vided to the user interface, which allows the user to
effectively interact with the video resource. In order
to provide a formal and extendible machine readable
format we adopt an XML description for the video
structure.

A <video> element is the root node and be-
gins with the basic metadata: <url>, <title>, and
<description>. Then a <shots> element starts and
it lists all detected shots in the video resource. Ev-
ery <shot> has an id attribute (its time position in
seconds), the starting and closing frames (begin and
end) and contains a whitespace separated list with
the words detected by the Clarifai API (spaces in
concepts are substituted by underscores). Finally a
<scenes> element describes the detected scenes, as
a sequence of <scene> elements which refer to the
previously defined shots again with a begin and end
attribute. Every scene contains the full list of shots
in presentation order, so that the user interface knows

the time position of the scene and the shots to show in
case a summarization is required.

Fig. 3 shows an extract of a longer XML descrip-
tion, referring to the shots in Fig. 2. It is possible to
note that ten shots are contained in the scene (from
124 to 147), and that the first one in presentation or-
der should be the shot with id=127, that is the second
one. The shot is described by the words street, ar-
chitecture, town, and house, which are indeed a very
good guess.

4 EXPERIMENTS

We evaluate our shot and scene detection approach
on a collection of ten randomly selected broadcast-
ing videos from the Rai Scuola video archive2, mainly
documentaries and talk shows. Shots and scenes have
been manually annotated by a set of human experts
to define the ground truth. Our dataset and the cor-
responding annotations, together with the code of our
shot detection algorithm, are available for download
at http://imagelab.ing.unimore.it.

For the shot detection task, our dataset contains
987 shot boundaries, 724 of them being hard cuts and
263 gradual transitions. The percentage of gradual
transitions greatly varies from video to video, with
V4,V5, V9 and V10 having a percentage of gradual tran-
sitions superior to 44%, and the rest having a mean
of 9%. In order to evaluate the shot detection results
we employ the classical definitions of Precision and

2http://www.scuola.rai.it

Figure 3: Example of XML video analysis output.

Recall of a transition, summarizing them with the F-
measure. To evaluate the scene detection results, in-
stead, we adopt the improved version the Coverage,
Overflow and F-Score measures proposed in (Baraldi
et al., 2015). Coverage* measures the percentage of
frames belonging to the same scene correctly grouped
together, while Overflow* evaluates to what extent
frames not belonging to the same scene are erro-
neously grouped together.

Distance d(F(i),F(j)) was set to a linear combi-
nation of the sum of squared differences of frames i
and j and of the χ2 distance of color histograms ex-
tracted from frames i and j. Both measures were nor-
malized by the number of pixels in a frame. For the

Figure 4: Screenshot of the user interface. The video is
synchronized to the scene dashboard, and the user can use
the embedded video player to move through the video, or
directly use the summary provided by the keyframes. Shots
and scenes are active in the sense that the user can select
them and drag on the right landing area for further reuse.
The red/green line marks the previous and current scenes,
along with a temporal reference relative to the starting time
of the scene.

scene detection task, shots were described by means
of color histograms, hence relying on visual features
only: given a video, a three-dimensional histogram
was computed for each frame, by quantizing each
RGB channel in eight bins, for a total of 512 bins.
Then, histograms from frames belonging to the same
shot were summed together, thus obtaining a single
L1-normalized histogram for each shot.

The performance of the proposed approaches
was evaluated and compared against the shot detec-
tion proposal of Apostolidis et al. (Apostolidis and
Mezaris, 2014), and the scene detection approaches
presented in (Sidiropoulos et al., 2011) and (Chasa-
nis et al., 2009) using the executable provided by
the authors3 for the first two and reimplementing
the method in (Chasanis et al., 2009). Threshold T
was set to 80, while the safe zone TS was fixed to
20 frames, and we repeated our gradual transitions
search routine up to w = 2.5.

