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Abstract

It is desirable to combine machine learning and program analysis so that one

can leverage the best of both to increase the performance of software analytics.

On one side, machine learning can analyze the source code of thousands of well-

written software projects that can uncover patterns that partially characterize

software that is reliable, easy to read, and easy to maintain. On the other side,

the program analysis can be used to define rigorous and unique rules that are

only available in programming languages, which enrich the representation of

source code and help the machine learning to capture the patterns better.

In this dissertation, we aim to present novel code modeling approaches to

learn the source code better and demonstrate the usefulness of such approaches

in various software engineering tasks. The methods developed for the aims to

utilize the advantages of both deep learning techniques and static code analysis

techniques.

The contributions in this dissertation are as follows:

1. Hierarchical representation of source code: a novel approach to model

the source code as a hierarchical representation of di↵erent code levels, e.g.,

token level, statement level, function level, etc., to better capture the

semantic information of source code from finer-grained to coarser-grained

level for the API mapping task.

2. Enhanced AST with semantic information: a novel tree representation

of source code, so-called the Dependency Tree, which is the enriched version

of the Abstract Syntax Tree with def-use chain information. This is a



framework of bilateral neural networks (Bi-NN), an idea adapted from the

area of neural machine translation and Siamese neural networks, aiming to

generalize a previous study on cross-language program classification.

3. Unsupervised API mapping: a deep learning-based approach that can

adapt the two domains with almost no parallel data, namely SAR. The

underlying goal of prior API mapping techniques is essential to find a

transformation that can align two di↵erent domains (in our context, the two

vector spaces for APIs in two di↵erent languages). The key idea is to adapt

the Generative Adversarial Network to align the vector spaces without the

need for parallel data for the API mapping task.

4. Interpretability for code modeling: Towards the interpretability of

the neural network for code classification, we propose to use the attention

mechanism to quantify the importance of input elements based on their

e↵ects on the outputs of the network. The quantified attention scores and

e↵ects of the perturbed elements help to provide explanations on how the

network classify programs.

5. Capsule Network for AST Processing: a novel tree-based capsule

networks (TreeCaps) for processing program code . TreeCaps is a fusion

between capsule networks with tree-based convolutional neural networks,

to achieve learning accuracy higher than existing graph-based techniques

while it is based only on trees. TreeCaps introduces novel variable-to-static

routing algorithms into the capsule networks to compensate for the loss of

previous routing algorithms. The evaluation on programs written in di↵erent

programming language shows that TreeCaps outperforms other approaches

in two use case scenarios, which are code classification and function name

prediction.
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Chapter 1

Introduction

Software is pervasive in present-day society. Many parts of life, such as health

services, energy, transportation, etc., relies upon high-quality software. Un-

fortunately, building software is an expensive procedure: software engineers

need to handle the complexity of software while at the same time evading bugs,

and delivering highly functional software products on schedule. There are on-

going interests for developments in software tools that help make programming

progressively solid and viable. New techniques are continually looked for, to

alleviate the complexity and help engineers to build better software.

Machine learning is one of the techniques that have been utilized to mine

knowledge from existing artifacts as a stage forward to reduce software main-

tenance costs and detect bugs. The application of Machine Learning to solve

software engineering problems and has been one of the new, hotly debated

issues in software engineering. The mined knowledge can be utilized for under-

standing big systems, reducing software maintenance costs, recognizing bugs,

code refactoring, and so forth. With the increasing availability of open-source

projects on centralized code hosting services, such as Github, Bitbucket, Gitlab,

this new direction is now possible. Concretely, this field is located at the inter-

section of machine learning, software engineering, and programming language

research. The goal is to create probabilistic source code models that learn how

developers use code artifacts within the existing code while taking into account

the highly structured information within code (aka Program Representation

Learning). These models are then used to augment existing tools with statistical

information and enable new machine learning-based software engineering.

In this dissertation, we aim to propose machine learning models that can

capture the rich structural representation of the source code. Such representa-

tions can be generated from traditional program analysis and contain lots of

1



CHAPTER 1. INTRODUCTION

patterns that can be learned by using machine learning.

Moreover, developers usually work with multiple languages or platforms at

the same time to address the di↵erent requirements for the business. In general,

the process to adapt the source code written in one language (or platform) to

another is called domain adaptation and it is pervasive in software engineering.

The key challenge when working on multiple domains is to find the similarity

across them as a stage forward to adapt the domains together. For example,

software migration can be considered as a domain adaptation problem as the

goal is to migrate the code written in one language to another language. The

domains, in this case, are the software artifacts written in di↵erent languages

(or di↵erent platforms). As such, the goal of the domain adaptation for software

is to automatically find the similarity across the domains to assist the developer

in the process of adapting them.

The first problem we aim to tackle is the API mapping task. To address the

di↵erent requirement for business, software companies often develop software

in one language and then migrate them to another language, or migrate the

software to work on multiple platforms and devices. The process of migrating

software between languages and platforms is called software migration. The

domains, in this case, are the code written in di↵erent languages (or di↵erent

platforms). The goal of the domain adaptation for software migration is to

automatically find the similarity across the languages to assist the migration

process of the developers. Toward helping developers in the process of code

migration, there exist semi-automatic approaches and supporting tools [46,

48, 88, 137]. Those tools and methods require users to define the migration

rules between the respective program constructs and the mappings between

the corresponding Application Programming Interfaces (APIs) that are used in

two languages. The existing tools and methods expect programmers to specify

such API mappings. There are usually a large number of API mappings and

many of them are newly introduced from time to time as well. Thus, existing

tools can support only a subset of needed API mappings. As such, we need a

method to automatically mine the API mapping across the language to reduce

the human e↵ort to manually collect and label the mapping.

Algorithm classification is another source code processing problem for code

learning that we aim to tackle in this dissertation. Algorithm classification is to

automatically identify the classes of a program based on the algorithm(s) and/or

data structure(s) implemented in the program. It can be useful for various

tasks, such as code reuse, code theft detection, and malware detection. It can

2



CHAPTER 1. INTRODUCTION

be even a greater challenge to bring the benefit of algorithm classification across

di↵erent programming languages, to facilitate program reuse and synthesis

across languages, reducing the need of reimplementing the same algorithms in

di↵erent languages repeatedly.

Thesis Statement: In this dissertation, we aim to (1) propose novel

representations of programs; (2) propose novel machine learning techniques that

can model such representations demonstrate the usefulness of such approaches in

various source code processing tasks in software engineer, such as API mapping,

method name prediction, and algorithm classification; and (3) propose a novel

mechanism to interpret such code modeling techniques. For (1), we aim to

leverage the well-established foundation of program analysis to represent the

code in a more meaningful way, (2) is about the learning algorithms that can

extract useful patterns from the representations; and (3) aims to interpret the

output of the learning algorithms.

1.1 Main Contributions

Our contributions in this dissertation are as follows:

• Hierarchical representation of source code: We present a novel

approach to model the source code as a hierarchical representation of

di↵erent code levels, e.g., token level, statement level, function level,

etc., to better capture the semantic information of source code from

finer-grained to coarser-grained level for the API mapping task

• Enhanced AST with semantic information: We propose a novel

tree structure representation of source code, so-called the Dependency

Tree, which is the enriched version of the Abstract Syntax Tree with

def-use chain information. We also present a framework of bilateral neural

networks (Bi-NN), an idea adapted from the area of neural machine

translation [21, 50, 119] and Siamese neural networks [21, 84], aiming to

generalize a previous study on cross-language program classification.

• Unsupervised API Mapping: We propose a deep learning-based ap-

proach that can adapt the two domains with almost no parallel data,

namely SAR (Seeding, Adversarial training, and Refinement). We realize

that the underlying goal of state-of-the-art API mapping techniques is

essential to find a transformation that can align two di↵erent domains (in

our context, the two vector spaces for APIs in two di↵erent languages).

3
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Our key idea is to adapt the Generative Adversarial Network to align the

vector spaces without the need for parallel data. We demonstrate the

success of our model for the API mapping task.

• Interpretability for code modeling: Since we have proposed several

deep learning-based techniques to tackle di↵erent domain adaptation

problems, the key challenge for such techniques to become practical in

the real world usage is due to the lack of interpretability. AutoFocus is an

automated approach towards the interpretability of the neural network

for code learning. Our key idea to understand the neural network on

source code is that we want to quantify the importance of input elements

based on their e↵ects on the outputs of the networks We apply the

AutoFocus approach to the algorithm classification task. Specifically, an

attention mechanism is incorporated in the neural networks for classifying

a program according to the algorithm implemented by the program, and

attention scores are generated to di↵erentiate various code elements in

the program. More importantly, AutoFocus identifies and perturbs code

elements in the program systematically, and quantifies the e↵ects of the

perturbed elements on the networks’ capability in classifying the program.

• Capsule Network for Code Processing: Although Autofocus can

identify important parts of the program, we realize that the interpretabil-

ity of AutoFocus depends on the way the neural networks encode the

programs. Most of the encoding does not capture dependencies inside

the program or one needs to specify the dependency explicitly through

program analysis, which may result in noisy and inaccurate information.

As such, we propose a novel approach, so-called TreeCaps by applying

the capsule principle that is widely used in image recognition to process

the source code. From the experiments, we show that the TreeCaps can

reach state-of-the-art performance for two interesting tasks in software

engineering, which are code classification and function (method) name

prediction.

1.2 Thesis Structure

The thesis are presented as follow:

• In Chapter 2, we present a novel approach to model the source code as a

hierarchical representation of di↵erent code levels, e.g., token level, statement
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level, function level, etc., to better capture the semantic information of source

code from finer-grained to coarser-grained level for the API mapping task.

The API mapping is a very important stepping stone for automated code

migration, which reduces the cost of manual e↵ort to migrate programs

in di↵erent languages. The evaluation results show that this novel way to

model the source code produces significantly better results than the existing

techniques for API mapping. Inspired by Neural Machine Translation (NMT)

and limitations in existing program translation techniques, our goal is to

produce a new way of representing code in distributed vectors for any kind

of code elements across languages.

• In Chapter 3, we explore the idea to model the code across the languages

by incorporating the semantic information of the source code into the tree

representation of the code, e.g. Abstract Syntax Tree. We also present

a framework of bilateral neural networks (Bi-NN), an idea adapted from

the area of neural machine translation [21, 50, 119] and Siamese neural

networks [21, 84], aiming to generalize a previous study on cross-language

program classification [12], to encode code syntactic and semantic information

for programs written in two di↵erent languages, and train the bilateral

neural networks to recognize code implementing the same algorithms across

languages. Such a framework enables us to explore di↵erent ways to use

di↵erent kinds of code intermediate representations with di↵erent kinds of

neural networks to search for optimal algorithm classification solutions. Every

instance of Bi-NN can be trained with bilateral programs that implement

the same algorithms and/or data structures in two di↵erent languages. The

trained Bi-NN models can then be applied to recognize code implementing

the algorithms and/or data structures in di↵erent languages.

• In Chapter 4, we propose a deep learning-based approach that can map

APIs across languages without the need for parallel data based on the idea

of Adversarial Learning. We realize that the underlying goal of state-of-

the-art API mapping techniques is essential to find a transformation that

can align two di↵erent domains (in our context, the two vector spaces for

APIs in two di↵erent languages). Given large codebases in two languages,

certain similarities between the code bases can likely be exploited to discover

APIs of similar functionality across languages, without manually specifying

parallel corpora. Such knowledge of similar functionalities may not be big

enough for a complete mapping model, but it is small enough to a↵ord
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human validation. Once validated, the knowledge can be transferred through

adversarial training techniques to maximize the alignment between the two

languages which results in better API mappings.

• In Chapter 5, we propose AutoFocus, an automated approach to rating and

visualizing the importance of input elements based on their e↵ects on the

outputs of the networks. The rationale for such an approach is to tackle

the interpretability for code learning models. Since we have been proposed

several deep learning-based techniques to tackle di↵erent tasks, the key

challenge for such techniques to become practical in the real world usage is

due to the lack of interpretability. People treat the model as a black box

and expect good output from it. As a result, no one understands how the

techniques for source code representation learning work, which results in

the hesitation to adopt such techniques to solve real-world problems. The

problem is even more severe in the software engineering field, where most of

the learning model is built based on some human heuristics with trial and error.

Because of such reasons, understanding the reasons and able to interpret

the predictions is quite important if one plans to take action based on a

prediction. We apply the AutoFocus approach to the algorithm classification

task. Specifically, an attention mechanism is incorporated in the neural

networks for classifying a program according to the algorithm implemented

by the program, and attention scores are generated to di↵erentiate various

code elements in the program. More importantly, AutoFocus identifies and

perturbs code elements in the program systematically, and quantifies the

e↵ects of the perturbed elements on the networks’ capability in classifying

the program. Our evaluation shows that the attention scores are highly

correlated to the e↵ects of the perturbed code elements. Such a correlation

provides a strong basis for the uses of attention scores to interpret the

relations between inputs and outputs of the algorithm classification neural

networks, and visualizing the code elements in the input programs ranked

according to the attention scores can facilitate faster program comprehension

with reduced code.

• In Chapter 6, we propose a novel deep learning technique called TreeCaps

to process source code in an automated way that captures relationships

between di↵erent parts inside the AST without the need to use program

analysis. In our empirical evaluation, we evaluate TreeCaps on two tasks

to demonstrate the usefulness of TreeCaps in di↵erent use case scenarios.
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The two tasks are code classification and function name prediction. Across

codebases in C/C++ and Java with respect to commonly compared program

comprehension tasks such as code functionality classification and function

name prediction, our empirical evaluation shows that TreeCaps achieves

better classification accuracy and better F1 score in prediction compared

to other code learning techniques such as GGNN, Code2vec, ASTNN, and

TBCNN.

1.3 Declaration of Previous Work

This thesis contains work that has been previously published in conferences

that have been co-authored with di↵erent people. The author of this thesis has

been the first author and main contributor to all these publications. Specifically,

Chapter 2 contains work published in ”Hierarchical Learning of Cross-Language

Mappings through Distributed Vector Representations for Code” (Nghi et al.,

ICSE 2018). Chapter 3 contains work published in ”Bilateral Dependency

Neural Networks for Cross-Language Algorithm Classification” (Nghi et al.,

SANER 2019). Chapter 4 contains the work published in ”SAR: Learning

Cross-Language API Mappings with Little Knowledge” (Nghi et al, FSE 2019).

Chapter 5 contains work found in ”AutoFocus: Interpreting Attention-based

Neural Networks by Code Perturbation” (Nghi et al., ASE 2019). Finally,

chapter 6 contains the work found in ”TreeCaps: Tree-Structured Capsule

Networks for Program Source Code Processing”, this work has been published

as a workshop paper in NeurIPS 2019 and is under review as a full conference

paper in NeurIPS 2020.
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Chapter 2

Hierarchical Representation of

Software Program

Automated program translation (a.k.a. language migration) can be very useful

for software development as it may help reduce developer coding time, especially

for functionalities and library APIs that need to be implemented and maintained

in various programming languages. Take the Apache Lucene as an example:

it is a popular information retrieval library, providing many APIs for a third-

party client program to access its core functionalities. Lucene was originally

implemented in Java and not easy to be used by client programs in other

languages. Due to popular demands for its functionalities, it has been ported

to other languages (e.g., C#, C++, Python, Ruby, PHP, etc.) to support

clients in those languages. Nevertheless, multiple versions of Lucene in di↵erent

languages increase the cost on its maintenance and development, as new features

or bug fixes in one version may need to be manually ported to another version

for consistency. An automated approach to translate code among languages can

help save much cost, and still be useful even if the approach cannot generate

complete translations but can identify likely translation candidates in large

code bases.

Existing studies on program translation may be classified in two categories.

One is based on grammar rules (e.g., Java2CSharp at https://github.com/codejuicer/java2csharp),

which can be very accurate, but inflexible in dealing with di↵erent languages

or language evolutions as the translations need to be programmed repeatedly

for di↵erent grammars. The other is based on statistical language models for

selected code elements (e.g., for tokens [91], token phrases with contexts [92, 93],

or APIs and API sequences [48, 49, 88, 90, 104, 137, 138]), which can deal with

di↵erent languages but may need to incorporate various kinds of contexts (e.g.,
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sequences/co-occurrence relations, data/control dependencies) for selected code

elements [49, 93].

In the field of natural language processing (NLP), neural-network-based

Neural Machine Translation (NMT) has emerged as an alternative to statistical

language models, achieving good results for natural language translation [115].

NMT models use distributed vector representations of words as the basic

unit to compose representations for more complex language elements, such as

sentences and paragraphs. One prominent distributed vector representation is

word2vec [78, 80], which uses neural networks to learn vector representations

of words (a.k.a. word embeddings) from natural language articles to capture

latent semantics with respect to a modeling objective, such as predicting

the context given a word or predicting the next word given a context. Also,

similarities among di↵erent natural languages can be exploited for machine

translation [79], which can be applicable for programming languages as there

are many across-language code clones too [27].

Inspired by NMT and limitations in existing program translation techniques,

our goal is to produce a new way of representing code in distributed vectors

for any kind of code elements across languages.

Our key idea is mainly based on two observations: (1) code clearly has

hierarchical structures as illustrated in Figure 2.1 and is often composable,

and (2) code structures (in addition to its textual appearance) often accurately

reflect its semantics, which are di↵erent from natural languages. That means,

NMT may be able to generate distributed vector representations that can closely

reflect the code semantics if the code token streams can be enriched with its

structural information, and generate vector representations for any composed

code elements that are of higher levels of granularity. Therefore, our approach

works by normalizing and enriching code token streams with structural (and

some semantic) information extracted via code parsing, constructing a bilingual

skip-gram model to generate distributed vectors for code tokens in two di↵erent

languages (a.k.a. shared embeddings), and composing shared embeddings for

low-level code elements into more complex ones according to code structures.

Code elements in di↵erent languages but having similar shared embeddings

will thus become mapping and translation candidates for each other.

Our preliminary evaluations using about 40,000 source files from 9

programs that have multiple versions in both Java and C# show that our

approach can automatically learn shared embeddings from existing code across

Java and C#, and achieve around 50% precision in recommending top-10
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Figure 2.1: Abstract syntax trees — illustration of code hierarchical structure
and composability.

cross-language code mappings at various levels of granularity. Compared with

existing tools for identifying API mappings (StaMiner [88]), our approach can

identify more than 400 more library API methods and classes accurately.

Our main contributions are as follows:

• We propose a new way to add structural information into source code

token streams and adapt word embeddings to learn vector representations

for code tokens across languages.

• We allow hierarchial compositions of vector representations for simpler

code elements into more complex ones according to code structures, and

thus can produce vector representations for any code structures across

languages.

2.1 Our Approach

2.1.1 Overview

Figure 2.2 is the overview of our approach. We first collect parallel corpus

across languages for training bilingual embedding models. A parallel corpus is

a collection of source code in one language and their translation into another

language. We utilize the similarity among file names to identify files in di↵erent

languages that implement a same functionality. Taking Lucene as an example,

the file AbstractEncoder.cs in its C# version has the same name as the file

10
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Figure 2.2: An overview of hierarchical learning approach to find mappings
across Java and C#

AbstractEncoder.java in its Java version. Thus, the files in the parallel corpus

are considered to be “semantically aligned” with each other and used for later

steps. We then normalize the token streams in the files to remove semantic-

irrelevant information (e.g., some variable names) and add more structural

and some semantic information (e.g., syntactic node types, data types, and

method signatures). The normalized token streams are then used as input

for the Berkeley aligner [72] to generate token-level alignment information

indicating potential synonyms across languages, and the token-aligned data

is then used to learn bilingual vector representations for the tokens. Finally,

vector representations for low-level tokens are composed together to form

representations for code elements of higher levels of granularity. Code elements

of similar vector representations across languages (i.e., shared embeddings) will

be identified as mapping candidates for each other.

2.1.2 Token Normalization

This step (1) converts each raw token into its signature version and (2) adds

structural keywords for the tokens based on ASTs.

Convert a raw token into its signature: This is to normalize the

e↵ects of various kinds of identifier names as some names are important for

code semantics while some others are not. For example, class Text in Lucene

and class Text in Java SDK are di↵erent types even though their lexical

names are the same. Thus, we replace the names with their type signatures

(including their package and class names) for di↵erentiation. Similarly, function

names are replaced by their full signatures. For variable names, if they are

non-primitive types, they are replaced by the type signatures, similar to class

names; if they are primitive types, they are replaced by a type-specific token.

Tokens having no e↵ect on code operational semantics, such as ‘’, ‘,’, ‘;’, are

removed. The below illustrates how three main kinds of tokens are normalized:

int i; ==> int int_id // 2 tokens

CommonTree ==> Antlr.Runtime.Tree.CommonTree // 1 token
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lexer.Emit(); ==> Antlr.Runtime.SlimLexer.Emit() // 1 token

Add structural keywords for the tokens: This is to add relevant AST

node types for the tokens into the token streams so that the later learning steps

may utilize more information implicit in raw code texts. The below snippet

illustrates this step:

Console.WriteLine("out"); ==>

expr_stmt expr func_call System.Console.WriteLine(String)

argument literal_type string // 7 tokens

2.1.3 The Bilingual skip-gram Model

Our goal here is to learn distributed vector representations for cross-language

code tokens, which can then serve as the basis for more complex composed code

elements. We use the bilingual skip gram model (BiSkip) [75] to achieve the goal.

The motivation behind BiSkip is to learn shared embeddings between tokens

cross-lingually rather than just monolingually: Rather than just predicting

the tokens in one language, they use the tokens in one language to predict

their aligned tokens in another language and vice versa. For example, from

a large corpus of Java and C# code, the BiSkip model may be able to learn

that the token readonly in C# is aligned to and has the same meaning as

the token final in Java, and final often occurs together with public and

int to define certain constants. Then, when given the token readonly, we can

use the BiSkip model to substitute final for readonly and predict that its

surrounding tokens are int and public. The BiSkip model has been shown

to perform well for both bilingual and monolingual tasks [75]. We utilize the

Berkeley aligner [72] to generate token alignments from the code token streams

to be used by BiSkip.

2.1.4 Hierarchical Models

Once we get the vector representation for tokens across languages, we want to

generate representations for more complex code elements, such as expressions,

definitions, declarations, statements, methods, classes, and modules (Figure 2.1)

so that code mappings and program translations can be done for more complex

elements. Since all of the elements are hierarchical compositions of elements

at lower levels of granularity including tokens, our intuition is to generate
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Project Java C#
Ver Files Methods Ver Files Methods

Antlr(AN) 4.0.0 276 3560 4.0.0 630 5049
db4o(DB) 8.0 5556 38525 8.0 3845 23248
fpml(FP) 1.7 130 727 1.7 135 1038
Itext(IT) 7.0.5 1147 10003 7.0.5 2647 18842
JGit(JG) 4.10.0 1394 13862 4.10.0 1079 9203
JTS(JT) 4.0.0 958 7883 4.0.0 1035 6640

Lucene(LC) 7.1.0 6098 48038 7.1.0 2930 19961
POI 4.0.0 3295 29172 4.0.0 2794 16717

Neodatis(ND) 2.1 960 10525 2.1 987 12153

Table 2.1: Overview of the training data set for cross language mappings task

representations for elements at higher levels of granularity by composing the

shared embeddings of their constituent elements.