Our shot detection approach performs consider-
ably well, achieving high levels of F-measure on all
videos, except in those with lots of gradual transi-
tions. Overall, our method achieves an F-measure of
0.84, exactly the same results obtained by the algo-
rithm of (Apostolidis and Mezaris, 2014). In general,
it shows very good performance on abrupt and short
gradual transitions, while it tends to fail on very long
transitions. Regarding time performance, the running
time of a CPU-based single-thread implementation of
our algorithm is about 13% of the video duration on a
PC with Intel Core i7 processor at 3.6 GHz, which is
more than twice faster than (Apostolidis and Mezaris,

3http://mklab.iti.gr/project/
video-shot-segm

Video Chasanis et al. Sidiropoulos et al. Our method
F-Score∗ C ∗ O∗ F-Score∗ C ∗ O∗ F-Score∗ C ∗ O∗

V1 0.70 0.65 0.24 0.70 0.63 0.20 0.82 0.75 0.10
V2 0.60 0.91 0.55 0.61 0.73 0.47 0.67 0.55 0.15
V3 0.51 0.87 0.64 0.51 0.89 0.64 0.60 0.84 0.54
V4 0.54 0.70 0.56 0.22 0.95 0.88 0.73 0.79 0.33
V5 0.34 0.92 0.79 0.57 0.66 0.50 0.79 0.73 0.14
V6 0.20 0.89 0.88 0.74 0.72 0.24 0.68 0.67 0.31
V7 0.37 0.75 0.76 0.56 0.69 0.53 0.80 0.78 0.17
V8 0.59 0.65 0.47 0.15 0.89 0.92 0.62 0.66 0.42
V9 0.07 0.83 0.96 0.15 0.94 0.92 0.85 0.91 0.20
V10 0.50 0.93 0.66 0.11 0.93 0.94 0.67 0.57 0.20

Average 0.44 0.81 0.65 0.43 0.80 0.63 0.72 0.73 0.26

Table 1: Performance comparison on the RAI dataset using the Coverage*, Overflow* and F-Score* measures.

2014).
Regarding scene detection, the overall results of

our approach are shown in Table 1. As it can be seen,
our method achieves excellent results, when com-
pared to recent and state-of-the-art methods, featuring
a considerably reduced Overflow*. Finally, a proto-
type user interface has been created and is available
for testing at http://imagelab.ing.unimore.it/
scenedemo/. A sample screenshot is shown in Fig. 4.

5 CONCLUSIONS

We described a novel approach to video re-use by
means of shot and scene detection, which is moti-
vated by the need of accessing and re-using the ex-
isting footage in more effective ways. Additional im-
provements and a simple XML description allow the
creation of an effective user interface which enables
the user to interact with the video.

Acknowledgements: This work was carried out within
the project “Città educante” (CTN01 00034 393801) of the
National Technological Cluster on Smart Communities co-
funded by the Italian Ministry of Education, University and
Research - MIUR.

REFERENCES

Apostolidis, E. and Mezaris, V. (2014). Fast Shot Segmen-
tation Combining Global and Local Visual Descrip-
tors. In IEEE Int. Conf. Acoustics, Speech and Signal
Process., pages 6583–6587.

Baraldi, L., Grana, C., and Cucchiara, R. (2015). Measur-
ing Scene Detection Performance. In Iberian Conf.
Pattern Recognit. and Image Anal., Santiago de Com-
postela, Spain.

Chasanis, V. T., Likas, C., and Galatsanos, N. P. (2009).
Scene detection in videos using shot clustering
and sequence alignment. IEEE Trans. Multimedia,
11(1):89–100.

Hanjalic, A., Lagendijk, R. L., and Biemond, J. (1999). Au-
tomated high-level movie segmentation for advanced
video-retrieval systems. IEEE Trans. Circuits Syst.
Video Technol., 9(4):580–588.

Ling, X., Yuanxin, O., Huan, L., and Zhang, X. (2008).
A method for fast shot boundary detection based
on SVM. In Image and Signal Processing, 2008.
CISP’08. Congress on, volume 2, pages 445–449.

Liu, C., Wang, D., Zhu, J., and Zhang, B. (2013). Learning a
Contextual Multi-Thread Model for Movie/TV Scene
Segmentation. IEEE Trans. Multimedia, 15(4):884–
897.

Rasheed, Z. and Shah, M. (2005). Detection and represen-
tation of scenes in videos. IEEE Trans. Multimedia,
7(6):1097–1105.

Sidiropoulos, P., Mezaris, V., Kompatsiaris, I., Meinedo, H.,
Bugalho, M., and Trancoso, I. (2011). Temporal video
segmentation to scenes using high-level audiovisual
features. IEEE Trans. Circuits Syst. Video Technol.,
21(8):1163–1177.

Yeung, M. M., Yeo, B.-L., Wolf, W. H., and Liu, B. (1995).
Video browsing using clustering and scene transitions
on compressed sequences. In IS&T/SPIE’s Sympo-
sium on Electronic Imaging: Science & Technology,
pages 399–413.