According to [63], simply averaging word embeddings of all words in a text

can be a strong baseline for representing the whole text for the task of short

text similarity comparison. Variants of this simple averaging strategy exist,

such as averaging the embeddings with their weights measured in terms of

term-frequency/inverse-document-frequency (TF-IDF) to decrease the influence

of the most common words. As a preliminary exploration, we only consider 3

levels of granularity of this task: expressions, statements, and methods, and

use the simple averaging operation to compose shared embeddings according

to the structures of code abstract syntax trees.

2.2 Empirical Evaluation

2.2.1 Data

Table 2.1 is a summary of our training dataset. We consider the language pair

C# and Java in all the evaluations. We collect the comparable dataset as in

StaMiner [88]. We use the implementation of BiSkip from [15] to generate the

vector representations of tokens.

2.2.2 Evaluation Tasks

2.2.2.1 Element mappings

As described in Section 2.1.4, we aim to build vector representation for com-

positional cases in order to find good mappings in a hierarchical model across

languages. We extract all the expressions, the statements and the methods of

each project in our data set by traversing the AST representation to identify
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Levels Expressions Statements Methods

Avg. MAP, k = 1 0.31 0.38 0.44
Avg. MAP, k = 5 0.43 0.50 0.58
Avg. MAP, k = 10 0.57 0.53 0.59

Table 2.2: Average MAP scores for element mappings at various granularity
levels

the element type, then we manually defined ground truth elements pairs. We

treat each element in Java as a query to retrieve the top-k elements of C#.

Then we use Mean Average Precision (MAP) as the metric to evaluate this

task. Due to the limitation of pages, instead of showing the MAP score for each

type of element of each project, we calculate the average MAP of all project

for each type of element. Table 2.2 shows the results of the evaluations, with k

= 1, 5, 10, respectively.

2.2.2.2 API mappings

We use the task described in StaMiner [88] to evaluate how e↵ective our

approach. We consider 2 types of API names: classes and methods. For each

name in Java, we get its vector representation and use it as a query. The query

is used to find the top-k nearest neighbors among the shared embeddings for

C# names. In this task, we only consider k = 1, which means we consider

only the exact match of the query. Since there are too many APIs to build

ground truth manually, we randomly select 100 APIs of each project for this

task. Table 2.3 shows the precisions for class mappings and method mappings.

Compared to StaMiner [88] and DeepAM [49] that mine API mappings by

using statistical machine translation techniques and deep learning, our work is

more generalized in term of the kind of code elements supported. Their work

only focuses on learning the mappings between language SDK APIs, while our

approach allows mappings among any kind of structural code elements in a

language beyond SDK APIs. Although finding the mappings for SDK APIs

in di↵erent languages is a commonly needed and important task, developers

often need more mappings for program elements (e.g., variable names, data

structures, statements, method implementations, etc.). We believe that being

able to find the mappings among program elements of any granularity is a

important step to reach the goal of automated language migration.

We also found that our approach detects correctly about 400 more SDK

API method mappings and 150 more SDK API class mappings that were not

set in the latest mapping files in the Java2CSharp tool, while StaMiner detects
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Level\Project AN FP IT JG JTS LC POI DB ND

Class 0.85 0.82 0.88 0.69 0.83 0.82 0.78 0.86 0.79
Method 0.81 0.80 0.83 0.77 0.72 0.87 0.89 0.82 0.83

Table 2.3: Precision of API method mappings

120 more SDK mappings for both classes and methods and 84 of which are also

in our mappings. In this evaluation, we only consider k=1 for the top-k nearest

neighbors. We expect to find even more mappings if we consider a larger k and

we can find more mappings for APIs that are not in the language SDK libraries.

We leave these evaluations for future work.

2.2.3 Threats to Validity

For the model training, we use the same settings as described by Mikolov et

al. [80], which may not be the best with respect to our dataset. We will do

more empirical research to choose better hyper-parameters to improve training

results. The normalization step is mostly based on srcML [30] to get the AST

of source code. At this moment, srcML supports four languages (C, C++, C#,

Java), and we only perform experiments on the Java – C# pair. In the future,

we want to explore the generalizability of our approach with more programming

languages supported by srcML and beyond.

The correctness of our API mappings results were checked by ourselves

manually, which may be biased and incomprehensive. To evaluate the actual

correctness and usefulness of our API mappings, we plan to do more large-scale

evaluations by using Java2CSharp to see how our mappings can help reduce the

compilation error rates when compared with StaMiner during actual migration

of projects.

As described in [117], source code is very localized. Since we treat a whole

file as a corpus, which means we ignore the localness of the tokens. The

skip-gram model focuses on capturing the global regularities over the whole

corpus, and neglects local regularities, thus ignoring the localness of software.

A natural way to collect local-awareness parallel corpus is that we can slice the

file into multiple slices based on dependence information, then we align the

parallel corpus based on the similarity of the slices.
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2.3 Conclusion and Future Work

This work proposes an approach to learn code element mappings across pro-

gramming languages based on distributed vector representations. By utilizing

the alignment of files in projects with multiple versions of implementations

in di↵erent languages, we learn the alignment of tokens in an unsupervised

manner, and generate the shared embeddings for tokens across languages. Then,

the shared embeddings for more complex code elements are composed from the

embeddings of their constituent elements and tokens from bottom up according

to the hierarchical structures of the syntax trees of the code. Our evaluations

show that our approach can map many code elements between Java and C#

accurately. This can serve as a foundation for more complicated tasks, such as

program translation, cross-language program classification, code clone detection,

code reuse, and even synthesis.

16



Chapter 3

Bilateral Dependency Neural

Networks for Cross-Language

Algorithm Classification

Algorithm classification is a long-standing problem related to program reuse and

synthesis [18, 28, 116]. It aims to assign class labels or concepts to programs

based on code structures and semantics [77]. Automated classification of a piece

of code could ease a number of software engineering tasks, such as program

comprehension [77], concept location [107], algorithm plagiarism detection [131],

bug fix classification [73, 103] and malware detection [24]. The algorithm labels

for the code can serve to some extent as the summary of the code [98], which

help to modularize, abstract, analyze, and reuse the code.

Even though it is di↵erent from the problem of program equivalence check-

ing [17], this problem remains challenging because what is considered to be the

“same algorithm” can look di↵erent under di↵erent situations. An “appropriate”

classification should not only take su�ciently detailed information about the

code into consideration, but also ignore irrelevant details depending on the

abstraction level of an algorithm class. For example, a program A implementing

bubblesort for an integer array may not be the “same” as a second program

B implementing bubblesort for integers stored in a linked list, and both of

them may not be the “same” as a third program C implementing mergesort,

while the three programs may all be considered the “same” as variant of sorting

algorithms.

It can be even a greater challenge to bring the benefit of algorithm clas-

sification across di↵erent programming languages, so as to facilitate program

reuse and synthesis across languages, reducing the need of reimplementing the
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ALGORITHM CLASSIFICATION

“same” algorithms in di↵erent languages repeatedly.

Past studies on algorithm classification can neglect di↵erences in di↵erent

programming languages by simply processing the programs as a bag or a

sequence of tokens or simple call graphs[17, 107], which do not utilize the rich

code syntactic structures and semantics, or by taking advantages of system-level

APIs used and/or higher-level descriptions available in human languages[126,

129]. On the other hand, program classification and functional cloning studies

utilizing code syntax structures are mostly limited to individual languages [59,

61, 81, 120], which have not been adapted to the classification problem across

languages.

Our research goal here is to find a suitable representation for given pieces of

code in di↵erent languages that can be used to identify the algorithm classes of

the code. Specifically, we present a framework of bilateral neural networks (Bi-

NN), an idea adapted from the area of neural machine translation [21, 50, 119]

and Siamese neural networks [21, 84], aiming to generalize a previous study

on cross-language program classification [12], to encode code syntactic and

semantic information for programs written in two di↵erent languages, and

train the bilateral neural networks to recognize code implementing the same

algorithms across languages. Two technical aspects of the framework are

important for the e↵ectiveness of cross-language algorithm classification:

1. One is to build a bilateral structure of neural networks that consists of

two (thus the name bilateral) underlying neural networks, each of which

encodes code in one language, and another classification model on top of

the two to link them together.

2. The other is to explicitly embed code dependencies (e.g., variable def-use

relations) into the intermediate representations (IR) of code for the neural

networks to learn code representations.

Such a framework enables us to explore di↵erent ways to use di↵erent kinds

of code intermediate representations with di↵erent kinds of neural networks to

search for optimal algorithm classification solutions. Every instance of Bi-NN

can be trained with bilateral programs that implement the same algorithms

and/or data structures in two di↵erent languages. The trained Bi-NN models

can then be applied to recognize code implementing the algorithms and/or

data structures in di↵erent languages.

We instantiate the Bi-NN framework with token-, sequence-, tree-, and

graph-based machine learning techniques to train di↵erent Bi-NN models
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on large code bases to classify programs into di↵erent algorithms. Empirical

evaluations on two code bases, (1) 52000 C++ files from previous studies written

by computer science students implementing 104 di↵erent algorithms and (2)

4932 unique Java and 4732 unique C++ single-file programs from GitHub

implementing 50 di↵erent algorithms, show that the Bi-NN model trained by

tree-based convolutional neural networks (TBCNN) using our custom-built

dependency trees (DTs) representing code syntax and semantics achieves a

reasonable accuracy of 86% in classifying cross-language programs according to

the ground-truth algorithm class labels. The accuracy of this model (referred

to as a Bilateral Dependency Tree Based CNN model, or Bi-DTBCNN in

short) is the highest among several other Bi-NN models based on bags-of-words,

n-gram, tf-idf, long-short term memeory (LSTM), gated graph neural network

(GGNN), etc. Even for the simpler problem of algorithm classification in a

single language, our evaluations show that DTBCNN models (without using the

bilateral structure) achieve the highest classification accuracy of 93% among

di↵erent models we have evaluated.

The main conceptual and empirical contributions are as follows:

• We generalize a bilateral neural network (Bi-NN) framework for the

cross-language algorithm classification task;

• We adapt various learning techniques, including n-grams, bags-of-words,

tf-idf, tree-based convolution neural networks (TBCNN), long short-term

memory (LSTM), and gated graph neural networks (GGNN) to instantiate

the bilateral code representation framework to represent both syntax and

semantics for algorithm classification;

• We custom-build a dependency tree-based convolutional neural network

(DTBCNN) as an extension to TBCNN to encode semantics for more

accurate classification;

• We collect a benchmark of 9664 unique programs in Java and C++

implementing 50 algorithms, and evaluate the performance of various

Bi-NN models. The results demonstrate the e↵ectiveness of Bi-NN models

for cross-language algorithm classification. In particular, Bi-DTBCNN

achieves the highest classification accuracy in our evaluation.
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Figure 3.1: Overview of the cross-language algo-
rithm classification work flow

Figure 3.2: Setting of single-
language algorithm classifica-
tion

3.1 Framework of Bilateral Neural Networks

3.1.1 Work Flow

For the purpose of cross-language algorithm classification, we want to align code

representations for di↵erent programming languages so that a model learned

from algorithms in one programming language can be used to recognize code

implementing the algorithms in another language. To achieve this purpose, a

work flow based on the Bilateral Neural Networks (Bi-NN) model can be used;

it consists of two stages (see Figure 6.1): (1) training of an instance of Bi-NN

with a set of input program pairs in two languages, and (2) classification by

applying the trained Bi-NN models to pairs of test programs.

The training stage takes in pairs of programs in two programming languages

as input. Each program in a pair has an algorithm class label, indicating

whether the pair implements the same algorithm or not. Parsers are used to

convert the input programs to certain intermediate representations (IR) that

expose code syntax and semantics, which can be based on tokens, sequences,

trees, or graphs. Then, the IR of all the input pairs, either implementing the

same algorithm or not, is used to train a Bi-NN model that minimizes the

classification errors for the inputs.

The classification stage takes in a pair of test programs in two programming

languages without knowning their algorithm class labels, converts the inputs

into the same kind of IR as those used in the training stage, and uses the trained

Bi-NN model to predict the likelihood for the two test programs belonging to

the same algorithm class. We call this classification a binary classification as
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its output only tells whether or not two programs belong to the same algorithm

class.

One can also utilize such binary classifications to determine the algorithm

class for one given test program. For each known algorithm class, one can

pick an arbitrary program from the class to form a pair of input programs

with the given test program, and feed them into the trained Bi-NN model to

predict the likelihood for the pair to be in the same algorithm class. Repeating

this step for every known algorithm class produces a set of likelihoods; each

indicates the likelihood of the given test program belonging to the corresponding

algorithm class. From these predictions, the algorithm class label with the

highest likelihood is assigned to the given test program. If none of the likelihood

is high enough (e.g., above 0.5), one may choose to leave the test program as

unknown.

The capability of the classification is naturally limited by the known algo-

rithm classes used for training. In our evaluation later (Section 3.3), we show

the e↵ectiveness of such classifications for the numbers of algorithm classes

ranging from 10 to 104.

3.1.2 The Design of Bi-NN

The key component of the proposed work flow is the Bi-NN. It is constructed

as two underlying subnetworks and another classification model (which can be

a neural network or other kinds of classifiers) on top of the two.

Each of the two underlying subnetworks can be any neural network, such

as a LSTM, GGNN, or others, as we show later in this chapter. During

the training, each subnetwork takes in code representations of one-specific

language to recognize the code in that language. For our cross-language

algorithm classification task, the two subnetworks are designed to take in

code representations of di↵erent languages. If both subnetworks took in code

representations of the same language, the Bi-NN could be suitable for single-

language classification too (see the next subsection).

The classification model on top connects the two underlying subnetworks.

It can be another neural network. As illustrated in Figure 6.1, It consists of

(1) two pooling layers, each of which aggregates the code learning output from

one of the two subnetworks, (2) a “joint feature representation layer” that

concatenates the pooling outputs of the two subnetworks, (3) two or more fully

connected hidden layers above the joint feature representation layer, and (4) a

Softmax layer on the top to determine how likely the input code pair belongs to
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the same algorithm class. The layers of (3) and (4) essentially form a classifier

that can be trained for the inputs from the layers below. They do not have

to be neural networks, and they may be substituted by any classifier, such as

Support Vector Machines (SVM [58]) and Random Forests [56].

Note that, when we instantiate the Bi-NN framework with di↵erent machine

learning models, it becomes essentially the same as Siamese networks in the

literature [21]. Siamese networks are a class of neural network architectures

that contain two (or more) subnetworks, which are merged via an energy cost

function over a joint layer on top of the subnetworks. Its high-level architecture

is similar to the Bi-NN framework illustrated in Figure 6.1. Many choices for

the subnetworks and the loss function over the joint layer can be adopted for

di↵erent tasks. Section 3.2 provides ways to instantiate the Bi-NN framework

with di↵erent concrete code representations and machine learning models for

the task of cross-language algorithm classification. For cross-language training

specifically when node types are used, we implement an additional alignment

step to ensure the shared node types multiple language are mapped to the same

node.

3.1.3 Single-Language Classification

Besides the task of cross-language algorithm classification, we can also use

the Bi-NN framework to classify programs in a single language. That is, the

input programs are all in one language only. Although we may use both sides

of the Bi-NN framework as mentioned in the previous subsection to train

the classification model, it is more straightforward to use “half” of the Bi-

NN framework. As illustrated in Figure 3.2, by disabling the “joint feature

representation layer” and the right side of the Bi-NN framework, we can obtain

a classification model that can be trained with programs in one language to

classify algorithm classes in the same language too.

3.2 Instantiations of Bi-NN

The Bi-NN may be instantiated with di↵erent kinds of structures to represent

various syntax and semantic information of given pieces of code and di↵erent

kinds of neural networks to learn the code representations. This section presents

several variants that we consider to be promising for learning and classifying

algorithms.

22



CHAPTER 3. BILATERAL DEPENDENCY NEURAL NETWORKS FOR CROSS-LANGUAGE

ALGORITHM CLASSIFICATION

Figure 3.3: Structure of a TBCNN, adapted from [81]

3.2.1 AST and Tree-Based Convolutional Neural Net-

works

Abstract syntax trees (AST) are a very commonly used code representation

that faithfully encodes the syntax of a program, and given a well-formed AST,

the responding program can be regenerated. Thus, it is a natural way to use

AST as the intermediate representation and a tree-based neural network to

learn the representation in the Bi-NN framework.

Mou et al. [81] have proposed to use tree-based convolutional neural networks

(TBCNN) to learn AST and classify C++ programs. Figure 3.3 illustrates the

structure of a TBCNN. Each AST node is represented as a vector by using

an encoding layer that basically embeds AST node types into a continuous

vector space where contextually similar node types are mapped to nearby

high-dimension points in the vector space. For example, the node types ‘while’

and ‘for’ are similar because they are both loops and thus their vectors will be

close to each other. Given an AST where every node is turned into a vector

representation, Mou et al. [81] uses a CNN and a set of fixed-depth subtree

filters sliding over the AST to “convolute” structural information of the entire

tree. A dynamic pooling layer [113] is applied to deal with varying numbers

of children of AST nodes to generate one high-dimension vector to represent

the whole tree. Finally, they use a hidden layer and an output layer, similar to

the common neural network on top in our Bi-NN framework, to classify the

programs.

The TBCNN was used to classify algorithms written in one language only

and it only encodes code syntax without explicit semantics, but it inspires us to

improve it for cross-language classification that encodes more code semantics.

We can instantiate the two subnetworks in the Bi-NN framework with two

TBCNN for di↵erent languages, say, one for Java, and the other for C++, and

then we can train a bilateral tree-based convolutional neural network model

(Bi-TBCNN) for cross-language algorithm classification.
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Figure 3.4: A Sample AST Expanded into a Dependency Tree.

3.2.2 Dependency Trees and TBCNN

Although abstract syntax trees can faithfully encode the syntax of a program,

it may not be obvious or explicit about various kinds of semantic information

in the program, such as def-use relations, call relations, class inheritances, etc.

Therefore, we consider encoding such semantic dependency information directly

into abstract syntax trees so that the dependency tree based code representation

can help tree-based neural networks to learn code semantics more accurately

to recognize code of di↵erent algorithms.

Our basic idea is to insert additional nodes that represent some semantic

information relations into AST to form dependency trees: given a program or a

code snippet, it is first parsed into AST represented in the Pickle format using

our tool; then, dependency relations, especially def-use relations, are extracted

from the code using srcML and srcSlice [8, 30], and the nodes related to a Def

are appended to the nodes representing the uses of the Def, and vice versa.

For example, Figure 3.4 (ignoring the boxes with dashed lines first) represents

the AST of the following piece of code:

i n t a = 1 ; i n t b = 2 ; i n t x = a ∗ b ;

y = x + 1 ; z = x + 2 ;

In this example, the defs “int a = 1” and “int b = 2” a↵ect the definition

of the variable x in “int x = a * b”, and x is used to compute both y and

z. Therefore, the expanded dependency tree is a tree shown in Figure 3.4

(including the boxes with dashed lines), where (1) the subtrees in the original

AST representing “int x = a * b” are duplicated and inserted as children of

the nodes representing the definitions of a and b respectively; (2) the subtrees

representing the definitions of y and z are duplicated and inserted as children
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of the node representing the definition of x; and symmetrically, (3) the subtrees

representing the definitions of a and b are also duplicated and inserted as

children of the nodes representing the uses of a and b respectively; and (4) the

subtrees representing the definition of x are duplicated and inserted as children

of the nodes representing the uses of x.

Notice that many subtrees are duplicated multiple times in our dependency

trees. In the literature, program dependency graphs are typically used to avoid

duplication, by referring to the dependencies as edges between dependers and

dependees. However, our intuition is that representing the relations as trees

and allowing such node duplication can have an advantage of separating the

contexts of each use-def from each other to faciliatate context-sensitive learning

while making it more e�cient to train tree-based neural networks than graph-

based ones. Therefore, we instantiate Bi-NN with dependency tree-extended

tree-based convolutional neural networks to train cross-language algorithm

classification models, which we simply call Bi-DTBCNN.

Apart from tree structure di↵erences between DTBCNN and TBCNN, we

also employ a di↵erent vector embedding strategy for the tree nodes to bootstrap

the training of the tree-based neural networks with more code semantics.

Tree-node embedding for boostrapping the training

As illustrated in Figure 3.3, the training of TBCNN needs a vector representation

for each tree node. Mou et al. [81] use the “coding criterion” from Peng et

al. [102] to learn the vector for each AST node type. We adapt the skip-gram

neural network model used for word2vec [78] to the context of AST nodes. The

skip-gram model, given an input word in a sentence during training, looks at the

words spatially nearby and picks one at random, and produces the probability

for each word in the whole vocabulary to be a “nearby word” of the input

word; i.e., it can be used to “predict the contextual words for an input word”.

When such a model is trained to produce the probabilities of nearby words, its

hidden layers can produce numerical vectors representing the words, i.e., the

word embeddings.

We apply this idea for the so-called AST2vec task. That is, we view AST

node types as the vocabulary words and consider nodes to be “nearby” in the

AST if they have parent-child or sibling relations, and train a skip-gram neural

network model using all the AST generated from our code base to produce the

probability for each node type in the whole vocabulary to be a child of any

given node type. The size of the vocabulary of node types for a programming
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language is rather small. Based on the unified grammar in SrcML, we estimate

that the size is below 450, even when all AST node types from C/C++, C#,

Objective-C, and Java are combined. After training the AST2vec for all node

types, we obtain a numerical vector, i.e., an embedding, for each node type,

and use the vectors to start the training of DTBCNN and Bi-DTBCNN models.

3.2.3 Gated Graph Neural Networks (GGNN)

GGNN and Gated Graph Sequence Neural Networks have been proposed as a

general way to learn graphs [69]. Allamanis et al. [5] custom-build program

graphs to encode both syntax and semantics of C# source code and extend

GGNN to learn the graphs for several software maintenance tasks such as

predicting misused variable names. Although our algorithm classification tasks

are di↵erent from those published in previous GGNN-based tasks, we adopt

the same schema for encoding the code as graphs, as shown in [5] that the

graphs may encode more code semantics and graph-based neural networks may

produce better code representations .

Each sample (i.e., program compilation unit) is represented by a graph as

follows. The AST are encoded as a set of edges representing Child relations,

whilst the ordering of children are kept by the NextSibling relations. Since

our classification task does not care about the exact names of the identifiers

compared to the variable misuse prediction task in [5], we can further reduce

the number of nodes in the graph.

On the semantic side, the ‘def-use’ relations we obtained from program

slicing are encoded directly into edge types LastWrite and LastUse. Following

the schema used in [5], the ‘returns’ statements are recorded as a special relation

ReturnsTo. Similarly, the LastUse relations are inferred from the otherwise

discarded variable names, and the ComputeFrom relations are derived from the

variables used in right-hand side and left-hand side of assignment expression

AST. In this encoding, these semantic relations are rather agnostic to the

concrete language syntax. It is therefore our hope that the graph representation

can capture more commonalities between the structures. Compared to TBCNN

encodings, such semantic edges are explicitly identified by static analysis tools,

instead of learnt by the NN from the extracted features.

In this work, we have faithfully used the suggested approach in the original

GGNN work [69] to aggregate the node-level embeddings learnt from graph

propagation to the graph-level. Even though the schema from early work

is adopted [5], there are still many configuration in the encoding to adjust,
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e.g., whether or not to encode the backward edges for semantic relations, and

for our algorithm classfication tasks the best configuration needs to be found

empirically. 1

3.2.4 Token and Sequence based Neural Networks

There are also many other techniques based on tokens or token sequences or

others to learn code representations [2], many of which have originated from

natural language processing (NLP). Most of the techniques have the common

underlying idea that whatever code representations can be turned into feature

vectors which can then be classified through various machine learning models.

This common underlying idea also aligns well with the Bi-NN framework, and

we can instantiate the framework with those techniques too.

Particularly, we instantiate the Bi-NN framework with the following com-

monly used models for our evaluation later.

BoW: The bag-of-words (BoW [65]), a.k.a. vector space model, counts the

occurrences of each token as a feature to generate feature vectors for

input. We adapt the model to generate vectors for source code.

N-gram: The BoW model does not consider the ordering among words, while

n-gram models partially consider the ordering by using the count of n

consecutive tokens in the input as a feature to generate feature vectors.

Hellendoorn and Devanbu [51] found that a n-gram model (where n can

be 3 or 5) can be a strong baseline for modeling large amount of source

code. Notice that BoW can be seen as a special case of n-gram (i.e.,

unigram) models.

Tf-idf: The term frequency–inverse document frequency weighting scheme gives

di↵erent weights to tokens of di↵erent occurrence frequencies: tokens

appearing more frequently in one input are given higher weights while

tokens appearing more frequently cross di↵erent inputs are given lower

weights. As indicated in [117], such feature vectors may be better in

identifying features that are more discriminative across programs, e.g.,

the token “bfs” for programs involving breadth-first searches.

LSTM-based: The above language models generate feature vectors by simply

counting consecutive tokens, which may miss relations among separated

1The implementation of GGNN: https://github.com/bdqnghi/ggnn_graph_

classification
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tokens. Some neural network (NN) based models, such as long short-

term memory (LSTM) [57], can take as input word embeddings, instead

of token counts, to learn sequences better. In the literature, Siamese-

LSTM [84] has been shown to achieve good performance for matching

sentences in di↵erent natural languages. Therefore, we instantiate the Bi-

NN framework with LSTMs to construct a Siamese-LSTM for comparison

too. In our case, we use word2vec [80] to train the embedding vectors for

tokens in C++ and Java corpus respectively. Then, the word2vec vectors

for C++ tokens and Java tokens are fed as input into each of the two

sub-LSTMs to train the whole Siamese-LSTM.

We have implemented various preprocessing steps to normalize tokens in

source code as we know that not all tokens in programs are useful for deter-

mining code semantics. Sample preprocessing steps are removal of punctuation

characters, identifier splitting based on CamelCase and underscores, converting

all tokens into lower cases, and replacing single-letter variable names with a

unified “id”, etc.

For the classification model on top, we use fully-connected neuron layers

with a Softmax output for the Siamese-LSTM. The Softmax classifier, which can

be seen as the Multinominal Logistic Regression, is a classifier for multi-class

classification. The Softmax layers can also be used as the classifier for the BoW,

n-gram, tf-idf models where the feature vectors are based on token counting.

Although we can also use any other classifier, such as SVM and Random Forests,

instead of the Softmax layers, we use Softmax consistently for easier comparison

and leave evaluation on the e↵ectiveness of di↵erent classifiers to future work.

3.3 Empirical Evaluation

3.3.1 Datasets

We use two datasets for evaluation. The first dataset inherits from the TBCNN

work by Mou et al. [81], let’s call this dataset as Dataset A. This dataset

includes samples of 104 programming problems used in university programming

lectures, and each class comprises of 500 di↵erent C++ programs. The total of

52,000 samples in this dataset is used to evaluate whether our implementation

of TBCNN can correctly reproduce the same level of performance compared

to [81].
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For cross-language algorithm classification, however, the first dataset is

insu�cient because it only has C++ samples. Therefore, the second dataset is

crawled from the GitHub, which contains 50 distinct algorithms. We use GitHub

Developer APIs to retrieve the algorithm instances for each given algorithm

class in each programming language. We use the name of the algorithms as

the keywords to search for the files whose names or contents contain such

keywords.2 For the evaluation purpose, we collect the same algorithms in both

C++ and Java. To prevent from getting toy examples, we only retrieve the

files of a size larger than 500 bytes.

The raw samples from GitHub, however, contain clones which may a↵ect the

training performance. To reduce the impact of duplicated data on classification

results, we use NiCad [34] to detect clones among the data, and remove all of

the Type 1, Type 2 and Type 3 clones with a dissimilarity lower than 10%.

After the clone removal, we obtained 4,932 algorithm files in Java and 4,732

for C++. On average, each class contains from 90 to 100 programs.

For the training and testing purpose, we divide either the C++ or Java

dataset into the training set and testing set with a split ratio of 80/20 for the

programs per class, and use 80% of the data for training and 20% of the data

for testing. To form the pairwise data for the cross-language settings, we take

each program in one language and pair it up with another program in the other

language. Given all the combinations of the C++ and Java programs in the

training set, we have about 312K pairs of bilateral programs implementing the

same algorithm in di↵erent languages, and more than 15 millions of pairs of

programs that implement di↵erent algorithms. Because of the imbalance, we

only randomly select 312K pairs that implement di↵erent algorithms to balance

the training and testing data for binary classification.

3.3.2 Implementation and Research Questions

We have implemented multiple instantiations of the Bi-NN framework (cf. Sec-

tion 3.2) for evaluation and comparison:

• BoW model,

• 3-gram model,

• 5-gram model,

2A detailed list of the algorithms can be found here: https://github.com/bdqnghi/bi-
tbcnn/blob/master/algorithms.txt
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• Tf-idf model,

• Siamese-LSTM model,

• Bi-TBCNN model,

• Bi-DTBCNN model, and

• Bi-GGNN model.

We adapt srcML to get Java and C++ programs into AST, and we annotate

the AST using def-use relations extracted by srcSlice [8]. From these AST and

the def-use relations we build dependency trees and derive GGNN-compatible

graphs. We use Tensorflow

3 to build our Bi-NN. For the hidden layers, we

add dropout with the probability of 0.7 to prevent the models from over-fitting.

We use leaky ReLU as the activation function of the hidden layers. The GGNN

encoding is implemented on the basis of the schema provided by Miltiadis et

al.[5] and adapted by a preprocessing step to convert node tokens into node

types, then the GGNN implementation is used to train/test the converted code

graphs. Our techniques are implemented in a mix of Python and Bash scripts 4.

3.3.2.1 Research Questions

For our study on algorithm classification, we measure the e↵ectiveness of each

model by using the usual accuracy metric for the classification results. I.e., for

a given set of test inputs, the accuracy of a model is the percentage of the tests

for which the model produces a correct classification according to the ground-

truth labels of the tests. Two kinds of classifications are considered: binary

classification for determining whether or not two programs in two di↵erent

languages implement the same algorithm (cf. Section 3.1.1), and multi-class

classification for determining which algorithm class a given program implements

(cf. Section 3.1.3).

We aim to compare the models in various settings against each other by

answering the following research questions:

RQ1 Which instantiation of the Bi-NN framework achieves the best classifica-

tion accuracy?

3https://github.com/tensorflow/tensorflow
4The code and evaluation results are available at https://github.com/bdqnghi/

bi-tbcnn
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RQ2 Does this best instantiation for cross-language classification achieve better

classification accuracy than others in single-language settings too?

RQ3 How sensitive is this best instantiation when the number of classes varies?

RQ4 Does adding dependencies in the code representations achieve better

classification accuracy?

We run our evaluations on a server machine with an Intel Xeon CPU E5-

2640 v4 and an Nvidia P100 GPU with 12GB of memory and 4.7 TeraFLOPS

double-precision performance. The server is shared among multiple users and

its workload may a↵ect the time measurements of the evaluations.

3.3.3 Summary of Classification Results

We provide summarized answers to the research questions here and present

more details in later subsections.

RQ1 To classify programs across languages, we found that all the statistical

language models, such as tf-idf, bag-of-words, n-gram, and LSTM can be

employed, but with di↵erent e↵ectiveness. Amongst various instances of

Bi-NN models, our Bi-DTBCNN model achieves a better cross-language

classification accuracy of 86% than others ranging from 46% to 77%, but

at the price of being the slowest in training (see Table 4.2).

RQ2 All the models can be adjusted to recognize algorithm classes in a single

language (SL) too (cf. Section 3.1.3). Our DTBCNN models achieves an

accuracy of 91% and 93% for Java and C++ respectively, the highest

among other models and much better than the cross-language (CL)

settings (see Table 3.2).

RQ3 The number of algorithm classes has varying e↵ects on di↵erent learning

models. In both SL and CL settings, DTBCNN models maintain relatively

good accuracy above 93% when the number of classes increases, whilst

GGNN performance is much more sensitive and its accuracy decreases

from 94% to 66% when the number of classes increases from 10 to 50 (see

Table 3.3).

RQ4 DTBCNN with dependencies achieves significantly better accuracy than

TBCNN for the binary cross-language classification task, improving it from

77% to 86% for the Github dataset (see Table 3.4). For the single language

31



CHAPTER 3. BILATERAL DEPENDENCY NEURAL NETWORKS FOR CROSS-LANGUAGE

ALGORITHM CLASSIFICATION

Table 3.1: Results for cross-language binary classification by di↵erent code
learning techniques.

Model Accuracy Training Time(hm)

Bag of words 0.46 5m
3-grams 0.51 5m
5-grams 0.52 5m
Tf-idf 0.49 7m
Siamese-LSTM 0.73 1h50m
Bi-TBCNN 0.77 3h10m
Bi-GGNN 0.76 5h50m
Bi-DTBCNN 0.86 8h25m

classification task, DTBCNN achieves comparable accuracy to TBCNN

(see Table 3.2), which may imply that making implicit dependencies

explicit in a single-language may not be necessary.

3.3.4 Details of Classification Results

RQ1: Results on Di↵erent Code Learning Techniques

Table 4.2 shows the results of various models for the binary cross-language

algorithm classification task. The training time in Table 4.2 is measured as

wall clock time by taking the average of 3 separate runs per configuration. The

termination condition for each training depends on whether the loss function

of a model reaches a certain threshold or the number of iterations/epochs in

training exceeds a certain limit. The time needed to classify a test program is

typically very short within a second.

The results show that NN-based models perform significantly better than

the other token-counting based models (BoW, n-gram, and tf-idf). Our Bi-

DTBCNN achieves the highest accuracy of 86%, but it takes the longest training

time. GGNN training is faster than DTBCNN because both gated graphs and

dependency trees are extensions of ASTs and our custom-built dependency

trees in fact have more nodes than gated graphs although gated graphs may

have more edges. Optimizing tree or graph representations of code and the

training algorithms can be useful future research for better code learning.

RQ2: Results on Single-Language Classification

For each of TBCNN, DTBCNN and GGNN, we train a single-language model

using the Java corpus and another single-language model using the C++
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Table 3.2: Single-language algorithm classification results

Model

Dataset
Github A

C++ Java C++

TBCNN, Mou et al. [81] 0.93 0.89 0.93
GGNN, Allamanis et al. [5] 0.66 0.56 0.49

DTBCNN 0.93 0.91 0.93

corpus, and compare their classification accuracies. Table 3.2 shows the results.

DTBCNN models slightly improve the classification accuracies of TBCNN

models [81], which are also higher than GGNN models.

RQ3: Results on Sensitivity Analysis wrt Numbers of Classes

We hypothesize that the number of algorithm classes would a↵ect the perfor-

mance of all the code learning techniques. In particular, it would be interesting

to find out whether the numbers of classes a↵ect GGNN more than tree-based

models.

Thus we perform the sensitivity analysis by reducing the number of classes

to see how it a↵ects the performance of the models in both single- and cross-

language settings. As shown by the results in both SL and CL settings in

Table 3.3, DTBCNN models maintain relatively good performance when the

number of classes increases, whilst GGNN performance is more sensitive to the

number of classes. For SL settings, both GGNN and TBCNN perform well with

10 classes, reaching around 90% accuracy or better for both Github Dataset and

Dataset A. However, when the number of classes increases, the GGNN cannot

keep up the good performance but reduces the accuracy drastically, e.g 66% for

Github C++ Dataset with 50 classes and 45% for Dataset A with 50 classes.

On the contrary, DTBCNN can still maintain superior performance around

90%+ accuracy. The same situation occurs for cross-language (CL) settings:

both Bi-GGNN and Bi-DTBCNN perform well when there are 10 classes in

sub-components, but when the number of classes increases, the performance of

Bi-GGNN drops and is more volatile than that of Bi-DTBCNN.

For SL settings, both GGNN and TBCNN perform well with 10 classes,

reaching above 90% accuracy for both Github Dataset and Dataset A. When

the number of classes increases to 50 for Github Dataset and 50 or 104 for

Dataset A, the accuracy of GGNN reduces drastically, e.g., 66% for Github

C++ Dataset with 50 classes and 45% for Dataset A with 104 classes. On

the contrary, DTBCNN can maintain its performance above 93%. The same
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Table 3.3: Sensitivity Analysis

Model Dataset Num Classes
Setting
SL CL

C++ Java

GGNN

Github
50 0.66 0.56 0.76
30 0.93 0.88 0.73
10 0.94 0.94 0.88

A

104 0.45 – –
50 0.48 – –
25 0.68 – –
10 0.89 – –

DTBCNN

Github
50 0.93 0.91 0.86
30 0.95 0.93 0.88
10 0.96 0.95 0.88

A

104 0.94 – –
50 0.95 – –
25 0.95 – –
10 0.98 – –

Table 3.4: Results of cross-language algorithm classification with di↵erent
dependency trees.

Plain AST AST+Def AST+Def+Use

Accuracy 0.77 0.83 0.86

situation occurs for cross-language (CL) settings: both Bi-GGNN and Bi-

DTBCNN perform well for 10 algorithm classes; when the number of classes

increases, the performance of Bi-GGNN drops and is more volatile for di↵erent

runs than that of Bi-DTBCNN.

RQ4: Results on Using Dependencies in the Models

A major intuition for adding dependencies into tree or graph based code

representations is to expose more code semantics to help machine learning

techniques to learn better. GGNN [5] is built on such an intuition to add many

di↵erent kinds of edges into ASTs to form gated graphs, and it is shown to be

useful for predicting variable names. For DTBCNN, we also want to find out

whether adding dependencies into ASTs contaminates the code representations

to make it harder to learn and how much e↵ect adding dependencies has on

the classification accuracy. As shown in Table 3.4, a neural network learning

model trained on plain AST (i.e., TBCNN) produces worse cross-language

classification accuracy than the same model trained on ASTs embedded with

def or def-use relations (77% vs. 83% vs. 86%). On the other hand, for the

single-language setting, TBCNN produces closely comparable accuracies to

DTBCNN (see Table 3.2). This phenomena may indicate that in a cross-

language setting, the code syntax can di↵er a lot between di↵erent languages
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and require additional dependencies to help learn better representations for

cross-language classification; while in a single-language setting, most code

semantics are expressed in code syntax already, and the usefulness of extra

dependencies may be reduced. It would be interesting future study to investigate

further what dependencies may be useful for what kinds of tasks.

3.3.5 Threats to Validity and Discussions

We discuss several threats to the validity of our study, and discuss possible

alternatives that can be done in future studies.

3.3.5.1 Threats to Validity

Data collections. Using Github Search API, we collected the code implemen-

tation of algorithms based on some specific keywords to identify the name of

algorithms, such as “bfs”, “bubblesort”, “linkedlist”, etc. This approach may

find some source code that are not actually related to the algorithm (i.e., false

positives). To reduce the impact of such cases, we have to restrict the size of

crawled code file to e.g. 500 bytes in order to exclude code files associated with

auxiliary library code or details irrelevant to the algorithms. However, it is also

possible that we have excluded many useful implementation of algorithms (i.e.,

false negatives). However, the quality of the Github search is an uncontrolled

variable for the experiments, even though the authors have randomly inspected

200 returned results to find the false positive acceptable. Moreover, these

samples from Github do not nessessarily compile, hence we choose srcML parser

to generate AST and slicing information, instead of the production compilers

from JDK (for Java) and clang (for C++).

Merging Layers. We used a subnetwork merging strategy and a softmax

layer to classify programs, in either SL or CL settings. The merge can also be

done using energy functions such as Manhattan euclidean distances in Siamese-

LSTM [84] or using multi-layered perceptrons to fuse the vectors. We leave it

for future work to explore the e↵ectiveness of di↵erent alternatives for merging

the subnetworks.

Node granularity: In our implementation of GGNN, TBCNN, and DT-

BCNN, we model source code using the AST node types mostly (ignoring

identifier names), which are less fine-grained than other models that consider

concrete tokens. Despite being ‘coarser’, such node-type level encodings out-

performs token-based LSTM. A possible explanation is that node types can
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already keep structural and semantic features of source code relevant to an al-

gorithm, without losing critical information. On the other hand, concrete token

information can be useful for certain learning tasks, such as predicting wrong

variable names [5]. A future improvement is to combine both the node type

level and token level information and see how it will improve the performance

of code learning models.

3.3.5.2 Justification for baseline results

As described by Hellendoorn and Devanbu [51], the n-gram model, if configured

carefully, can achieve a comparable result to a neural network-based model.

However, our results in Table 4.2 show that all of the token feature-based

models, include the n-gram, underperform neural network-based models.

We would like to find the reason for the worse performance in feature-based

models. As described in [51], the code model is built per project, that is, an

n-gram sequence can be reused across files in a project, while in our work,

each file in the corpus is an isolated program and all the files have no explicit

connection to each other. This makes the token features extracted by n-gram,

bag of words and tf-idf sparse, except for some common language keywords (if,

else, include, etc) or common variable declarations (i, j, str, etc). In short, the

feature-based models do not capture well the relations among the tokens well

in our dataset.

In contrast, NN-based models (LSTM, CNN) take the input as the pretrained

embedding of words. These pretrained embeddings capture the relations among

tokens into a low dimensional continuous vector space. Thus, the NN-based

models can produce better vector representations for the token features, which

leads to better classification results.

3.3.5.3 Comparison between neural-network based models

Among the NN-based models, our custom-built DTBCNN achieves higher

accuracy than the others. Here we want to provide some justifications for

such results. The NN-based models considered can be categorized into two

types: sequence-based (LSTM and CNN) and structure-based (GGNN, TBCNN

and DTBCNN). The sequence-based models consider the source code at the

token level, while the structure-based model considers the source code at the

structure level (e.g., AST node types and dependencies). The advantage of

treating source code as token sequences is that it is simpler to adapt well-known

NLP techniques. One disadvantage of such techniques is that they cannot
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make use of inherent features that hide inside the implicit structure of source

code, such as data and control dependency, class inheritance, call relations,

etc. Another disadvantage is that the number of tokens can be arbitrary

as developers can introduce new tokens when writing code [117], making it

harder to capture the relations among essentially the same tokens that appear

di↵erently.

On the other hand, AST or graph representation of source code are closer

to the structural nature of algorithms. Since our goal is to classify algorithms

across di↵erent languages, the inherent features of code structures can be more

important than those specific tokens to distinguish the program.

For example, if we consider control dependency, the bubblesort makes

multiple passes through a list of items. The code structure usually contains 2

nested for loop because we want to compare each item with every other item

at least once, we also need an if inside the second for loop to check if the

previous item is bigger than the current item for swapping. In addition, if we

consider data dependency, the bubblesort involves comparison and swapping of

items in a list and does not need to introduce many variable declarations since

it is an in-place algorithm. All of these, unlike token sequences, can be features

of bubblesort to distinguish itself from others, no matter in which language the

code is written. In addition, we consider only the node types of AST instead

of actual tokens, making the embedding vocabulary smaller to generate more

compact vector representations.

In addition, as mentioned in Section 3.2.3, encoding a program as the graph

intuitively adds richer semantic information of the program to the AST, thus is

expected to yield a better result. However, our results shown in Table 4.2 and

Table 3.4 are against this intuition. A possible reason is that graphs encode

both control and data dependencies as edges between the nodes in the AST,

thus complicating the structure of the AST, while our approach adds richer

semantic information but remains to be tree-based. Graph-based similarity

comparison boils down to graph isomorphism, which is a much harder problem

than tree-based comparison.

In the future, we will conduct more experiments to observe the internal

representations of the neural networks (NNs) with more datasets, in order to

really understand what the NNs have learned to represent the programs.

The approach proposed is general to any pair of programming languages,

although we only used Java and C++ to evaluate in this work. When the

programming languages are cross paradigms, such as object-oriented versus
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functional, it would be interesting to see whether the framework needs any

further customizations, we leave this task for the future. More algorithms e.g.,

those listed in Rosatta Code can be added to the dataset in future, however,

the 50 algorithms are already su�cient for us to assess multiple baselines and

challenge the scalability of their training.

3.4 Conclusions and Future Work

In this work, we generalize a Bilateral Neural Network (Bi-NN) framework for

cross-language algorithm classification problems. We instantiate this framework

with di↵erent intermediate representations of ‘Big Code’ learning, including

our own dependency tree-based convolutional neural networks (DTBCNN),

and evaluate them on the tasks of classifying thousands of programs files as 50

algorithms, across di↵erent programming languages such as Java and C++.

We introduce DTBCNN to encode def-use relations (aka program dependen-

cies) as part of abstract syntax trees, which can achieve the highest classification

accuracy compared to other commonly used models (e.g., bags-of-words, n-gram,

tf-idf, long short-term memory, gated graph neural networks).
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Chapter 4

Learning Cross Language API

Mapping with Little Knowledge

Migrating software projects from one language to another is a common and

important task in software engineering. To support the process, various mi-

gration tools have been proposed. A fundamental challenge faced by such

tools is to translate the library APIs of one language to functionally equivalent

counterparts of another. Often, much manual e↵ort is required to define the

mappings between the respective APIs of two languages.

Several studies have addressed this API mapping problem, such as MAM [138],

StaMiner [89], DeepAM [49], and Api2Api [94]. MAM [138] and StaMiner [89]

require as input a large body of parallel program corpora, which contain func-

tionally equivalent code that use APIs in both languages, in order to mine the

mappings. Thus, they rely heavily on the availability of bilingual projects that

implement the same functionality in two or more languages, which is not easy

to find for any pair of languages. Although they rely on similar function names

to reduce manual e↵ort needed to identify parallel data, many functions with

similar names may be actually functionally di↵erent, degrading the quality of

training data and final mapping results. DeepAM [49] maps API sequences

to sequences based on the text descriptions for the sequences. Its intuition

is that two API sequences across languages may be mapped to each other if

their text descriptions are similar. This approach does not need API mapping

seeds, but requires many similar text descriptions across programs written in

di↵erent programming languages whose availability can a↵ect the mapping

results. Api2Api [94] uses a vector space transformation method inspired by

Mikolov et al. [79], but it still requires many API mapping seeds from an

external source (Java2CSharp [29])) to map APIs across languages.
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We propose an approach that can map APIs across languages while alleviat-

ing the shortcoming of existing approaches. We realize that the underlying goal

of state-of-the-art techniques is essentially to find a transformation that can

align two di↵erent domains (in our context, the two vector spaces for APIs in

two di↵erent languages). Api2Api [94] is also an instance of this idea to learn

an optimal transformation matrix between two vector spaces while requiring

much parallel training data. However, empirical evidence of existing approaches

suggest that collecting the training data is an expensive process that requires

either availability of manual inspection or high-quality documentations. This

has led to the following research question we aim to answer in chapter: ”Can

a model be built to minimize the need of parallel data to map APIs across

languages?”.

We realize that the API mapping problem may be addressed by techniques

based on generative adversarial training [47] with the assistance of a pre-

trained model. Given large code bases in two languages, it is likely that

certain similarities between the code bases can be exploited to discover APIs

of similar functionality across languages, without manually specifying parallel

corpora. Such knowledge of similar functionalities may not be big enough for a

complete mapping model, but it is small enough to a↵ord human validation.

Once validated, the knowledge can be transferred through adversarial training

techniques to maximize the alignment between the two languages which results

in better API mappings.

Our approach for API mapping works in the following way: (1) it takes in

a large number of programs in two languages, and generates a vector space

representing code and APIs in each language via a word embedding technique

adapted from previous studies [22, 49, 89, 94, 138]; (2) it adapts domain adaption

techniques [33, 43, 47] to transform and align the two vector spaces for the

two languages, with mainly three technical components: Seeding, Adversarial

training, and Refinement; and (3) it utilizes nearest-neighbors queries in the

aligned vector spaces to identify the mapping result of each API. We name

our approach SAR, after the three main technical components in the domain

adaption step.

We have implemented the approach in a prototype tailored for Java and

C#, and evaluated and compared it with the state-of-the-art techniques, such

as StaMiner [89], DeepAM [49] and Api2Api [94]. We have evaluated the pro-

totype on a dataset of more than 14,800 Java projects containing approximately

2.1 million files and 7,800 C# projects containing approximately 958,000 files.
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Our evaluation results indicate that the approach can achieve 54% and 82%

accuracy in its top-1 and top-10 API mapping results with only 174 automati-

cally identified seeds, more accurate than other approaches using the same or

much more mapping seeds. In addition, we also identify about 400 more API

mappings between the Java and C# SDKs than other approaches.

The main contributions are as follows:

• We propose SAR, a new approach based on domain adaption techniques

to transform and align di↵erent vector spaces across languages with the

assistance of a seeding, adversarial learning, and refinement method. To

the best of our knowledge, we are the first to apply the adversarial training

techniques for the API mapping task.

• We adapt the adversarial training techniques in a number of ways to improve

its alignment of the vector spaces: (1) we use nearest-neighbor queries to

identify possible mapping candidates for better alignment; (2) we use a

similarity-based model selection criteria and reduce the need of known API

mappings during the training of our model; and (3) we use the Procrustes

algorithm to find the exact solution of the mapping matrix.

• We have implemented the approach and evaluated it with a corpus containing

millions of Java and C# source files; via an extensive empirical evaluation on

di↵erent components of our approach, we demonstrate its advantages against

other API mapping approaches in producing more accurate mappings with

much fewer seeds that can be automatically identified.

4.1 Background

The goal of domain adaptation is to produce a mapping matrix as an approxi-

mation of the similarities between vectors in the two spaces. This section gives

a brief overview of two methods for domain adaptation: seed-based (super-

vised) or unsupervised. Apart from the two input vector spaces, the seed-based

method also requires a set of seeds as the parallel training data to learn the

matrix, while unsupervised method does not: the mapping matrix can be

obtained through adversarial learning assuming that similarity exists between

the distributions of vectors in the two spaces.
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4.1.1 Seed-based Domain Adaptation

Given two sets of embeddings have been trained independently on monolingual

data, seed-based domain adaptation is to learn a mapping using the seeds s.t.

their translations are close in a shared vector space. Such an idea has been

explored for word translation in NLP [79], and Api2Api [94] adapts it to learn

API mappings.

Formally, given two vector spaces, X = {x1, . . . , xn

} and Y = {y1, . . . , ym},
containing n andm embeddings for two languages L1 and L2, and a set S of seeds

of API embedding pairs {(x
si , ysi)}si2{1,|S|}, we want to learn a linear mapping

W between the source and the target space, such that Wx
si approximates y

si .

In theory, W can be learned by solving the following objective function:

W ⇤ , argmin
W2M⇢Rd⇥d

||WX
S

� Y
S

|| (4.1)

where d is the dimension of the embeddings; M ⇢ Rd⇥d is the space of d⇥ d

matrices of real numbers; X
S

, {x
si} ⇢ X and Y

S

, {y
si} ⇢ Y contain the

embeddings of the APIs in the seeds, which are matrices of size d⇥ |S|.
Instead of approximating a solution using traditional stochastic gradient

descent method used in Api2Api [94], there exists an analytical Procrustes

problem [112] solved by Xing et al. [122], which has a closed form solution of

the mapping matrix derived from the singular value decomposition (SVD) of

Y XT :

W ⇤ , argmin
W

||WX
s

� Y
s

|| = UV T , with U⌃V T = SV D(Y
s

XT

s

) (4.2)

The advantage of a closed form solution is that one can get the exact solution

which is better than the approximate solution of gradient descent, and is faster

in computation.

With the mapping matrix W , one can use y
x

= Wx to map a query vector

x. The vector y
x

is the mapping, or adaptation, of x in the target space.

4.1.2 Unsupervised Domain Adaptation

Adversarial learning has been successfully used for domain adaptation in an

unsupervised manner. In particular, the Generative Adversarial Network [47]

achieves this goal by a model which comprises a generator and a discriminator

as two inter-playing components. A generator network that aims to learn real
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data distribution and produce fake data to fool the other component, so-called

the discriminator; the discriminator network that acts as a classifier, which aims

to distinguish the generated fake data from the real data. The two components

are trained in a minimax fashion and would converge when the generator has

maximized its ability to generate fake data so similar to the real data that the

probability for the discriminator to make a mistake would be 1
2 .

Conneau et al. [33] use this idea as a variant for the machine translation

task, which achieves significantly better results than other baselines of machine

translation, which would require no parallel data to train the networks. The

generator, in this case, is a mapping matrix W , which can simply be seen

as a set of parameters that need to be learned, and the discriminator is a

feed-forward neural network. We want to find a matrix W as an approximation

of the mapping between the two vector spaces X and Y . In the adversarial

learning setting, we aim to optimize two parameters: one is the discriminator’s

parameters, denoted as ✓
D

, the other is the mapping matrix W . Our goal is to

find the optimal value of two sets of parameters, which results that we have

two objective functions in the adversarial learning setting.

Discriminator objective Given the mapping W , the discriminator (param-

eterized as ✓
D

) is optimized by this objective function:

L
D

(✓
D

|W ) = �
nX

i=1

logP
✓D(source = 1|Wx

i

)�
mX

i=1

logP
✓D(source = 0|y

i

)

(4.3)

where P
✓D

�
source = 1

��v
�
is the probability that a vector v originates from the

source embedding space (as opposed to an embedding from the target space).

Mapping objective Given the discriminator ✓
D

, the mapping W aims to

fool the discriminator’s ability of predicting the original domain of an embedding

by minimizing this objective function:

L
W

(W |✓
D

) = �
nX

i=1

logP
✓D(source = 0|Wx

i

)�
mX

i=1

logP
✓D(source = 1|y

i

)

(4.4)

Learning Algorithm The discriminator ✓
D

and the mapping W are opti-

mized iteratively to minimize L
D

and L
W

, respectively by following the training

procedure of adversarial networks proposed by Goodfellow et al. [47]
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Figure 4.1: Overview of SAR: Domain Adaptation for API Mappings

4.2 Our Approach

Combining the virtues of seed-based and unsupervised adversarial methods

described in the background, our domain adaptation approach can approximate

two spaces of vectors with minimal parallel corpora. Although unsupervised

adversarial learning method does not require any seed as parallel data, the

distributions of vectors (i.e., embeddings) in the two spaces may not be similar.

Therefore, it is our hypothesis that the performance could be improved by

initializing the unsupervised adversarial learning method with a small set of

seeds taken from the seed-based domain adaptation, and by generating the rest

of API mappings in the two steps below:

• From large code corpora in two di↵erent languages, we create two vector

spaces for APIs by adapting word embedding technique for code. From such

corpora, we derive a small set of mappings based on a simple text similarity

heuristic (see Code Embedding in Figure 6.1);

• The two vector spaces, along with the mapping seeds, are transformed by

a mapping matrix to get aligned with each other. This step comprises

three sub-steps: Seeding, Adversarial Learning, and Refinement (see Domain
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Adaptation in Figure 6.1).

For any given API a in the source language and its continuous vector

representation x, we can map it to the other domain space by computing

y
x

= Wx. Then, one can find the top-k nearest neighbors of y
x

in the target

vector space, using cosine similarity as the distance metric, and finally can

retrieve the list of APIs in the target language that has the same embeddings as

the top-k nearest neighbors. The list of APIs can then be used as the mapping

results for a (see Cross-Space Near-Neighbor Query in Figure 6.1).

4.2.1 Code Embedding via Word Embedding

We first parse source code files into Abstract Syntax Trees (ASTs) using

fAST [128] for both Java and C# projects. We convert each AST to a sequence

of tokens by traversing the AST in its preorder. Through the traversal, we can

identify the API token by checking the type of the node (e.g., function call

nodes). We perform the normalization step to enrich the code sequence with

structural information extracted from parsing, which constitutes two steps:

Filtering out unnecessary tokens: Once obtained the token sequence,

we filter out tokens that are not necessary for our task, such as operators and

primitive variable identifiers. Language keywords and AST node types are still

kept for code embedding as they can enrich the structural information of the

sequence.

Converting raw API tokens into signatures: This step reduces the

variance of vocabulary existing in the source code. For example, one may

extract the ‘List.add’ method from the ‘java.util.List’ class, or from the

‘com.google.common.collect.List’ in an external third-party library. Even though

these two APIs have the same class and method names, their usages and se-

mantics are di↵erent. To handle such cases, we propose this additional step

to convert a raw API token to its signature in qualified name format ‘Pack-

age.Class.Method’. The ‘Package’ is identified by using the ‘import’ statements

(Java) or ‘using’ statements (C#).

Below shows an example of the normalization for the code token sequence:

float f List.add List.add if List.addAll else HashMap.put return

==> float java.util.List.add java.util.List.add if java.List.addAll

else java.util.HashMap.put return

From the corpora of code sequences, we use the skip-gram model [78] to

train the embedding of tokens. Given a large corpus as the training data, the
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Figure 4.2: Domain adaptation steps to align two vector spaces

tokens appearing in the same context would usually have their embeddings

close by distance in the vector space.

4.2.2 Domain Adaptation

Our domain adaptation comprises three steps: seeding, adversarial training, and

refinement (hence the abbreviation SAR of our approach). Seeing SAR from

outside as a black-box, it receives two vector spaces and a set of seeds as input

and generates a mapping matrix W as output. Internally, each step of SAR

is a di↵erent way to improve the mapping matrix, which receives the matrix

output from the previous step as input and produces the improved version of

it as output. We assign W1, W2 and W3 as the output matrix for the three

steps, respectively. Figure 4.2 summaries the domain adaptation procedure.

The rationale for each step is described as follows: (1) The Seeding step to

initialize a mapping matrix between the two vectors spaces based on some

prior knowledge (i.e., seeds) (2) The Adversarial Learning step to re-use
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the knowledge learned from the Seeding step as an initializer for adversarial

training in order to maximize the similarity between the two vector spaces

(or two distributions); and (3) The Refinement step to make the mapping

matrix reach its optimal state.

4.2.2.1 Seeding

After Code Embedding, two vector spaces are obtained to produce a mapping

matrix that approximates the two vector spaces by using the knowledge from

mapping seeds in a dictionary. Notice that by simple signature-based comparison

to identify APIs having the same signature name 1, one can identify many high-

quality mapping candidates to be used as the seeds without any human e↵ort

to verify because developers often use the same name for the same functionality

even when they are in di↵erent languages.

Having the set of seeds obtained, in addition to the two vector spaces X

and Y , the initial mapping matrix produced is W1 by solving the Equation 4.1

in Section 4.1 (also see Seeding in Figure 4.2). This seeding step can be seen as

a function A, which will receive these three inputs and produces a transforming

matrix W1 such that W1 = A(X, Y,D). Internally, A solves the optimization

problem described in Section 4.1 given the three inputs.

4.2.2.2 Adversarial Learning

The quality of the matrix W1 learned in the previous step is limited by the

number of seeds one can provide, which results in an approximation between

the source and target domains. In this case, the knowledge learned for W1 can

be seen as a pre-trained model and can be reused for the other model.

Formally, given the two original vector spaces, X = {x1, . . . , xn

} and Y =

{y1, . . . , ym}, containing n and m API embeddings obtained from the Code

Embedding step, we want to find the matrix W2 to maximize the approximation

of the mapping between the two vector spaces. We use adversarial learning

to achieve this goal, which comprises of two steps: the mapping matrix W2

and a discriminator network as described in Section 4.1.2. Our goal is to find

the optimal value of W2 and ✓
D

(discriminator parameters) We achieve this by

training the adversarial network with the objective functions as described in

Section 4.1.2 to find W2 and ✓
D

.

1”Same signature” in our case means case-insensitive matches of the class and method
names
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The key di↵erence with the general adversarial setting described Section

4.1.2 is that we do not initialize W2 randomly as one usually does when training

a neural network. Instead, we use W1 as a pre-trained model to initialize for

the W2 so that W2 is initialized with some good knowledge, even if it is small

(see Adversarial Learning in Figure 4.2). This step is essential to improve the

performance of the API mapping results.

Model Selection Criteria In short, this step is for choosing the optimal

parameters for the Adversarial Learning step, although the heuristic used is

similar to the Refinement step. To train the adversarial networks, like any other

neural network architecture, we need a validation set to select the best model

for the prediction step. The validation set is used to minimize over-fitting when

training the neural network. Concretely, for each training epoch, one needs to

evaluate against the validation dataset to pick the model that has the highest

validation accuracy through training. Our goal is to use as little parallel data

as possible to build the model. In practice, one only has a very small number

of seeds inferred from the signature-based matching, or in the worst case, one

cannot infer any seed to have data for validation. As such, it is impractical

to use a parallel dataset as a validation set to train neural networks in the

adversarial learning step, i.e., involving additional prior knowledge.

To address this issue, we perform a model selection using unsupervised

criteria that quantify the closeness of the source and target embedding spaces.

Specifically, we consider them as a set of K most frequent source APIs and

multiply them with the mapping matrix W to generate a target mapping for

each of them. After that, we get a set of mappings, then compute the average

cosine similarity of these mappings and use the average as a validation metric.

4.2.2.3 Refinement for Better Alignment

The adversarial approach tries to align all words irrespective of their frequencies.

However, rare tokens have embeddings that are less updated in the back-

propagation step and are more likely to appear in di↵erent contexts in each

corpus, which makes them harder to align [33]. To address this problem, we use

the method proposed in [33] to infer a list of mapping candidates using only

the most frequent tokens. Moreover, other heuristics are introduced to infer

another candidate set of mapping based on the threshold of cosine similarity,

which can be used as another synthetic dictionary that can combine with the

top-K frequency mapping candidates.
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Following the step shown in [33], it is possible to build a set of mapping

candidates using W2 just learned with adversarial training. Assume that one

can induce a combined set of mapping candidates from di↵erent heuristics

above, and the quality of the combined set is good, then this set of candidates

should be used to learn a better mapping and, consequently, an even better

set of candidates for the next iteration. The process can repeat iteratively to

obtain a hopefully better mapping and candidates set each iteration until some

convergence criteria are met. Formally, the refinement step receives W2 from

the previous adversarial learning step, along with the two original embeddings

X and Y to produce the next W3 iteratively (see Refinement in Figure 4.2).

Specifically, we produce the mapping candidates for refinement based on

two heuristics:

Top-K Frequency: Conneau et al. [33] shows that by taking the top-k fre-

quent words and their nearest neighbors in the transformed vector spaces,

it can provide high-quality mapping candidates because the most frequently

used words are likely to be the same across languages. Therefore, we can use

the top-k frequent API names to induce the seeds for the refinement.

Cosine Similarity Threshold: Since finding API mappings in the aligned

vector space is essential to finding APIs close enough in the vector space,

all API pairs “similar enough” in the vector space aligned by Adversarial

Learning can be good candidates for the refinement step. In this work, we

use the cosine similarity as the metric to measure how similar two vectors

are. We note that not all APIs in a language can have a mapping in another

language. In the empirical case study, we show how a good threshold is found

in Section 4.3.3.2.

Therefore, we can infer two sets of synthetic mapping candidates from the

above heuristics. In fact, there are di↵erent ways to merge them into one single

set as they can overlap as, e.g., (1) the union of the two sets, (2) the intersection

of the two sets. In contrast to Conneau et al. [33], we use an additional Cosine

Similarity Threshold heuristic to get a better set of mapping candidates.

The matrix W3 in this step is the final output of the domain adaptation

process. When it comes to the step to produce the mapping from the source

query, the embeddings of the query will be multiplied with W3 in order to

obtain corresponding mappings in the target language.
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Table 4.1: Example of Seeds from the Signature-based Matching Heuristic

Java C#

java.lang.String.equals System.String.Equals
java.util.List.remove System.Collections.Generic.List.Remove

java.util.Random.nextDouble System.Random.NextDouble
java.lang.Math.round System.Math.Round

java.io.File.Exists System.IO.File.Exists

4.3 Empirical Evaluation

We have conducted extensive empirical evaluations on our approach in various

settings to answer the following research questions:

1. Compared to related methods, is our approach more e↵ective in identifying

API mappings?

2. How well do di↵erent combinations of refinement heuristics improve the

performance?

3. What is the impact of each component in our approach on the performance?

4.3.1 Dataset

We use the Java Giga corpus data described by Allamanis et al. [7]. It involves

approximately 14,807 Java projects from Github and contains approximately

2.1 millions of files. For C#, we clone the projects on Github that have at least

1 star and collect 7,841 C# projects with about 958,000 files. As the main

advantage of our approach, there is no need to specify which code in Java is

functionally equivalent to which code in C#. For each function in a file, we

traverse the AST of the function to extract the API call sequences. For Java,

we get a corpus containing 6.7 million code sequences; for C#, we get a corpus

containing 5.1 million code sequences.

For evaluation, we take 860 method API mappings and 430 class API

mappings defined in Java2CSharp [29] as the ground truth for evaluating our

approach against the baselines.

4.3.2 Implementation

We adapt Gensim [110] in NLP to produce the embeddings of tokens for the

Java and C# corpora. We use the same settings used by Mikolov et al. [80]

during the training: stochastic gradient descent with a default learning rate of

0.025, negative sampling with 30 samples, skip-gram with a context window of

size 10, and a sub-sampling rate of value 1e�4.

50



CHAPTER 4. LEARNING CROSS LANGUAGE API MAPPING WITH LITTLE KNOWLEDGE

4.3.2.1 Evaluation Metrics

We use three metrics to measure the performance of our approach and the

baselines.

Top-k Accuracy: The top-k accuracy is defined as follow: For a test JDK

API j, SAR produces a resulting list. If the true mapping API in C# .NET

for j is in the top-k resulting list, we count it a hit. If not, we count it a miss.

Top-k accuracy is computed as the ratio between the number of hits and the

total of hits and misses for a given ground-truth test set.

Mean Reciprocal Rank: For a test JDK API j as a query, SAR produces

a resulting list, we calculate the Reciprocal Rank (RR) of that query. For all

queries in our evaluation data, we calculate the Mean Reciprocal Rank (MRR)

of the test set. MRR is the average of the reciprocal ranks of results for a

sample of queries.

Formally, Reciprocal Rank can be defined as: RR = 1
ranki

, where rank
i

refers to the rank position of the first relevant mapping for the i-th query. And

the Mean Reciprocal Rank (MRR) can be defined as MRR = 1
|Q|

P|Q|
i=1 RR

i

,

where RR
i

refers to the Reciprocal Rank for the i-th query, |Q| refers to the

total number of queries.

F-score: The F-score is defined as F = (2⇤P ⇤R)/(P +R), where Precision

P = TP/(TP +FP ) and Recall R = TP/(TP +FN). TP refers to the number

of true positives, which is the number of API mappings that are in both result

dataset and the ground truth set; TN refers to the number of true negatives,

which is the number of API mappings that are neither in the returned results

nor in the ground truth set; FP refers to the number of false positives which

represents the number of result mappings that are not in the ground truth set;

FN refers to the number of false negatives, which represents the number of

mappings in the ground truth set but not in the results.

4.3.2.2 Code Embedding

From the two code corpora, we scan through all pairs of APIs in the two corpora

to produce a set of seeds using the signature-based matching heuristic. We got

257 seeds for this step. Table 4.1 shows examples of the seeds. Among these 257

seeds, we found that 83 seeds overlap in the 860 ground truth mappings. Note

that for a fair comparison with the baselines (Api2Api, DeepAM, StaMiner), we

remove these 83 overlapping seeds from the 257 seeds and we get a set of 174

seeds for the Seeding step. Then, we apply word embedding on the corpora
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Figure 4.3: Unsupervised Model Selection Criteria

to get the source embedding and target embedding. We use the embeddings,

along with the seeds as the input for the domain adaptation process.

4.3.2.3 Domain Adaptation

For the seeding step, we findW1 by using the Procrustes solution in Equation 4.2

with three inputs: source embedding X (Java), target embedding Y (C#), and

174 mapping seeds. This step gives us the mapping matrix W1. We implement

the adversarial learning by using PyTorch [100]. We use Momentum Gradient

Descent method [114] to search for the optimal transformation matrix2.

We use the unsupervised model selection criteria proposed in Section 4.2.2.2

to select the best model by choosing the top 1000 frequent API token pairs,

e.g., top-1 frequent token in the source is aligned with top-1 frequent token

in the target as the validation set, then we extract the W2 from the model.

Figure 4.3 shows three di↵erent lines: (1) the discriminator accuracy, which is

the accuracy in classifying the samples from the source and target embeddings,

(2) the API mapping accuracy, which is the accuracy when using the model

to evaluate against the 1000 pairs validation set, and (3) the average cosine

similarity of all the pairs. As shown, the criteria correlate well to the mapping

accuracy. The high instability is because of over-fitting. Thus, we only selected

the model of the best validation accuracy.

From W2 resulting from the adversarial training, we obtain the final W3 by

performing the refinement step on the basis of two heuristics in Section 4.2.2.3.

For the top-N frequency heuristics, we choose top-500 frequent tokens for the

synthetic dictionary, as suggested in [33]. For the second similarity threshold

rule, we use 0.7 as the threshold as shown in Section 4.3.3.2, we found that this

2Our implementation (including source code and a docker image) can be accessed at the
public repository: https://github.com/bdqnghi/SAR_API_mapping

52

https://github.com/bdqnghi/SAR_API_mapping


CHAPTER 4. LEARNING CROSS LANGUAGE API MAPPING WITH LITTLE KNOWLEDGE

Table 4.2: API Mapping Results

Index Baselines K-folds Seeds Top-1 Top-5 Top-10
1

Random seeds: Api2Api

- 0 0.03 0.05 0.1
2 - 10 0.09 0.12 0.14
3 - 50 0.14 0.19 0.22
4 - 100 0.19 0.24 0.32
5

Random seeds: SAR

- 0 0.25 0.30 0.35
6 - 10 0.28 0.35 0.40
7 - 50 0.26 0.43 0.47
8 - 100 0.44 0.50 0.69
9

K-Fold: Api2Api

1-fold 172 0.24 0.35 0.41
10 2-folds 344 0.34 0.45 0.55
11 3-folds 516 0.37 0.51 0.67
12 4-folds 688 0.43 0.64 0.72
13

K-Fold: SAR

1-fold 172 0.36 0.39 0.48
14 2-folds 344 0.45 0.50 0.61
15 3-folds 516 0.54 0.66 0.71
16 4-folds 688 0.59 0.77 0.84
17

Signature-based: Api2Api

- 25 0.12 0.16 0.18
18 - 50 0.20 0.23 0.29
19 - 100 0.27 0.32 0.38
20 - 174 0.31 0.41 0.60
21

Signature-based: SAR

- 25 0.30 0.32 0.39
22 - 50 0.35 0.39 0.45
23 - 100 0.41 0.50 0.63
24 - 174 0.48 0.71 0.78

Table 4.3: Accuracy of 1-1 Class-Level Mapping when compares with StaMiner
and MAM

Package
Class Migration

Precision Recall F-Score
Sta DeepA SAR Sta DeepA SAR Sta DeepA SAR

java.io 70.0% 80.0% 80.0% 63.6% 75.0% 75.0% 66.6% 72.7% 77.5%
java.lang 82.5% 80.0% 82.5% 76.7% 81.3% 80.2% 79.5% 80.7% 82.6%
java.math 50.0% 66.7% 66.7% 50.0% 66.7% 66.7% 50.0% 66.7% 66.7%
java.net 100.0% 100.0% 100.0% 50.0% 100.0% 100.0% 66.7% 100.0% 100.0%
java.sql 100.0% 100.0% 100.0% 50.0% 100.0% 90.0% 66.7% 100.0% 95.0%
java.util 64.7% 69.6% 81.3% 71.0% 72.7% 71.0% 67.7% 71.1% 76.7%

All 77.9% 82.7% 85.0% 60.2% 82.6% 80.5% 66.2% 81.9% 83.5%

number balances coverage and precision of API mappings well.

4.3.3 Evaluation

4.3.3.1 RQ1. E↵ectiveness of SAR in Mining API Mapping

The first question we want to answer is how e↵ective our approach in identifying

API mappings from the two vector spaces. We compare SAR with Api2Api,

StaMiner, and DeepAM.

Result Summary. Index 24 in Table 4.2 uses 174 API mappings automati-

cally selected by the signature-based matching heuristic and test against the

860 ground truth mappings. Index 16 uses 688 mappings selected randomly

from the 860 ground truth set and test against the rest. The performance of

SAR in terms of top-k accuracy is shown. As one can see in both cases, the

top-1 accuracies are above 50%, and the top-10 accuracies are above 80%.

Compare to Api2Api The method used in Api2Api is corresponding to

the seeding step in our domain adaptation process, which finds a mapping
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Table 4.4: Accuracy of 1-1 Method-Level Mapping when compares with
StaMiner and MAM

Package
Method Migration

Precision Recall F-score
Sta DeepA SAR Sta DeepA SAR Sta DeepA SAR

java.io 70.0% 66.7% 66.7% 64.0% 87.5% 82.9% 66.9% 75.2% 74.8%
java.lang 86.7% 83.3% 81.5% 76.5% 87.2% 78.4% 81.3% 85.4% 84.4%
java.math 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7% 66.7%
java.net 100.0% 100.0% 80.0% 33.3% 100.0% 66.7% 50.0% 100.0% 81.7%
java.sql 100.0% 50.0% 70.0% 50.0% 66.7% 70.0% 66.7% 57.2% 70%
java.util 63.0% 64.3% 64.8% 54.8% 85.7% 85.0% 58.6% 73.5% 76.9%

All 81.1% 71.9% 71.7% 57.6% 82.3% 78.38% 65.0% 76.3% 75.5%

matrix by solving the Equation 4.1 given a large set of seeds. We use the top-k

accuracy as the evaluation metric.

Table 4.2 shows the top-k accuracy of our approach when comparing to

Api2Api in various settings. First, we compare Api2Api with SAR using

the seeds coming from two di↵erent sources: the 860 mappings defined by

Java2CSharp and the 174 mappings inferred from the signature-based matching.

Here we described the variances as results shown in Table 4.2, indicating that

our approach can use much fewer number of seeds compared to Api2Api but

still achieve better results.

Select randomly: we select a subset of mappings r randomly from 860

mappings in the ground truth, and test against the rest 860 � r mappings.

Concretely, r = 0, 10, 50, and 100;

k-fold: we divide the 860 mappings into k = 1, 2, 3, 4 folds and perform the

variants of five-fold cross-validation: while k folds are used as training data,

the other 5� k folds are used as testing data;

Select by signature: we use 174 mappings inferred by method signature,

and select randomly a varying number of them as the training data and test

against the remaining mappings in the ground truth.

The process repeats for using di↵erent folds as the training data for both

Api2Api and we take the average accuracy are some observations from the

results:

• Using the same number of seeds, either using the seeds from Random, K-fold

or Signature-based, we get significantly better results than Api2Api for every

setting.

• When using all of the 174 signature-based seeds, our approach gets signif-

icantly better results than Api2Api: top-1 improves 17%, top-5 improves

30%, and top-10 improves 18%.

We also compare with Api2Api by using MRR as the evaluation metric.

For a JDK API in the 860 ground truth mappings, we use it as a query for
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SAR to produce a resulting list, then we calculate the RR for the first relevant

mapping in the list. We do this for all of the JDK APIs in the 860 ground

truth mappings and calculate the MRR of the test JDK APIs. We then do the

same for Api2Api and get an MRR score. The MRRs for SAR and Api2Api

are 0.67 and 0.43, respectively, which indicates that when given a query, SAR

can retrieve the mapping results more accurately than Api2Api.

Compare to StaMiner and DeepAM We follow the details described in

StaMiner and DeepAM to measure how well SAR performs in mining API

mappings for Class API and Method API 3. In Java, an API element, by

definition, can be a class, a method or a field in the class; and it must belong

to a package (or the namespace in case of C#). As such, the goal in this task

is to measure the performance the Class and Method API mapping task one

by one for each API of each package, i.e., to see which package has the best

performance for API mappings, so-called 1-to-1 mappings. For the method

API mapping, we use the 860 method ground truth mapping described in

Section 4.3.1 for evaluation. For the class API mapping, we use the 430 class

ground truth mapping described in Section 4.3.1 for evaluation. We follow the

details described in DeepAM to choose only the APIs under the packages as

shown in Table 4.3, column ’Package’, so that the total number of method API

mapping left is 289 (remaining from 860 ground truth method API mappings),

and the total number of class API Mapping 283 (remaining from 430 ground

truth class API mappings).

Adapting SAR for class-level API mapping is relatively easy: one can

remove the method part of a qualified API signature token so that only the

package and class parts of the token are retained in the code sequences. Then

code embedding for the API sequence can be derived as the embedding of

the class-level API, along with other keywords from the ASTs. We do this

for both languages. To select mapping seeds by API signatures, we first infer

the mappings from signatures at the class level, then follow a similar domain

adaptation process from APIs at the method-level.

One could not run StaMiner and DeepAM directly because they require

parallel data (aligned function body for StaMiner, and aligned code and text

description for DeepAM) for training. Therefore, we had to compare to them

by extracting the reported performance numbers from their papers. This is

also how DeepAM compared itself to StaMiner. We use the F-score as the

3Note that we still use the model without the overlapping seeds
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Table 4.5: Examples of newly found APIs in Java and C#

Java C#

java.io.DataInputStream.readInt System.Io.BinaryReader.ReadUInt16
java.lang.Byte.parseByte System.sbyte.Parse

java.lang.Double.longBitsToDouble System.BitConverter.Int64BitsToDouble
java.net.Datagramsocket.isConnected System.Net.Sockets.Socket.Connect

java.awt.geom.A�neTransform.inverseTransform System.Drawing.Drawing2d.Graphicspath.Transform
java.io.DataInputStream.readDouble System.Io.BinaryReader.ReadDouble

java.net.Serversocket.accept System.Net.Sockets.Socket.AcceptAsync

performance metric to measure accuracy in this evaluation

Table 4.3 and Table 4.4 shows the comparison results of our mined API

mappings with StaMiner (Sta) and DeepAM (DeepA) at class level and method

level, respectively. As one can see for the F-score, SAR produces better results

than those of DeepAM and StaMiner at the class level. At method level, SAR

produces better results than StaMiner, and is close to DeepAM in term of

F-score. Note that while DeepAM needs to use millions of similar API sequence

descriptions and StaMiner needs to use ten of thousands of pairs of parallel

data, SAR only uses 174 pairs of mappings as a small set of parallel data for

the Seeding step.

Newly found API mappings More interestingly, we found more new API

mappings than other studies in our actual code corpora. For each of the API

in Java, we query the top-10 nearest neighbors in C# and manually verify the

mappings. We enforce the threshold = 0.7 as mentioned in Section 4.3.3.2 for

this task. We found 420 new SDK API mappings that can complement the

tool Java2CSharp. Comparing to MAM (25 new mappings), StaMiner (125

new mappings), Api2Api (52 new mappings), we found a su�ciently larger

number of mappings and our newly found APIs also overlap with the APIs

in these baselines. In Table 4.5, we show some interesting examples of such

newly found API mappings whose name do not match exactly using traditional

approaches. Our list of newly found Java/C# APIs mappings can be accessed

at our Github repository.4

4.3.3.2 RQ2. E↵ect of Di↵erent Refinement Approaches

E↵ects of Cosine Similarity Threshold In this section, we measure the

e↵ect of di↵erent ways to combine the seeds for the refinement step. We want

to measure the e↵ects of cosine similarity threshold in order to choose a good

one for the second heuristic in the refinement step. Since the threshold is a

4https://github.com/bdqnghi/SAR_API_mapping/blob/master/new_found/new_

found_apis.csv
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Table 4.6: Accuracy of the filtered mappings using various similarity thresholds

Threshold
Coverage Accuracy

Top-1 Top-5 Top-1 Top-5

0.6 0.66 0.90 0.42 0.59

0.7 0.45 0.68 0.51 0.73

0.8 0.12 0.22 0.65 0.80

0.9 0.08 0.15 0.78 0.89

part of the refinement, the domain adaptation step only comprises of two steps:

Seeding and Adversarial Learning. Once the threshold is found, we use it for the

Refinement in the other experiments. Then we produce the mapping for each

source query in the 860 ground truth mappings. For each mapping produce,

we obtain the cosine similarity between the query and the result mapping. We

choose a threshold to filter out the mapping that has the cosine similarity lower

than the threshold, then we measure the accuracy of the filtered mappings.5

In Table 4.6, the column ”Coverage” means the percentage of ground truth

APIs that have mappings in the candidate selection results when choosing a

specific cosine similarity threshold. The column “Accuracy“ means the top-k

accuracy in identifying the mapping given a cosine similarity threshold as a

condition to identify. The results show that our approach in these experiments

has higher mapping accuracy, but lower coverage with respect to the ground

truth set when the similarity threshold increases. It is, therefore, a trade-o↵ to

have higher accuracy in the expense of coverage. For the other experiments that

involve the cosine similarity threshold in the refinement, we choose 0.7 as the

threshold as this number is balanced between the coverage and the accuracy.

E↵ects of Di↵erent Combinations of Refinement Heuristics Obtained

0.7 as a good threshold to identify correct mappings, we use this number for

the ”Cosine Similarity Threshold ” heuristic in the Refinement step. What

we measure is the impact of the two refinement heuristics on the performance,

either using only one of them or combine them together. The domain adaptation

also comprises of Seeding and Adversarial Learning. After Adversarial Learning,

we use di↵erent combinations of refinement heuristics to measure the e↵ect of

each heuristic. We use the 860 ground truth mappings from Java2CSsharp as

the test set.

The results in Table 4.7 show that taking the Intersection between the Top-K

Frequency and the Cosine Threshold heuristic results in the best performance.

5Note that the number of filtered mappings can be di↵erent when using di↵erent cosine
similarity threshold to filter out the mappings in the query results whose similarity is less
than the threshold. For the whole SAR approach, we do not apply the filtering for more
strict evaluation.
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Table 4.7: Di↵erent ways to combine refinement heuristics

Refine Method Top-1 Top-5 Top-10

Top-K 0.44 0.68 0.76

Cosine 0.25 0.31 0.36

Union Top-K + Cosine 0.36 0.42 0.50

Intersection Top-K + Cosine 0.48 0.71 0.78

This implies that the Cosine Threshold has an e↵ect to filter out poor Top-K

Frequency synthetic seeds, thus making the refinement better in overall.

4.3.3.3 RQ3: E↵ect of Each Component

We performed an ablation study of domain adaptation to measure the perfor-

mance of individual components as well as their combinations (Table 4.8). Note

that for the Refinement component, since Section 4.3.3.2 shows that using the

intersection of Top-K and cosine threshold leads to better results than union, we

refer Refinement to those of “Intersection of Top-K and Cosine” performance.

Here are some observations from the results:

• The seeding step is an important step for the domain adaptation to works

well, e.g., even with a small set of seeds (25), which is a very small knowledge,

it sets up a basis for the adversarial learning to improve the performance

significantly.

• Adversarial Learning is essential in improving the performance, e.g., compar-

ing Seeding+Adv against Seeding, the top-1 accuracy is improved by 14%

on average.

• Refinement alone does not achieve any good result because the initial input

matrix was completely random that cannot be refined to anything better;

• Using the Adversarial Learning alone achieves some reasonable results, e.g.,

top-1 = 25%, top-10 = 35%. Further with the Refinement step, top-1

improves to 29%, top-10 becomes 40%. These can be seen as the results of

unsupervised domain adaptation without any initial seeds.

4.3.4 Explainability Analysis of the Results

We performed various explainability analyses of our model in varying con-

figurations to obtain some insights about our method. From the results, we

show that our approach performs significantly better than Api2Api in every
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Table 4.8: Ablation Study – e↵ects of each component

Baselines Seeds Top-1 Top-5 Top-10

Seeding+Adv
25 0.30 0.39 0.45
50 0.32 0.40 0.54
100 0.39 0.53 0.71
174 0.43 0.67 0.75

Seeding+Refine
25 0.13 0.14 0.20
50 0.18 0.23 0.29
100 0.22 0.29 0.43
174 0.30 0.40 0.49

Seeding
25 0.11 0.15 0.18
50 0.18 0.22 0.28
100 0.20 0.27 0.36
174 0.29 0.36 0.42

Refine - 0.01 0.01 0.01
Adv+Refine - 0.29 0.34 0.40

Adv - 0.25 0.30 0.35

Table 4.9: E↵ect of Refinement on Frequent vs. Rare Tokens

Baselines % Ground truth Eval size
Accuracy

Top-1 Top-5 Top-10

With Refine
Top 10% 86 0.65 0.78 0.85

Bottom 10% 86 0.32 0.35 0.47

Without Refine
Top 10% 86 0.54 0.65 0.72

Bottom 10% 86 0.30 0.34 0.45

perspective. An interesting question one may ask is ”why does this approach

perform better than Api2Api?”. Although theoretically, Adversarial Learning

maximizes the similarity between two distributions, it is still useful to explain

this phenomenon using analysis of the results.

4.3.4.1 E↵ect of Refinement on Frequent vs Rare tokens

We note that the frequency of an API token could a↵ect the quality of the

mapping result, i.e more frequent tokens could a↵ect performance more than

the less frequent ones. With this assumption, the Refinement of the mapping

matrix tries to improve the mapping by using frequent tokens as the anchor.

To measure the e↵ect of the refinement on the frequent tokens and rare tokens,

we ranked the 860 ground truth mappings in Java2CSharp by the frequency of

the source APIs, i.e., the Java JDK APIs. Then we use our model to produce

the mapping results against the top 10%, which is a subset of frequent tokens;

and bottom 10%, which is a subset of rare tokens. Note that to ensure a

fair comparison, we use the 174 non-overlapping seeds to train the domain

adaptation procedure.

The results in Table 4.9 show the following observations:

• Mapping accuracy decreases while increasing top-k frequent tokens in the

evaluation set, in either setting. This implies that token frequency does a↵ect

on the mapping result;

• The refinement step can improve the result of both the frequent tokens and
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Table 4.10: Retrieved API mapping results from sample queries produced by
SAR and Api2Api.

SAR Api2Api

(1) java.util.Collection.add

System.Collections.Objectmodel.Collection.Add System.Collections.Generic.List.Add

System.Collections.Generic.List.Add System.Collections.Generic.List.Get

System.Collections.ObjectModel.Collection.Clear System.Collections.Generic.List.Remove

System.Collections.Generic.List.Contains System.Collections.Objectmodel.Collection.Add

System.Collections.Generic.Dictionary.Add System.Collections.IDictionary.GetEnumerator

(2) java.io.File.exists

System.Io.File.Exists System.Io.File.Exists

System.Io.File.AppendText System.Web.Errorformatter.ResolveHttpFileName

System.Io.File.Delete System.Io.File.OpenRead

System.Io.Fileinfo.LastWriteTime System.Io.Compression.Zipfile.OpenRead

System.Io.File.GetAttributes System.Io.Compression.ZipFile.ExtractToDirectory

(3) javax.swing.Text.JtextComponent.setCaretPosition

System.Windows.Controls.RichTextBox.Clip System.Drawing.Image.GetframeCount

System.Web.Ui.Webcontrols.DataGrid.PageSize System.Media.SoundPlayer.PlaySync

System.Windows.Controls.RichTextBox.CaretPosition System.Web.Ui.Webcontrols.Calendar.WeekendDayStyle

System.Windows.Forms.ContextMenuStrip.SuspendLayout System.Configuration.Xmlutil.StrictSkipToNextElement

System.Windows.Controls.RichTextBox.CaretBrush System.Media.SoundPlayer.PlayLooping

(4) java.util.concurrent.atomic.AtomicInteger.getAndDecrement

System.Threading.Interlocked.Decrement System.Directoryservices.SearchResultCollection.GetEnumerator

System.Threading.ReaderWriterLockSlim.EnterWriteLock System.Directoryservices.SearchResultCollection.Dispose

System.Threading.Interlocked.Increment System.Runtime.Serialization.ObjectIdGenerator.HasId

System.Threading.EventWaitHandle.OpenExisting System.Collections.Generic.Queue.CopyTo

rare tokens, although the impact is bigger on frequent tokens, e.g., improved

by 10% for top-10% , and only 2% for bottom-10%.

4.3.4.2 Retrieved Results Comparison

To evaluate our approach qualitatively, we retrieved C# API meth-

ods from sample queries in Java SDK. Table 4.10 shows the re-

sulting top-5 C# APIs for four queries: java.util.Collection.add,

java.io.F ile.exists javax.swing.Text.JTextComponent.setCaretPosition,

and java.util.concurrent.atomic.AtomicInteger.getAndDecrement. They

are ordered by increasing di�culty in finding a mapping.

For the first query, we can see that both Api2Api and our approach

can successfully select the correct top-1 mapping, the other results are

also related. This case can be considered as easy for both approaches

to performing well. For the second query, both approaches can achieve

a good exact mapping, but for the other results, our approach can gen-

eralize all of the results under the ‘System.IO.F ile’ class, while there

are some less related results in the top-5 produced by Api2Api, e.g.,

‘System.Web.ErrorFormatter.ResolveHttpF ileName’. The third query to-

ken ranks the 11,204th in the embedding table6. As discussed earlier, em-

bedding quality of rare tokens is not as good as those of frequent tokens.

6The order of the token embedding provided by word2vec is proportional to the frequency
of the token [80]
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Therefore, it is more di�cult to find an exact mapping for such a query.

Even so, our approach can still rank a correct mapping at the third place

(‘System.Windows.Controls.RichTextBox.CaretPosition’), while Api2Api

produce totally unrelated results. For the last query, even though there has no

mapping in C# by the ground truth, the retrieved results are still reasonably

close. The query, in this case, is an API for an atomic operation, which is

related to thread handling. Our approach can generalize the result mappings

to the ‘System.Threading’ APIs in C#, while the results from Api2Api are

totally unrelated.

This experiment shows that Adversarial Learning can maximize the similar-

ity between the two distributions so that similar APIs are clustered together.

4.4 Threats to Validity and Limitations

The goal of domain adaptation is to use as little knowledge as possible for any

pair of languages. However, we only perform the experiments on Java and C#

because it is not easy to find a good and large enough evaluation dataset for

other pairs of languages.

While unsupervised adversarial learning method does not require any seed

as parallel data, there is a risk that the distributions of vectors (embeddings)

in the two spaces are not so similar. Through our experiments, it is confirmed

that the performance could be improved further by initializing the unsupervised

adversarial learning method with a small set of seeds taken from the seed-based

domain adaptation, and by generating the rest of API mappings.

4.5 Conclusion

In this chapter, we have proposed a domain adaptation approach, named SAR,

to automatically transform and align the vector spaces of two di↵erent languages

and APIs used therein. Before and after the adversarial learning step, we

adapted the code embedding technique with a seeding and a refinement method

respectively. SAR can identify API mappings across di↵erent programming

languages. Our evaluation shows that the mappings between Java and C#

APIs identified by SAR can be more accurate than other approaches with

just 174 mapping seeds that can be easily identified by an automatic, simple

signature-based heuristic, and that SAR helps to identify hundreds of more

API mappings between Java and C# SDKs.
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Domain adaptation methods are useful for other software engineering tasks

that involve two di↵erent domains targeted by transferred learning [85, 86,

124], such as cross-language program classification, cross-language/project

bug prediction. These tasks may benefit from the proposed approach when

little curated data is available. Other SE tasks that are challenging due to

lack of data, such as the out-of-vocabulary (OOV) problem [3, 35, 52] for

learning and modeling fast-evolving software code, may also benefit from our

domain adaptation approach, because the embeddings of OOV words may be

approximated on-the-fly by adapting the known embeddings of their contextual

or similar words in di↵erent languages. In the future, we will explore these

variants of applications.
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Chapter 5

Interpretability for Program

Representation Learning

Learning from large corpora of code, or Big Code, deep learning based tech-

niques have been adapted for various software engineering tasks, such as code

completion, bug prediction, and program classification [4, 44, 82, 87, 133].

Despite high prediction accuracies achieved, deep neural networks are mostly

treated as black boxes without explanation on why certain outputs are gen-

erated for certain inputs [11, 45, 64], so that users lack of confidence in the

results. Attention mechanisms have been proposed [14, 76] for neural networks

to focus on certain input elements or features when making predictions, and

such elements or features are assumed to reflect certain interpretability of the

networks. However, in many cases the features getting higher attentions by

the networks may be implicit, and the prediction outputs produced by the

attention networks according to the features may disagree with human users’

understanding.

In this proposal, we aim to justify and improve the interpretability of

attention-based neural networks with the AutoFocus approach. The approach

is designed to reveal correlations between inputs and outputs of attention

networks by perturbing inputs and observing the e↵ects of perturbed inputs on

the outputs. When applied to the attention networks trained for classifying

programs (e.g., [82, 87, 133]), the approach helps to correlate attention scores

for certain code elements (e.g., statements) of a program with the importance of

the elements in determining the program’s algorithm class. Such a correlation

provides us a strong basis for using attention scores of individual statements as

a metric to visualize a program, and thus helps users’ in interpreting the neural

networks’ prediction outputs and understanding the program with increased
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focus, saving the need to read through all code for comprehension.

To realize AutoFocus, we combine two intuitions:

1. Syntax-Directed Attention: We adapt attention mechanisms for algo-

rithm classification neural networks, and generate attention scores for syntac-

tically meaningful elements in the input programs (e.g., statements), instead

of arbitrary elements, to facilitate code understanding;

2. Code Perturbation: We systematically perturb input programs according

to syntactical structures too (e.g., deleting statements one by one) to observe

how the perturbations a↵ect neural networks’ classification outputs and

relate to the attention scores.

With the purpose to interpret tree-based and graph-based algorithm classi-

fication neural networks (TBCNN and GGNN [6, 82, 133]), our key research

question here is:

Can the syntax-directed attention scores be used as a proxy to interpret the

decisions made by the neural networks?

With code perturbation of hundreds of test programs evaluated on TBCNN

and GGNN, we show that the attention scores of individual statements are

strongly correlated with the importance of the statements on the classification

results, and thus can be used to interpret the input/output behaviour of the

networks. Furthermore, the statements in the test programs can be visualized

according to the attention scores to facilitate more focused and faster code

comprehension.

The interpretability produced by the AutoFocus approach technically only

depends on the availability of attention scores and the interpretability of the

input code elements that follow certain syntax. Thus, it is likely to be generally

applicable to interpret many neural networks for various code learning tasks.

5.1 Overview

Figure 6.1 gives an overview of the six major steps in AutoFocus. Next section

explains the steps in more details.

1. Training of attention-based neural networks: We add additional ag-

gregation layers in the conventional neural networks (e.g., TBCNN [82] and

GGNN [6]) for generating the attention scores for input elements using a

global attention mechanism [14, 76]. Given training programs, we obtain

trained attention networks.
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Figure 5.1: Overview of AutoFocus approach

2. Generation of classification confidence score c(p) for a test program

p and attention scores a(s) for each suitable code element s in p:

Given a test program p, the classification confidence score c(p) is derived

from the softmax layer of the attention networks, indicating the likelihood

for p to belong to a certain algorithm class. For multi-class classification

tasks (e.g., [82, 87, 133]), there is a confidence score for each class, while the

correct class for p often but not necessarily has the highest confidence score.

In this work, we always take the confidence score produced by the trained

networks for the correct class of p as the c(p). Meanwhile, the attention

networks produce an attention score for each tree or graph node from the

inputs, and we aggregate the scores according to p’s syntactical structure

and produce an attention score for each statement s in p, denote as a(s).

3. Perturbation of test program(s): each test program p is modified into

a set of perturbed programs P 0 = {p0
s

}, where p0
s

indicates a perturbed

program by deleting a certain statement s from p. For each perturbed

program p0
s

, we apply the attention networks to predict its class and obtain

a new confidence score c(p0
s

).

4. Impact measurement of perturbing statements: Given a set of per-

turbed programs {p0
s

}, we have a set of classification confidence scores {c(p0
s

)}
which may be the same as or di↵erent from the classification confidence

score c(p) of the program p. The di↵erences between c(p) and {c(p0
s

)} are

denoted as �(p) = {�(s) = c(p0
s

) � c(p)|s 2 p}. Intuitively, a higher �(s)

may indicate the statement s has more impact on the attention networks’

classification accuracies and thus more important for understanding p.
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5. Correlating statement-level attention scores {a(s)} and perturbed

confidence scores {�(s)}: We analyze the Pearson Correlation Coe�cients

between the two kinds of scores for various test programs so that we may use

the perturbed classification confidence scores to justify the uses of attention

scores to interpret the classification decisions made by the attention networks.

6. Visualization of statements: Given the attention scores {a(s)} and

perturbed confidence scores {�(s)} as a proxy for the importance of individual

statements in a program p, we visualize p with a spectrum of derived

colours to facilitate focused view on more important statements for program

comprehension.

5.2 Approach Details

5.2.1 Building Attention Neural Networks

We choose state-of-the-arts tree-based and graph-based neural network graphs [6,

82, 133], for they yield accurate outputs for code classification tasks.

Figure 5.2: Attention mechanism as the aggregation layer for the neural network

Figure 5.2 illustrates the process of adding attention layers for algorithm

classification neural networks. First, source code is parsed as an AST and a

graph by connecting tree nodes to dependent ones. Then the neural networks

are used as a feature extractor to update the information of each node following

the edges. An aggregation layer is used to combine the information about

all of the nodes into one single vector as the representation for the code (see

Section 5.2.2).

Since a graph is a more general form of a tree, we summarize the design

principle of both TBCNN and GGNN with graph notations. A graph G =

(V, E , X) is composed of a set of nodes V , a set of node features X, and a list
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of directed edges set E = {(E1, ..., EK)} where K is the number of edge types.

Initially, we annotate each node v 2 V with a real-valued vector x
v

2 Rd

representing the features of the node. The node features X come from a

pretrained embedding [82]. We associate every node v with a hidden state

vector h
v

, initialised from pretrained features embedding x
v

.

The process of attention networks can be split into the feature extraction

and the aggregation phases.

The feature extraction phase aims to propagate information from a node

v to its neighbor. Specifically,

• The input to TBCNN is AST which is an undirected graph. A function f
convo

aggregates the information of the direct children of a node v to update its

state vector h
v

= f
convo

(h
children of v

). This process runs through a few time

steps to update the state vector x
v

of node v.

• The input to GGNN is a graph representation of the AST plus additional

edge types. GGNN can be described as a message passing network [6], where

the “messages of type k are sent from each node v to its neighbor u, here k is

corresponding to a particular kind of edge in the edge set E. The new state

of the node v is computed from its current state vector, its neighbor, and

the edge as: h
v

= f
k

(h
v

, h
u

, e
K

), where e
K

is the edge of type K. We choose

a linear function by following the suggestion of Allamanis et al. in [6]. This

process also runs through a few time steps to update the state vector h
v

.

Once the feature extraction process finishes, we have a matrix of dimension

m ⇥ n, where m is the number of nodes and n is the length of node feature

embeddings. Then the aggregation phase aims to combine the hidden state

vectors of all nodes in the graph into one single vector, which computes a

feature vector for the whole graph (or tree) using an aggegation function R,

such that: y = R({h
v

| v 2 G}), and y is a vector of dimension 1 ⇥ n. R

can be a max pooling function [82] which takes the max value of the features.

However, it lacks the interpretability through which one does not know which

node contributes more to the classification result. As such, we propose to use

an attention mechanism as an aggregation function instead. The attention

layer, in this case, will assign a score for each node in the input graph to

represent its importance, which may lead to better interpretability from the

human points-of-view.
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5.2.1.1 Aggregation Using Attention Mechanism

Formally, a global attention vector a 2 Rd is initialised randomly and learned

simultaneously with updates of the networks. Given n node state vectors:

{h
1

, ..., hn}, the attention weight ↵
i

of each hi is computed as the normalised

inner product between the node state vector and a: ↵
i

=
exp(hT

i ·a)Pn
j=1 exp(h

T
j ·a) . The

exponents are used to make the attention weights positive, and they are divided

by their sum to have max value of 1, as done by a standard softmax function.

The aggregated code vector � 2 Rd represents the whole code snippet. Its

attention score is derived from the linear combination of the node’s state vectors

{h
1

, ..., hn} weighted by their attention weights: code vector y =
P

n

e=1 ↵e

·he.

5.2.1.2 Objective Function

Since we aim for the code classification task, we use the cross-entropy as

the objective function to train our network, which is defined as J(✓, x̂, c) =
P

(�log exp(x̂c)P
j exp(x̂j)

), where ✓ denotes parameters of all the weight matrices in

our model, x̂ is the predicted classification vector for all the class labels and c

is the true label.

5.2.2 Deriving Statement-Level Attention Scores

The purpose of this step is to derive attention scores for code elements at

specific levels of granularity to tell the importance of the code elements. In

this work, we consider attention scores at the statement level. The attention

score for a statement node in an AST is obtained by a simple summation of

the attention scores of all descendant nodes of the statement node. For later

visualization of the program source code (Section 5.2), we also need to map

the attention scores of statement nodes to the actual tokens in the statements.

When a token belongs to multiple nested statements, the attention score of the

closest enclosing statement is used as the score for the token.

5.2.3 Finding Decision-Changing Subset of Code Com-

ponent

5.2.4 Definition of Code Component

Formally, let a denote the AST representation of an input program, which has

a set of nodes N = {n1, n2, n3, ..., nK

}, where K is the number of nodes in the
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AST. Each node in the AST has a unique id for it.

Our goal is to find components in the AST such that without the availability

of such components, the model’s decision will change. We define a code

component c as a subset of nodes of N .

5.2.5 Di↵erent Types of Code Components

In this work, we focus on these two types of code components:

• Single Code Component: can be seen as a single subtree of the original

AST, which can be a statement, an expression or even a token. In this work,

we focus on the single code component at the statement level, although the

same principle can be applied to other types of single components.

• Dependency Code Component: is the code component that may contain

multiple code components that are dependent on each other, i.e., program

slice.

5.2.5.1 Single Code Component

A single code component can be a statement, an expression or even a token. In

this work, we focus on the statement level, although the same principle can

be applied to another level. The statement, in this case, is stand-alone, means

that we assume any of the statement has no relation with the other statements.

Since we represent a program as an AST, each of the statement can be seen as

a small sub-trees. Figure 5.3a is an example of a single code component, all of

the nodes in the subtree a = 2 forms a code component.

There are a few cases that need special treatment.

• We treat the Function Declaration as a special statement.

• For a nested statement, such as while, for that includes the header and

sub-statements inside the body, we split the head of such statement and all

included statements.

Figure 5.4 shows an example of the above two special treatments . The

Function Declaration for the function appendF ile is considered as a special

statement node. The headers of the while (line 4) or the if (line 5 and 8)

are now considered as a separate statement. By this way, we can break a

large AST representation of a program into smaller sub-trees, each of the

subtrees is independent of each other. We would like to measure how di↵erent
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Figure 5.3: Example of di↵erent component types

combination of these statements may a↵ect the decision of the neural network

on the program.

5.2.5.2 Dependency Code Component

Formally, a static program slice s consists of all statements in a program P

that may a↵ect the value of variable v in a statement x. As such, each slide

contains a set of statements {x1, x2, s3, ...}. Note that di↵erence slices can

contain similar statements. A program P contains a set of program slices

S = {s1, s2, s3, ..., sM} where M is the number of variable in program P . The

union of all the nodes in all of the statements subtrees in a slice represents for

a code component.

Figure 5.3b is an example of dependency code component. The slice for

variable a comprises of two statements, which are a = 2 and a = a+1. As such,

the union of the nodes in the two subtrees represent for a = 2 and a = a+ 1

forms a code component in this case.
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Figure 5.4: Example of a program after broken down into smaller statement
sub-trees

5.2.5.3 Finding a Subset of Decision-Change Code Components

We want to answer the question: ”How can we identify a set of important

code components that that significantly contribute to a model’s decision for the

program classification task?”. We propose a technique, so-called Minimality

of Deletion: deleting the minimum number of code components to change

the model’s prediction. The rationale behind this is that once we found the

set of code components that changes the model’s decision, it implies that we

found the most important parts of the source code. Note that the deletion step

here is the way to find important parts of the source code, not the other way

around.

5.2.5.4 Problem Formulation

Let a denote the AST representation of an input program. We derive a set of

components C = {c1, c2, ..., cN} from a, where N denotes the number of code

components in a. Let L
a

be the index of the label that M gives to a. Our task

is to explore all of the subset D0 of a through a function f that receives D0

so that f can identify which subset are the most important in a. This can be

formulated as the task to discover the minimal subset of a, denoted by D ⇢ a,

such that the deletion of all code components in D from a will change the label

L
a

, i.e., set D is the most important parts of the program, where the deletion

step can be abstracted as a function f to measure the importance of a subset.

The deletion step is the process to delete all of the nodes in a component c out

of the AST.

By this way, we can identify the important code components to present to

the user, i.e., we highlight all the components in D when present the program
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to the user. The remaining code components are denoted as a � D, which

indicates that the code components in a � D are not important and can be

deemphasized from the program when visualizing the components to the user.

Let |D| denote the number of components in D. The problem is formalized as

follows:

min
D

|D| s.t L
a�D

6= L
a

(5.1)

One can enumerate through all di↵erent component combinations to find the

optimal solution, but it will be computationally intractable when the number

of components in a gets large. To address this issue, we formalize this problem

as the search space optimization problem. We define the state of the program

after deleting an arbitrary set of code components D0 as S
D

0 , i.e., a without

the set of sub-trees D0. We denote the original state of a as S0, i.e., a as the

original AST. The goal is to find the state that make the label changes. This

task can be simulated as a graph search problem, in which each node in the

graph represents for a state of a after deleting one or multiple code components.

Concretely, the label of each node are presented as (S
D

0 , L
a�D

0), where D0 is

a subset of code components to be deleted, e.g., (S{1,2}, 2) means after deleting

two components c1 and c2 from a, the index of the label that M gives to a is 2.

The root node is a special node, which is presented as (S0, La

) means the label

that M gives to a is L
a

.

Our task is to search through the graph to find the state that change the

label of the programs, i.e, finding a node (S
D

0 , L
a�D

0) where L
a�D

0 6= L
a

.

In Figure 5.4, the components in this example are the statements. Each

statement is assigned an index and will used as a part of the label for nodes in

the search graph. The same thing can be applicable is the component is a slice

of the program.

We use the attention score to guide the searching step to find the optimal

state. Assume that we have already gotten the attention score for each of the

components, we incorporate the attention score into the edges between di↵erent

states as guidance of where to go next when searching on the graph, i.e., the

score of the incoming edge on a state represents for a attention score the model

assigns for the code components. Next we present the algorithms to search for

the optimal state in the graph by using the attention score as a guidance.
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Figure 5.5: Search Graph Example

Figure 5.6: Example of Greedy 1-best Search

5.2.5.5 Greedy 1-best Search

The simplest way of searching for the state is greedy search, in which we simply

expand to the next state based by selecting the state that gives us the highest

score (score on the arrow), and use it as the next state in our searching process.

Algorithm 1 shows the process of the Greedy Search algorithm. We are given:

(1) M as a trained neural network, (2) S0 as the original AST, i.e., original

state of the program, (3) L as the label of S0 that is assigned by M , (4) C

as the set of all component ids, (5) E as a set of component ids, which is the

found solution. At each time step, the greedy search algorithm selects the

code components which has the highest attention score, delete that one from

S0, then use M to check if the label of the modified S0 is change or not. If

the label does not change, we move to the next time step to delete the code

components that has the highest attention score, we do this until we find the

series of deletion that make the label changes.

Figure 5.6 shows an example of the algorithm on the search graph. From

the root node, we traverse to the next level of the tree, we identify that the the

edge that has the highest attention score (0.35) leads to the node (S9, 1), we

move the pointer to node (S9, 1). Next, the edge that has the highest attention

score (0.2) leads to the node (S9,2, 1), them move the pointer to node (S9,2, 1).
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Figure 5.7: Example of Beam Search, beam size b = 2

Finally, we can identify that the edge that leads to node (S9,2,3, 3) makes the

label change from 1 to 3. We stop the search process at node (S9,2,3, 3) and

take the set c9, c2, c3 as the set D to be found.

Algorithm 1 Greedy 1-best Search

1: M  Neural Network
2: S0  Original AST
3: L Label Index of S0

4: C  Index of All Components
5: E  Solution
6: procedure GreedySearch(S0, L, C,E)
7: maxC  FindComponentWithHighestScore(C)
8: S  DeleteComponent(maxC, S0)
9: E  E + {maxC}
10: C  C � {maxC}
11: L0  M(S)
12: if L0 == L then GreedySearch(S, L0, C, E)
13: else
14: return E
15:

5.2.5.6 Attention-based Beam Search

Greedy Search is not guaranteed to find the state with the minimal subset of

components D, because it always selects the state with the highest the attention

score on the incoming edge, thus it loses the opportunity to explore the other

branches of the graph, which may lead to a better solution. To address this

issue, we propose to adapt the idea of Beam Search, into our context, so-called
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Algorithm 2 Beam Search

1: M  Neural Network
2: S0  Original AST
3: L Label Index of S0

4: C  Index of All Components
5: E  Solution
6: P  All Potential Solutions
7: b Beam Size
8: procedure BeamSearch(S0, L, C,E, b)
9: candidateC  FindTop b Components(C, b)
10: for c in candidateC do
11: S  DeleteComponent(c, S0)
12: E  E + {c}
13: C  C � {c}
14: L0  M(S)
15: if L0 == L then BeamSearch(S, L0, C, E, b)
16: else
17: P  P + E
18:

19: procedure SelectBestSolutions(P )
20: P  P � {SelectSolutionsWithMinC(P )}
21: P  P � {SelectSolutionsWithMinSumAttention(P )}
22:

23: O  SelectBestSolutions(P )
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Attention-based Beam Search. Beam Search is similar to greedy search, but

instead of considering only the one best states, we consider b best states at

each time step, where b is the width of the beam. Algorithm 2 shows the

pseudo-code of our proposed Attention-based Beam Search.

We are given: (1) M as a trained neural network, (2) S0 as the original

AST, i.e., original state of the program, (3) L as the label of S0 that is assigned

by M , (4) C as the set of all component ids, (5) E as a set of component ids,

which is the potential solution, and (6) P as a set of all potential solutions,

which we will use some conditions to select the best one. At each time step,

the algorithm selects the best top
b

components based on the attention scores.

Then the process to delete the components is similar to the one in Greedy

Search. Except in Line 17, instead of returning the solution if we can find one,

we store it into a set of all potential solutions, because by exploring di↵erent

paths of the search space, we can find many potential solutions and we use

two conditions to select the best one. The first condition is that if we can find

many solutions, we select the ones with the minimum number of components.

The second condition is that if there are more than 1 solutions with the same

number of components, we select the one that has the lower summation of

attention scores. The rationale for the second condition is that if the set of

components receive lesser attention but still change the label, which means

that we are closer to the minimal.

An example of beam search with b = 2 is shown in Figure 5.7. Note that in

this case, there is the number on top of each state, which represents for the

summation of attention score for the set of components represented at that

state, e.g., the score 0.55 on top of the node (S9,2, 1) is the sum of attention

scores for statement 9 and statement 2 (0.2 + 0.35 = 0.55). From the original

state, we expand to the two nodes (S2,1, 1) and (S9,1, 1) since they are the two

states with highest attention scores. We keep expanding until we find the set

of all possible solutions, which are (S9,3,2, 3), (S9,3,1, 4), (S9,2,3, 3), (S9,2,1, 5),

(S9,3,2, 3), (S2,9,3, 3), (S2,9,1, 5), (S2,3, 2). Among these solutions, (S2,3, 2) has

the minimal number of components, thus it is the final solution. This example

shows that for the same program, the Greedy Search fails to find the minimal

set of components since its solution is (S9,2,3, 3).
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Figure 5.8: Histogram of Pearson Correlation Coe�cients of all test data

5.3 Evaluation

We evaluate the interpretability of attention networks by checking whether

statement-level attention scores correlate to the deltas in classification confidence

after code perturbation. The data used for the evaluation consists of 1023 unique

Java programs crawled from GitHub for 10 distinct sorting algorithms [87],

where 70% of the data was used for training, 10% for validation, and 20% for

testing.

In the experiments, the attention settings described in GGNN [6] are used

to train a model of 85% accuracy on the test data of 200 programs, which is

fairly good as the ground truth for interpretation. For each test program, we

follow the steps described in Section 5.1 to derive attention scores and deltas

for deleting statements. We conducted a statistical analysis on the correlation

between the deltas and the attention scores over the statements deleted by

code perturbation. Following Step 5 in Section 5.1, we obtained the Pearson

correlation ratio. For all the test programs, a list ot Pearson correlation ratios

can be seen as a discrete variable P . Figure 5.8 shows the histogram of P ,

whose mean value is 0.65 and standard deviation is 0.26. This indicates a

strong correlation between the attention scores and the deltas.

Based on the intuition that statements are a reasonable granularity for

developers to understand a program, the strong correlation gives us a basis to

use attention scores to interpret neural networks and build code visualizations for

more focused views to facilitate program comprehension. Figure 5.9 exemplifies

the visualization of attention scores of statements inside Visual Studio Code

IDE. The left pane visualizes the statements according to their attention scores.

The higher the attention score, the darker color the statement gets. The
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right pane visualizes the statements according to the confidence deltas of each

statement, which is similar but slightly di↵erent.

Figure 5.9: AutoFocus visualization of attention scores in Visual Studio Code

5.4 Future Work

To summarize, what we have done so far is:

• We have implemented the algorithm to find the single important code com-

ponents by deleting the code components one by one.

• We have implemented the tool to highlight the importance of code components

by using a range of colors to assign to the components.

• We found the evidence to show that the attention score has a strong correla-

tion with the important parts of the source code. This will be leverage to

find a set of decision-change code components, as described in 5.2.5.3.

• We will implement the algorithm to find the set of decision-change code

components according to the algorithm in Section 5.2.5.3

• Once we find the set of important code components, we will visualize them

and show it to the user. Concretely, all of the important code components

will be assigned the black color, while the remaining will be assigned the

gray color to deemphasized them.

• We need a method to evaluate if the algorithm can find the important code

components. We use human study to validate this. First, we show the source
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code to the user and ask him to label which part is important to form a

specific algorithm, e.g. which part is the most important to decide if a piece

of code is an implementation of bubble sort. This can be considered as the

step to label the ground truth. Then we compare the manual labeling code

with the code that has been highlighted by our algorithm to measure the

di↵erence between them.

• Besides the code classification task, our algorithm is application into tasks

such as bug prediction and code summarization. This will provide stronger

evidence to prove that our interpretability algorithm is applicable into a wide

range of software engineering tasks.
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Chapter 6

Tree-based Capsule Network for

Code Processing

6.1 Introduction

Software developers often spend the majority of their time in navigating existing

program code bases to understand the functionality of existing source code

before implementing new features or fixing bugs [20, 40, 121]. Learning a

model of programs has been found useful for their tasks such as classifying the

functionality of programs [36, 96, 99, 109], predicting bugs [67, 71, 125, 139],

translating programs [26, 49], etc.

It is a common belief that adding semantic descriptions (e.g., via code

comments, visualizing code control flow graphs, etc.) enhances human un-

derstanding of programs and is also helpful for machine learning. With the

help of static code dependency analysis techniques [95], for example, Gated

Graph Neural Networks (GGNN) [3, 41, 70] learn code semantics via graphs

where edges are added between the code syntax tree nodes to indicate various

kinds of dependencies between the nodes. However, such edges may be noise

due to inaccurate code analyses that are inherently unsound or incomplete,

and too many such edges contribute to long training time and may hinder

the learning techniques from achieving higher accuracies [23]. Another issue

with the GGNN method is that it relies on a synchronous message-passing

mechanism to accumulate information from a node’s neighbors to learn their

embeddings and it usually uses as few as eight message-passing iterations due

to computational concerns [3]. This mechanism hinders GGNN from capturing

information from distant parts in large graphs.

There also exist deep learning techniques that process code syntax trees or
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abstract syntax trees (ASTs) [10, 83, 134]. However, they are limited in how

they represent and learn ASTs although ASTs entail code semantics precisely.

The TBCNN [83] method shares the same computational principle with the

GGNN method, i.e., information is accumulated from children to parent nodes

only, which limits the number of iterations for a node to accumulate information

from its distant descendants. Code2vec [10] decomposes trees into a bag of

path-contexts for learning, while ASTNN [134] splits big trees for programs

and functions into smaller subtrees for individual statements. Then, they

adapt di↵erent recurrent neural network models to learn the path-contexts or

flattened subtrees but are likely to miss code dependency information that is

not represented in the decomposed paths and subtrees.

It is desirable to learn code semantics via ASTs directly because trees

can be e�ciently and precisely constructed from code without any inaccurate

semantic analysis and the model should not be limited by a few numbers of

message-passing steps when accumulating information. In this chapter, we

proposes a novel architecture called TreeCaps by fusing capsule networks [111]

with TBCNN [83] to process tree inputs directly.

TreeCaps first adapts TBCNN to take in trees and extract (local) node

features with its convolution capability and converts the node features into

capsules in its Primary Variable Capsule (PVC) layer where the number of

capsules can change for di↵erent tree inputs. It then adapts CapsNet by

introducing two methods to route the dynamic number of capsules in PVC to a

static number of capsules in its Secondary Capsule (SC) layer. Our first method

inherits the dynamic routing algorithm [111] for static numbers of capsules; it

shares a global transformation matrix across every pair of capsules between

the layers [135, 136]. Our second method is a novel Variable-to-Static (VTS)

routing algorithm that selects the capsules with the most prominent outputs

in the PVC layer and squeezes them into a fixed set of capsules. The method

utilizes the common intuition that code semantics can often be determined

by considering only a portion of code elements. Further, we apply a dynamic

routing algorithm from the capsules in the SC layer to the final Code Capsule

(CC) layer whose number of capsules is fixed according to a specific learning

task, to get the vector representations of the trees for the task. Compared to the

max-pooling method to combine node features in TBCNN, the pipeline of our

routing methods (PVC→SC →CC) can learn more sophisticated combinations

of features in the ASTs.

Across codebases in C/C++ and Java with respect to commonly compared
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program comprehension tasks such as code functionality classification and

function name prediction, our empirical evaluation shows that TreeCaps achieves

better classification accuracy and better F1 score in prediction compared to other

code learning techniques such as GGNN, Code2vec, ASTNN, and TBCNN. We

have also applied three types of semantic-preserving transformations [105, 132]

that transform programs into syntactically di↵erent but semantically equivalent

code to attack the models. Evaluations also show that our TreeCaps models

are the most robust, able to preserve its predictions for transformed programs

more than other learning techniques.

6.2 Tree-based Capsule Networks

An overview of the TreeCaps architecture is shown in Fig. 6.1. The code snippet

Figure 6.1: Overview of TreeCaps: Source codes are parsed, vectorized and fed
into the TBCNN to extract node features, then the node features are combined
through the TreeCaps network.

in the training data is parsed into an AST and vectorized. The node vectors

are fed into the TBCNN to extract node features to be used as the input

for the Primary Variable Capsule (PVC) layer where the number of capsules

can change dynamically according to the input tree size. The capsules in the

PVC layer are then routed and reduced to a fixed number of capsules in the

Secondary Capsule (SC) layer. The outputs of the SC layer are routed to the

final Code Capsule (CC) layer. The capsules in the CC layer can be seen as

the vector representations for the input code, and can be trained with respect

to di↵erent code comprehension tasks, such as code functionality classification

and function name prediction, which are evaluated in the next sections.

6.2.1 Tree-based Convolutional Neural Networks

We briefly introduce the Tree-based Convolutional Neural Networks (TBCNN,

[83]) for processing tree-structured inputs used in TreeCaps.
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A tree T = (V,E,X) consists of a set of nodes V , a set of node features X,

and a set of edges E. An edge in a tree connects a node and its children. Each

node in an AST also contains its corresponding texts (or tokens) and its type

(e.g., operator types, statement types, function types, etc.) from the underlying

code. Initially, we annotate each node v 2 V with a D-dimensional real-valued

vector x
v

2 RD representing the features of the node. We associate every node

v with a hidden state vector h
v

, initialized from the feature embedding x
v

,

which can be computed from a simple concatenation of the embeddings of

its texts and type [3]. The embedding matrices for the texts and types are

learn-able in the whole model training pipeline.

In TBCNN, a convolution window over an AST is emulated via a binary

tree, where the weight matrix for each node is a weighted sum of three fixed

matrices Wt, Wl, Wr 2 RD⇥D (each of which is the weight for the “top”,

“left”, and “right” node respectively) and a bias term b 2 RD Hence, for a

convolutional window of depth d in the original AST with K = 2d � 1 nodes

(including the parent nodes) belong to that window with vectors [x1, ...,xK

],

where x
i

2 RD, the convolutional output y of that window can be defined

as follows: y = tanh(
P

K

i=1[⌘
t

i

Wt + ⌘l
i

Wl + ⌘r
i

Wr]x
i

+ b) , where ⌘t
i

, ⌘l
i

, ⌘r
i

are

weights calculated corresponding to the depth and the position of the nodes. A

TBCNN model usually stacks M such convolutional layers to generate the final

node embeddings, where output at layer m will be used as the input for the

next layer m+ 1. Each layer has its own Wt, Wl, Wr 2 RD⇥D and the bias

term b 2 RD with di↵erent initialization.

6.2.2 The Primary Variable Capsule Layer (PVC)

In the PVC layer, we use M tree-based CNN layers with di↵erent random

initializations for Wt, Wl, Wr and b. We group outputs of the convolutional

layers together to form N
pvc

= |V |⇥D sets of capsules with outputs c
i

2 RDpvc ,

i 2 [1, N
pvc

], where D
pvc

= M is the dimension of the capsules in the PVC layer.

We apply a non-linear squash function [111] to a capsule to produce u
i

, which

represents the probability of existence of an entity by the vector length:

u

i

=
||c

i

||2

||c
i

||2 + 1
· c

i

||c
i

|| (6.1)

Hence, the output of the primary variable capsule layer is X
pvc

2 RNpvc⇥Dpvc .
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6.2.3 The Secondary Capsule Layer (SC)

As argued by [111], the capsule network tries to address the representational

limitation and exponential ine�ciencies of convolutions with transformation

matrices. To this, the child capsules in the PVC layer will be routed to the

parent capsules in the next capsule layer through a transformation matrix.

6.2.3.1 Sharing Weight across Child Capsules with Dynamic Rout-

ing (DRSW)

Since the number of capsules in the PVC is dynamic, a global transformation

matrix cannot be defined in practice with variable dimensions. The solution for

this problem is to defined a shared transformation matrix W
s

2 RNpvc⇥Dpvc⇥Dsc

across the child capsules, where N
pvc

is the number of capsules in the PVC

layer [136], D
sc

is the dimension of the capsules in the SC layer, and use the

dynamic routing algorithm to route the capsules (as summarized in Algo.3).

For each capsule i in the PVC layer (layer l in Algo.3), and for each capsule

j in the SC layer (layer l+1 in Algo.3), we multiply the output of the PVC layer

u
i

by the shared transformation matrix W
s

to produce the prediction vectors

û
j|i = W

s

u
i

. The ”prediction vectors” are responsible to predict the strength

of each capsule in the PVC layer, then a weighted sum over all ”prediction

vectors” û
j|i will produce the capsule j in the SC layer. The trainable shared

transformation matrix learns the part-whole relationships between the primary

capsules and secondary capsules, while e↵ectively transforms u
i

’s into the same

dimensionality as v
j

where each v
j

denotes the capsule output of the SC layer.

The coupling coe�cients �
ij

between capsule i and all the capsules in the SC

layer sum to 1 and are determined by a ”routing softmax” whose initial logits

↵
ij

are the log prior probabilities that capsule i in PVC layer should be coupled

to capsule j in the SC layer. Then we use r iterations to refine �
ij

based on

the agreements between the prediction vectors û
j|i and the secondary capsule

outputs v
j

where v
j

= squash(
P

i

�
ij

û
j|i).

Algorithm 3 Dynamic Routing

1: procedure Routing(û
j|i, r, l)

2: Initialize 8i 2 [1, l], 8j 2 [1, l + 1],↵
ij

 0
3: for r iterations do
4: 8i 2 [1, l],�

i

 softmax(↵
i

)
5: 8j 2 [1, l + 1],v

j

 squash(
P

i

�

ij

û

j|i)
6: 8i 2 [1, l], 8j 2 [1, l + 1],↵

ij

 ↵

ij

+ û

j|i · vj

7: return v

j
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Algorithm 4 Variable-to-Static Capsule Routing

1: procedure Routing(u
i

, r, a, b)
2: U

sorted

 sort([u1, ...,u
b

])
3: Initialize v

j

: 8i, j  a,v

j

 U

sorted

[i]
4: Initialize ↵

ij

: 8j 2 [1, a], 8i 2 [1, b],↵
ij

 0
5: for r iterations do
6: 8j 2 [1, a], 8i 2 [1, b], f

ij

 u

i

· v
j

7: 8j 2 [1, a], 8i 2 [1, b],↵
ij

 ↵

ij

+ f

ij

8: 8i 2 [1, b],�
i

 Softmax(↵
i

)
9: 8j 2 [1, a],v

j

 Squash(
P

i

�

ij

u

i

)

10: return v

j

6.2.3.2 Variable-to-Static Routing (VTS)

Sharing the transformation matrix reduces the ability to learn di↵erent features

as each pair of capsules is supposed to have its transformation matrix. Because

of this limitation, we o↵er the second solution to route the variable number

of capsules in the PVC layer. It is based on an observation of source code

that, in practice, not every node of the AST contributes towards a source

code learning task. Often, source code consists of non-essential entities, and

only a portion of all entities determine the code class. Therefore, we propose

a novel variable-to-static capsule routing algorithm, summarized in Algo. 4.

The intuition of this algorithm is that we squeeze the variable number of

capsules in the PVC layer to a static number of capsules by choosing only the

most important capsules in the PVC layer. The major di↵erence between the

VTS algorithm and the DRSW algorithm is that the DRSW needs to produce

prediction vectors by multiplying the capsule outputs in PVC layer with the

shared transformation matrix, and then the prediction vectors will be combined

to produce the capsules for SC layer, while in the VTS, the capsule outputs in

the PVC layer are selected and the prominent ones are used to initialize for

the capsules in SC layer directly.

We initialize the outputs of the SC layer with the outputs of the a capsules

with the highest L2 norms in the PVC layer. Hence, the outputs of the PVC

layer, [u1, ...,uNpvc ], are first sorted by their L2 norms, to obtain U
sorted

, and

then the first a vectors of U
sorted

are assigned as v
j

, j  a.

Since the probability of the existence of an entity is denoted by the length

of the capsule output vector (L2 norm), we only consider the entities with

the highest existence probabilities for initialization (in other words, highest

activation) following the aforementioned intuition. It should be noted that the

capsules with the a-highest norms are used only for the initialization; the actual
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outputs of the static capsules in the SC layer are determined by iterative runs

of the variable-to-static routing algorithm. It is the capsules with the most

prominent outputs along with the capsules of the highest vector similarities to

them that get routed to the next layer. In this way, rare capsules, when they

have prominent outputs, are still preserved and routed to the next layer.

Next, we route all b capsules in the PVC layer based on the similarity

between them and the static capsule layer outputs. We initialize the routing

coe�cients as ↵
ij

= 0, equally to the b capsules in the primary variable capsule

layer. Subsequently, they are iteratively refined based on the agreement between

the current SC layer outputs v
j

and the PVC layer outputs u
i

. The agreement,

in this case, is measured by the dot product, f
ij

 u
i

· v
j

, and the routing

coe�cients are adjusted with f
ij

accordingly. If a capsule u in the PVC layer has

a strong agreement with a capsule j in the SC layer, then f
ij

will be positively

large, whereas if there is strong disagreement, then f
ij

will be negatively large.

Subsequently, the sum of vectors u
i

is weighted by the updated �
ij

to calculate

s
j

, which is then squashed to update v
j

.

6.2.4 The Code Capsules layer

The Code Capsule (CC) layer in TreeCaps outputs the vector representations

for the code X
cc

2 RNcc⇥Dcc , where D
cc

is the dimensionality of each code

capsule and N
cc

is fixed with respect to a specific code learning task. Since

the outputs of the Secondary Capsule layer X
sc

2 RNsc⇥Dsc , where N
sc

is also

fixed, It then produces the needed final capsule outputs X
cc

.

In the following subsections, we explain how we set N
cc

and train the

TreeCaps models for di↵erent code learning tasks.

6.2.4.1 Code (Functionality) Classification

This task is to, given a piece of code, classify the functionality class it belongs

to. We want N
cc

capsules in the CC layer, each of which corresponds to a

functionality class of code that appeared in the training data. As such, we

let Ncc = , where  is the number of functionality classes. We calculate the

probability of the existence of each class by obtaining L2 norm of each capsule

output vector. We use the margin loss [111] as the loss function during training.
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6.2.4.2 Function (Method) Name Prediction

This task is to, given a piece of code (without its function header), predict

a meaningful name that reflects the functionality of the code. For this task,

following [10]’s prediction approach, we let N
cc

of the CC layer be 1, and the

output of the only capsule represents the vector for the given piece of code. In

this case, the output capsules of the CC layer has the shape of X
cc

2 R1⇥Dcc ,

which is also the code vector that represents for the code snippet C, denoted

as vC . The vector embeddings of the function are learn-able parameters,

formally defined as functions vocab 2 R|L|⇥Dcc , where L is the set of function

names found in the training corpus. The embedding of function
i

is row i of

functions vocab. The predicted distribution of the model q (l) is computed as

the (softmax-normalized) dot product between the context vector vC and each

of the function embeddings:

for l

i

2 L : q (l
i

) =
exp(vT

C · functions vocab

i

)P
lj2L exp(vT

C · functions vocab

j

)
(6.2)

where q (l
i

) is the normalized dot product between the vector of l
i

and the code

vector vC , i.e., the probability that a function name l
i

should be assigned to

the given code snippet C. We choose l that gives the maximum probability for

the snippet vC . For training the network, we use the cross-entropy as the loss

function.

6.3 Empirical Evaluation

General Settings. We use SrcML [31] to parse source code into ASTs;1 we

also use another parser PycParser2 used by TBCNN and ASTNN to ensure a

fair comparison and evaluate the e↵ects of di↵erent parsers. For the parameters

in our TBCNN layer, we follow [83] to set the the size of type embeddings =

30, and size of text embeddings = 50 and the number of convolutional steps

M = 8. For the capsule layers, we set N
sc

= 100, D
sc

= 16 and D
cc

= 16. Table

6.1 summarizes the major hyper-parameters in TreeCaps (both DRSW and

VTS) that are used with various datasets. We have used Tensorflow libraries to

implement TreeCaps. To train the models, we have used the Rectified Adam

1https://www.srcml.org/, 400+ node types for supporting multiple programming lan-
guages. We chose SrcML because (1) it provides unified AST representations for various
languages such as C/C++/Java in our datasets, and (2) it provides an extension SrcSlice
(https://github.com/srcML/srcSlice) to help identify code dependencies and construct
the graphs needed for GGNN, which is a baseline in our evaluation.

2https://github.com/eliben/pycparser/, about 50 node types for C.
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(RAdam) optimizer [74] with an initial learning rate of 0.001 subjected to decay,

on an Nvidia Tesla P100 GPU.

Table 6.1: Experimental Settings

Hyper-parameters Notation Value

Dimension of the embedding for each node type in TBCNN D
type

30

Dimension of the embedding for each node token in TBCNN D
token

50

Number of the convolutional layers in TBCNN M 8

Number of capsules in the Primary Variable Capsule (PVC) layer N
pvc

Depend on the input tree size

Dimension of each capsule in the PVC layer D
pvc

8

Number of capsules in the Secondary Capsule (SC) layer N
sc

100

Dimension of each capsule in the SC layer D
sc

16

Number of capsules in the Code Capsule (CC) layer N
cc

Depend on the target learning task

Dimension of each capsule in the CC layer D
cc

16

Number of iterations in routing r 3

Number of top-a output capsules chosen from PVC to initialize
for SC

a N
sc

Number of capsules to route from PVC to SC b N
pvc

6.3.1 Set up for Code Classification

Datasets, Metrics, and Models. We use datasets in two di↵erent pro-

gramming languages. The first Sorting Algorithms (SA) dataset is from [23],

which contains 10 algorithm classes of 1000 sorting programs written in Java.

The second OJ dataset is from [83], which contains 52000 C programs of 104

classes. We split each dataset into training, testing, and validation sets by the

ratios of 70/20/10. We use the same classification accuracy metric as [83] for

comparing classification results.

We compare TreeCaps with other techniques applied for the code classifica-

tion task, such as Code2vec, TBCNN, ASTNN, GGNN, etc. Since TBCNN

[83] and ASTNN [134] use PycParser to parse code into AST, we also compare

TreeCaps with all the baselines by using both PycParser and SrcML. We also

include a token-based baseline by treating source code as a sequence of tokens

and using the 2-layer Bi-LSTM to process the sequence of tokens. We follow

[3] to use the concatenation of embeddings of node types and texts (tokens)

for node initialization and representation. We also include an ablation study

to measure the impact of di↵erent combinations of node initialization and

representation.

Code Classification Results. As shown in Table 6.2, TreeCaps models,

especially TreeCaps-VTS, have the highest classification accuracy when combin-

ing node type and node token information, for both of the SA and OJ datasets.

When only node token information is used, the simpler 2-layer Bi-LSTM models

may achieve higher accuracy. The OJ dataset also shows that the choice of
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Table 6.2: Performance in Code Functionality Classification compared. A ‘-’
means that the model is not suited to use the relevant node representation or
the parser and thus not evaluated.

Model SA Dataset OJ Dataset
Parser SrcML PycParser SrcML

Initial Info Type Token Combine Type Token Combine Type Token Combine

2-layer Bi-LSTM - 81.83 - - 83.51 - - 83.51 -

Cod2vec - - 80.44 - - 86.21 - - 80.15

TBCNN 78.09 71.23 82.02 94.0 78.34 95.06 81.15 71.15 83.90

GGNN 82.12 74.25 83.81 - - - 85.23 72.23 85.89

ASTNN - - 84.32 - - 98.2 - - 85.32

Treecaps-DRSW 83.15 74.56 84.57 96.22 79.21 96.74 83.59 77.59 87.77

Treecaps-VTS 84.60 78.15 85.43 96.48 79.85 98.43 83.40 78.45 88.40

a parser a↵ects the performance significantly. The models using PycParser

all achieve higher accuracy than the models using SrcML. This is due to the

reason that ASTs generated by PycPaser have only around 50 node types, while

SrcML has more than 400 node types, which makes it harder for the networks

to learn. Across the datasets, The TreeCaps-VTS performs consistently the

best in terms of the F1 measure among the baselines under di↵erent settings.

6.3.2 Set up for Function Name Prediction

Datasets, Metrics, and Models. We have used the datasets from [9] that

contain three sets of Java programs: Java-Small (700k samples), Java-Med (4M

samples), and Java-Large(16M samples). We measure prediction performance

using precision (P), recall (R), and F1 scores over the sub-words in generated

names, following the metrics used by [10, 41]. For example, a predicted name

result compute is considered to be an exact match of the ground-truth name

called computeResult; predicted compute has full precision but only 50% recall;

and predicted compute model result has full recall but only 67% precision.

We compare TreeCaps to the following baselines applied to the function

name prediction task: Code2vec, TBCNN, GGNN, and a neural machine

translation baseline that reads the input source code as a stream of tokens

by using a 2-layered bidirectional encoder-decoder LSTMs (split tokens) with

global attentions. The ASTNN is not designed for this task, so we exclude it

in this evaluation.

Function Name Prediction Results. As seen in Table 6.3, TreeCaps-

DRSW and TreeCaps-VTS are comparable in term of F1 score, although the

TreeCaps-VTS is slightly better. The TreeCaps models also achieve comparable

or better results than all other models for most of the settings. In particular,

TreeCaps are comparable or better than GGNN but without the need of
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additional code dependency analysis for constructing graphs.

Table 6.3: Performance of TreeCaps and the baselines for Function (Method)
Name Prediction

Model java-small java-med java-large
Metric P R F1 P R F1 P R F1

2-layer BiLSTM 40.02 31.84 35.46 43.05 41.69 42.31 48.34 40.27 44.63

TBCNN 28.89 21.67 22.56 35.98 33.41 35.23 41.15 37.29 38.33

Code2vec 23.35 22.01 21.36 36.43 27.93 31.89 44.24 38.25 41.56

GGNN 42.25 35.25 35.25 53.14 44.59 47.31 50.18 44.2 46.23

TreeCaps-DRSW 42.15 37.49 37.04 47.11 41.15 43.28 49.37 46.58 47.85

TreeCaps-VTS 43.52 38.56 38.51 55.35 42.98 47.89 50.88 47.01 48.34

6.3.3 Model Analysis

To better understand the importance of the di↵erent components of our ap-

proach, we evaluate the e↵ect of various aspects of the TreeCaps models. We

use the code classification task on the OJ Dataset for the experiments in this

subsection.

6.3.3.1 Robustness of Models

We measure the robustness of each model by applying the semantically-

preserving program transformations to the OJ Datasets test set. We follow

[105, 118] to transform programs in three ways that change code syntax but

preserve code functionality: (1) Variable Renaming (VN), a refactoring trans-

formation that renames a variable in code, where the new name of the variable

is taken randomly from a set of variable vocabulary in the training set; (2)

Unused Statement (US), inserting an unused string declaration to a randomly

selected basic block in the code; and (3) Permute Statement (PS), swapping

two independent statements (i.e., with no dependence) in a basic block in the

code.

The OJ test set is thus transformed into a new test set. We then examine

if the models make the same predictions for the programs after transformation

as the prior predictions for the original programs. We use percentage of

predictions changed (PPC) as the metric previously used by [105, 118, 132]

to measure the robustness of the models. Formally, suppose P denotes a set of

test programs, a semantic-preserving program transformation T that transforms

P into a set of transformed programs P 0 = {p0 = T (p)|p 2 P}, and a source

code learning model M that can make predictions for any program p: M(p) = l,

where l 2 L denotes a predicted label for p according to a set of labels L learned
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by M , we compute the percentage of predictions changed as follows.

PPC =
|{p0 2 P

0|M(p) 6= M(p0)}
|{p0 2 P

0}| ⇤ 100. (6.3)

The lower PPC values for M suggest higher robustness since they can

maintain more of correct predictions with respect to the transformation. As

shown in Table 6.4, TreeCaps-VTS is the most robust model against the program

transformations. Even though more kinds of program transformations could be

applied to evaluate model robustness in our future work, the current analysis

gives us the confidence that TreeCaps can be more robust against attacks via

such adversarial examples [16, 108].

Table 6.4: Model robustness, measured as percentage of predictions changed
wrt. semantic-preserving program transformations. The lower the more robust.

Variable Renaming Unused Statement Permute Statement Average

Code2vec 13.45% 19.42% 18.56% 17.04%
TBCNN 10.16% 16.33% 15.43% 13.97%
ASTNN 10.43% 13.82% 12.14% 12.23%
GGNN 9.34% 11.89% 10.48% 10.57%

TreeCaps-DRSW 8.46% 11.72% 10.41% 10.19%
TreeCaps-VTS 8.15% 11.08% 8.87% 9.37%

6.3.3.2 Comparison between the Two Routing Algorithms

Figure 6.2: Comparisons between the Two Routing Algorithms

Figure 6.2 shows the comparisons between the Dynamic Routing algorithm

with Shared Weights (DRSW) and Variable-to-Static Routing algorithm (VTS)

(cf. Section 6.2.3). There are two main observations: (1) when DRSW is used,

the loss decreases much slower than when VTS is used (in the right plot); and

(2) VTS improves validation accuracy much faster than DRSW (in the left

chart). An explanation for this is that DRSW has to learn an additional shared

transformation matrix W
s

, resulting in slower convergence due to a larger

number of parameters to be learned.
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6.3.3.3 E↵ect of the Secondary Capsule (SC) Layer

In our design, we choose to route the dynamic number of capsules in the PVC

layer into a fixed number of capsules in the SC layer. An issue is that we can

directly route the capsules in the PVC layer to the CC layer using either the

DRSW or the VTS algorithm (without the intermediate SC layer). In this

section, we conduct an experiment to demonstrate the need for the SC layer to

combine the information of the capsules in the PVC layer into a fixed number

of capsules representing di↵erent aspects of the input trees. We remove the

SC Layer and do the routing from the PVC layer directly to the CC layer.

We apply the dynamic routing algorithm over the PVC layer with a shared

transformation matrix for the DRSW algorithm and get a fixed number of N
cc

capsules that represent each class. For the VTS algorithm, we pick the number

of top a capsules with the maximum L2 norms equal to the number of classes,

so a =  = N
cc

, and conduct the training for code functionality classification

task on both the SA and OJ datasets.

The accuracy of VTS for both the dataset is significantly lower than the

DRSW algorithm in Table 6.5, since there is no child-parent relationship learned

from any transformation matrix in the VTS. On the other hand, the DRSW can

still retain the accuracy of more than 60%, because there is still a transformation

matrix that can learn the spatial relationship between capsules. This means

that the SC layer is a necessary component to maintain important spatial

correlations in the AST.

Table 6.5: Performance of TreeCaps after removing the Secondary Capsule
Layer

Model SA Dataset OJ Dataset

DRSW w/o SC 62.3% 66.2%
VTS w/o SC 43.5% 51.6%

6.3.3.4 E↵ect of the Number of Capsules (N
sc

) in the Secondary

Capsule (SC) Layer

Table 6.6 shows the results of this analysis. First, we choose N
sc

= 1, which

means that there is only one capsule in the SC layer. The accuracy is low, i.e.,

32.57%. This means that only one capsule is not enough to capture features

in the PVC layer. Next, we keep increasing the number of capsules in the SC

layer by about 20 and retrained the models for each of the choices. The results

show that N
sc

= 100 is a reasonable choice and provide the best results. For
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N
sc

= 120 and N
sc

= 140, the performance gap does not di↵er significantly, so

that it is not necessary to choose a larger N
sc

.

Table 6.6: E↵ect on N
sc

on the classification accuracy for the OJ Dataset

N
sc

1 20 40 60 80 100 120 140
Classification Accuracy 32.57 81.49 86.82 84.17 86.79 88.40 87.93 88.32

6.3.3.5 E↵ect of the Variable-To-Static (VTS) Routing Algorithm

We investigate the e↵ect of the variable-to-static routing algorithm by replacing

it with Dynamic Max Pooling (DMP). Since there is no alternative approach

existing in the literature for routing a variable set of capsules to a static

set of capsules, we compare the proposed routing algorithm with dynamic

pooling. The output of the PVC layer, X
pvc

2 RNpvc⇥Dpvc consists of a variable

component, N
pvc

. Using dynamic max-pooling (DMP) across all the N
pvc

capsules will result in one output capsule, X
dmp

2 R1⇥Dpvc . Since X
dmp

has

no variable components across the training samples, it can now be routed to

the code capsules using the dynamic routing algorithm. However, it should be

noted that DMP destroys the spatial and dependency relationships between

the capsules; we use DMP here only for comparison purposes.

As summarized in Table 6.7, DMP yields a considerably lower accuracy of

78.58% than our routing algorithm by a significant margin of 9.82%, establishing

the e↵ectiveness of our proposed algorithm.

6.3.3.6 E↵ect of the Dimension of Capsules (D
cc

) in the Code Cap-

sule (CC) Layer

The instantiation parameters D
cc

of the Code Capsule layer acts as the dimen-

sionality of the vector representations of source code. If the dimensionality of

the representation is higher than required, it can introduce sparsity and/or

correlations between the instantiation parameters, reducing the classification

accuracy. On the contrary, if the dimensionality of the latent representation

is too low, it may not be su�cient to capture the variations in source code,

leading to under-representation, reducing the classification accuracy. Hence, in

an attempt to identify a suitable value for D
cc

for source code classification, we

investigate the e↵ect of D
cc

in the accuracy. As summarized in Table 6.7, we

observed that the most suitable value was D
cc

= 16 for the OJ Dataset.
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Table 6.7: E↵ect of di↵erent model variants for the OJ Dataset

Model Variant Classification Accuracy

Variable-to-Static Routing Algorithm ! Dynamic Pooling 78.58%
Dimension of capsules in SC layer ! D

sc

= 4 79.90%
D

cc

= 8 83.15%
D

cc

= 12 82.31%
D

cc

= 16 88.40%
D

cc

= 20 86.20%
D

cc

= 24 85.98%

6.3.3.7 Sensitivity to Input Code Sizes

We examined how the size of a function body (i.e., lines of code (LOC)) a↵ects

the performance of the function name prediction task. We used the results

for the Java-Large dataset in this examination. As shown in Figure 6.3, the

TreeCaps-VTS, TreeCaps-DRSW, and GGNN are comparable to each other.

We can observe that the TreeCaps-VTS is slightly better than the other two.

All models give their best results for short snippets of code, i.e., less than 3

lines. As the size of a function increases, the performance of all examined

models starts to decrease slowly for the size of 10 and above. When reaching

the size of 37 and above, we can see the significant drop-down for all of the

models.

Figure 6.3: Sensitivity of Input Code Sizes
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6.4 Conclusion

We proposed TreeCaps, a novel neural network that incorporates the capsules

theory into Tree-based CNN for a better representation learning of code. To

handle dynamic numbers of capsules produced from TBCNN, we propose two

methods to route the capsules in the Primary Variable Capsule layer to fixed

number of capsules in the Secondary Capsule layer. We are the first to re-

purpose capsule networks over syntax trees to learn code without the need for

explicit semantics analysis. We also showed that TreeCaps can perform well in

di↵erent use-case scenarios of code processing, such as code classification and

method name prediction. It is our belief that the new method can be applied

to other valuable software engineering tasks, such as bug localization, code

clone detection, etc.

Since TreeCaps is based on the capsule networks, it inherits a few limitations

of capsule networks. The first limitations is the high computational complexity

in comparison to CNNs, our novel VTS routing method is designed to com-

pensate such limitation and produce comparable results and faster training

time comparing with the DR-SW routing method. The second limitation of

capsule networks is that it lacks an explainability method, i.e. understand

how a capsule represents for which feature of source code and how the cap-

sules are correlated. We intend to extend our work to a method to identify

the piece of code that is represented by the capsules and compare them with

program dependencies identified by program analysis techniques, to evaluate

the e↵ectiveness of TreeCaps as an embedding generating technique.

Our empirical evaluations have shown that TreeCaps can outperform existing

code learning models (e.g., Code2vec, TBCNN, ASTNN, GGNN, etc.) for two

di↵erent program comprehension tasks (e.g., code functionality classification

and function name prediction) on C/C++/Java programs. It is our belief that

the new method can be applied to other valuable
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Chapter 7

Related work

In this chapter, we review some existing work in using machine learning on

source code and the applications in solving a wide range of software engineering

tasks. There have been a number of methods proposed to address learning on

source code, but it is not clear how these methods are related to each other.

This review thus tries to organize the existing work and layout an overall picture

of the source code learning with its possible solutions.

7.1 Learning Code as Natural Languages To-

kens

Mining a large corpus of open-source Java projects on the repositories, Hindle

et al. [54] showed that programming languages are largely in common to natural

languages in terms of probabilistic predictability (i.e., low entropy) of next

tokens, hence statistical methods apply well to model repetitiveness in source

code, and those language models can be used for the code suggestion task in

IDEs. Furthermore, it has been established that programmers tend to focus

on code local to their context, hence the locality can be exploited by ‘caches’

while keeping both the long and short-term memory of the sequences processed.

For example, Hellendoorn et al. [51] employed both n-grams (with and without

cache) and LSTM NN to train statistical models and demonstrated that such

straight application of NN to sequences do not necessarily enhance the accuracy

greatly compared to the cached n-gram models. In a survey, Allamanis et al. [2]

further categorized the related research directions in this area. Our hierarchical

learning technique (chapter 2) treat the source code as a sequence of tokens

and learn the combination of di↵erent code levels in a hierarchy style, which
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has been proved to perform well in many SE tasks.

7.2 Learning Programs with Structures

It is known that code is structured (e.g., nested in syntax) and programmers

do not read the code from the beginning to the end. Static program analysis

tools rely on AST and program dependence graphs to capture such informa-

tion. However, exist tools for translating code among specific languages (e.g.,

Java2CSharp) are mostly rule-based, rather than statistics-based [62]. Boccardo

et al. [17] proposed to use neural networks for learning program equivalence

based on callgraphs, the accuracy was not too good because it does not take into

account code syntax structures. Alexandru et al. [1] proposed to analyze only

the revised source files from a Git repository, instead of parsing or analyzing

those unchanged revisions, reducing redundancies in analyzing the evolution of

source code of di↵erent programming languages. On learning from code syntax

structures, TBCNN was first proposed by Mou et al. [81], which designed a set

of fixed-depth subtree filters sliding over an entire AST to extract structural

information of the tree. They also proposed “continuous binary trees” and

applied dynamic pooling [113] to deal with varying numbers of children of

AST nodes. Our DTBCNN (chapter 3) extends the TBCNN by adding the

dependency information into the AST so that the source code semantic can be

captured in a more explicit way.

Capsule networks [55, 111] use dynamic routing to model spatial and hi-

erarchical relations among objects in an image. The techniques have been

successfully applied to di↵erent tasks, such as computer vision, character recog-

nition, and text classification [60, 106, 136]. None of the studies has considered

complex tree data as input. Capsule Graph Neural Network [135] has been

recently proposed to classify biological and social network graphs, yet, has not

been applied to trees for programming languages processing yet. Our TreeCaps

(chapter 6) is also a structure-based learning approach, where the learning

algorithm from the capsule theory has been proved to capture the structural

information better than TBCNN.
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7.3 Combining syntactical and semantic infor-

mation

For semantic information such as program dependence graphs, Allamanis et

al. [5] used GGNN to unify the information with AST. Using open-source C#

projects they have demonstrated significant improvement in predicting the

correct or misused names. The evaluation shows our Bi-DTBCNN approach

performs better than GGNN for our algorithm classification tasks. A possible

reason is we embed all contextual information on the AST whilst GGNN relies

on how certain semantic relations that can be derived from AST are explicitly

encoded.

7.4 Bi-lateral representations for cross-language

learning

Cross-language learning representation structures are typically bilateral. Studies

on sentence comparisons and translations in NLP involve variants of bilateral

structures as shown by Wang et al. [119]. Among them, Bromley et al. [21]

pioneered “Siamese” structures to join two subnetworks for written signature

comparison. He et al. [50] also use such structures to compute sentence features

at multiple levels of granularity. Yin and Neubig [127] and Oda et al. [98]

used Seq2Seq NN to perform code generation from one programming language

to another. Much work has utilized various statistical language models for

tokens [91], phrases [62, 92, 93], or APIs [25, 39, 89, 90, 104, 137, 138]. A

few studies also used word embedding for API mapping and migration (e.g.,

[48, 49, 94, 104, 123]), but our work does not need large number of manually

specified parallel corpora or mapping seeds. Tools for translating code among

specific languages in practice (e.g., Java2CSharp [29]) also often dependent on

manually defined rules specific to the grammars of individual languages, while

our approach alleviates the need of language-specific rules.

MAM [138] and StaMiner [89] rely on the availability of bilingual projects

that implement the same functionality in two or more languages. DeepAM [49]

requires many similar text descriptions across programs written in di↵erent

programming languages whose availability can a↵ect the mapping results.

Api2Api [94] requires many API mapping seeds from Java2CSharp [29]) to map

APIs. The idea of our SAR approach (chapter 4) is most similar to Api2Api,
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while we combine seed-based and unsupervised domain adaptation techniques

to reduce the need of mapping seeds.

7.5 Intepretability for Code Processing

Interpretability is important for software mining and analysis in general [37].

In domains other than software engineering, various techniques have been

proposed to interpret machine learning results in di↵erent ways, such as by

inverting trained CNN models to project outputs through hidden neurons to

input image pixels and visualizing the hidden neurons using inputs [130], by

quantifying the e↵ects of composing di↵erent representations of meanings in

English sentences to visualize compositionality of RNN and LSTM models [68],

and by perturbing input images to evaluate its impact on black box neural

networks [42]. Autofocus (chapter 5) is a technique to visualize important parts

of the source code to understand how the code processing techniques work from

the human understanding perspective.
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Conclusion

In this chapter, we summarize the findings of this thesis and point out some

future research directions.

8.1 Summary

We have shown that the combination of deep learning and static code analysis

can greatly increase the performance of source code processing. In chapter

2, we present a hierarchical representation of source code and apply a simple

learning technique borrowed from Natural Language Processing. We show that

with such hierarchical representation and only a simple learning technique,

the performance was quite well on tasks such as code clone detection, code

classification. In Chapter 3, we present a method to enrich the representation of

code with the information from static code analysis, we call it Dependency Tree.

The tree-based deep learning technique can apply directly to the Dependency

Tree. We show that our novel Dependency Tree outperforms the other alterna-

tive methods for cross-language code classification. In Chapter 4, we tackle a

challenging task to map code fragments (i.e., APIs) across languages without

any labeled data. In this work, we use static code analysis to extract the API

calling sequences and apply an advanced deep learning method (Generative

Adversarial Network) to map the APIs. This is an important stepping stone

towards the goal to automatically translate a program from one language to

another, which is essential for the process to migrate (or upgrade) legacy code-

bases to a newer version. In Chapter 5, we present a method to interpret how

deep learning understand source code, we show that the attention mechanism

can shred some light towards the goal to understand how machine learning

understand source code
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Although the goal of this thesis is to present how the combination of static

code analysis and deep learning can greatly improve the performance of software

analytics, we realize for certain tasks, expensive static code analysis may not

be necessary, and the accuracy of such analysis can be low, which might add

noise to the code representation. As such, in Chapter 6, we propose TreeCaps,

a novel method that fuses the idea of capsules to combine information of source

code without any static code analysis.

8.2 Future Directions

In the future, we plan to further optimize the current solutions for source code

processing.

Unsupervised Learning for Source Code Processing Unsupervised

learning allows us to learn useful representations from large unlabeled cor-

pora. Unsupervised learning has been received a huge interest in computer

vision [38, 66, 97, 101], and natural language processing [13, 19, 32, 53]. The

idea of self-supervision has recently become popular where representations

are learned by designing learning objectives that exploit labels that are freely

available with the data (without any human e↵ort to label data). Given the

huge amount of available source code on hosting platforms, such as Github,

Bitbucket, Gitlab, etc., unsupervised learning is likely to be applicable in the

source code model too. However, the e↵ort for this research direction is little.

If we can design the model that leverages the huge amount of available data

from source code, it can be very beneficial.

Using Deep Learning for Source Code Translation We have shown

that deep learning is able to map code fragments across languages. However,

program translation is a more challenging task than the API mapping. The

most challenging part of program translation is to collect the parallel data,

which is essential to build a translation model.By leveraging the recent advances

in unsupervised learning, the program translation can be build with little e↵ort

to collect the parallel data.

Interpretability of Source Code Model on More Challenging Tasks

We proposed a method to interpret how the model understands the code

classification task in Chapter 5. The interpretability on source code processing
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need to be tackled on more challenging tasks, such as variable name prediction,

type prediction, program synthesis, etc.
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[107] Václav Rajlich and Norman Wilde. The role of concepts in program

comprehension. In Proceedings of the 10th International Workshop on

Program Comprehension, IWPC ’02, pages 271–, Washington, DC, USA,

2002. IEEE Computer Society.

[108] Goutham Ramakrishnan, Jordan Henkel, Zi Wang, Aws Albarghouthi,

Somesh Jha, and Thomas Reps. Semantic robustness of models of source

code. arXiv preprint arXiv:2002.03043, 2020.

114



BIBLIOGRAPHY

[109] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Catch me if you can:

Evaluating android anti-malware against transformation attacks. IEEE

Transactions on Information Forensics and Security, 9(1):99–108, 2013.

[110] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling

with Large Corpora. In Proceedings of the LREC 2010 Workshop on New

Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010.

ELRA. http://is.muni.cz/publication/884893/en.

[111] Sara Sabour, Nicholas Frosst, and Geo↵rey E Hinton. Dynamic rout-

ing between capsules. In Conference on Neural Information Processing

Systems, pages 3856–3866, Long Beach, CA, 2017.

[112] Peter H. Schönemann. A generalized solution of the orthogonal procrustes

problem. Psychometrika, 31(1):1–10, Mar 1966.

[113] Richard Socher, Eric H. Huang, Je↵rey Pennington, Andrew Y. Ng, and

Christopher D. Manning. Dynamic pooling and unfolding recursive au-

toencoders for paraphrase detection. In 24th International Conference on

Neural Information Processing Systems (NIPS), pages 801–809, December

12-14 2011.

[114] Ilya Sutskever, James Martens, George E. Dahl, and Geo↵rey E. Hinton.

On the importance of initialization and momentum in deep learning. In

Proceedings of the 30th International Conference on Machine Learning,

ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 1139–1147, 2013.

[115] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learn-

ing with neural networks. In Annual Conference on Neural Information

Processing Systems (NIPS), pages 3104–3112, 2014.

[116] Ahmad Taherkhani, Ari Korhonen, and Lauri Malmi. Recognizing algo-

rithms using language constructs, software metrics and roles of variables:

An experiment with sorting algorithms. Comput. J., 54(7):1049–1066,

2011.

[117] Zhaopeng Tu, Zhendong Su, and Premkumar T. Devanbu. On the

localness of software. In FSE, pages 269–280, 2014.

[118] K Wang and Zhendong Su. Learning blended, precise semantic program

embeddings. ArXiv, vol. abs/1907.02136, 2019.

115

http://is.muni.cz/publication/884893/en


BIBLIOGRAPHY

[119] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective

matching for natural language sentences. In 26th International Joint

Conference on Artificial Intelligence (IJCAI), pages 4144–4150, August

19-25 2017.

[120] Huihui Wei and Ming Li. Supervised deep features for software functional

clone detection by exploiting lexical and syntactical information in source

code. In Proceedings of the Twenty-Sixth International Joint Conference

on Artificial Intelligence (IJCAI), pages 3034–3040, 2017.

[121] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring

program comprehension: A large-scale field study with professionals.

IEEE Transactions on Software Engineering, 44(10):951–976, Oct 2018.

[122] Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. Normalized word

embedding and orthogonal transform for bilingual word translation. In

NAACL HLT 2015, The 2015 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language

Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pages

1006–1011, 2015.

[123] Shengzhe Xu, Ziqi Dong, and Na Meng. Meditor: Inference and appli-

cation of api migration edits. In Proceedings of the 27th International

Conference on Program Comprehension, pages 335–346. IEEE Press, 2019.

[124] S. Yan, B. Shen, W. Mo, and N. Li. Transfer learning for cross-platform

software crowdsourcing recommendation. In 24th Asia-Pacific Software

Engineering Conference (APSEC), pages 269–278, Dec 2017.

[125] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learn-

ing for just-in-time defect prediction. In IEEE International Conference

on Software Quality, Reliability and Security (QRS), pages 17–26, 2015.

[126] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik. A new android

malware detection approach using bayesian classification. In 2013 IEEE

27th International Conference on Advanced Information Networking and

Applications (AINA), pages 121–128, March 2013.

[127] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-

purpose code generation. In Regina Barzilay and Min-Yen Kan, editors,

116



BIBLIOGRAPHY

Proceedings of the 55th Annual Meeting of the Association for Computa-

tional Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4,

Volume 1: Long Papers, pages 440–450. Association for Computational

Linguistics, 2017.

[128] Yijun Yu. fAST: Flattening abstract syntax trees for e�ciency. In

Proceedings of the 41th International Conference on Software Engineering,

ICSE, pages 278–279, 2019.

[129] C. Yuan, S. Wei, Y. Wang, Y. You, and S. ZiLiang. Android applications

categorization using bayesian classification. In 2016 International Confer-

ence on Cyber-Enabled Distributed Computing and Knowledge Discovery

(CyberC), pages 173–176, Oct 2016.

[130] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding

convolutional networks. In ECCV, pages 818–833, 2014.

[131] Fangfang Zhang, Yoon-Chan Jhi, Dinghao Wu, Peng Liu, and Sencun

Zhu. A first step towards algorithm plagiarism detection. In Proceedings

of the 2012 International Symposium on Software Testing and Analysis,

ISSTA 2012, pages 111–121, New York, NY, USA, 2012. ACM.

[132] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin.

Generating adversarial examples for holding robustness of source code

processing models. In 34th AAAI Conference on Artificial Intelligence,

2020.

[133] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and

Xudong Liu. A novel neural source code representation based on abstract

syntax tree. In ICSE, 2019.

[134] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and

Xudong Liu. A novel neural source code representation based on abstract

syntax tree. In International Conference on Software Engineering, pages

783–794, 2019.

[135] Xinyi Zhang and Lihui Chen. Capsule graph neural network. In Interna-

tional Conference on Learning Representations, 2019.

[136] Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei Zhang, and Zhou

Zhao. Investigating capsule networks with dynamic routing for text

classification. arXiv preprint arXiv:1804.00538, 2018.

117



BIBLIOGRAPHY

[137] Hao Zhong, Suresh Thummalapenta, and Tao Xie. Exposing behavioral

di↵erences in cross-language API mapping relations. In FASE, pages

130–145, March 16-24 2013.

[138] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang.

Mining API mapping for language migration. In ICSE, pages 195–204,

May 1-8 2010.

[139] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu.

Devign: E↵ective vulnerability identification by learning comprehensive

program semantics via graph neural networks. In Advances in Neural

Information Processing Systems, pages 10197–10207, 2019.

118


	Novel deep learning methods combined with static analysis for source code processing
	tmp.1615975553.pdf.8hx9C

