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Abstract

A bound on the tau neutrino mass is established using the data collected from 1991

to 1995 at
p
s ' mZ with the ALEPH detector. Two separate limits are derived by

�tting the distribution of visible energy vs invariant mass in �� ! 2�� �+ �� and �� !
3�� 2�+ (�0) �� decays. The two results are combined to obtain a 95% con�dence level

upper limit of 18:2 MeV=c2 on the mass of the tau neutrino.
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1 Introduction

Neutrinos play an important role in particle physics, astrophysics and cosmology. They

are a potential window towards physics beyond the Standard Model, carriers of radiated

energy in star evolution, candidates for dark matter and ingredients in models of evolution

of the universe.

Massive neutrinos can arise from many di�erent mechanisms [1] but they are generally

present in all extensions of the Standard Model. Among the possible frameworks the see-

saw mechanism [2] is considered to be particularly appealing because it explains the

smallness of neutrino masses by connecting them to the scale of new physics. See-saw

models usually assume a neutrino mass hierarchy (either linear or quadratic) similar to

that of up-quarks or charged leptons, thus making the tau neutrino the heaviest of the

known neutrino species.

Cosmological arguments [3] limit the mass of a stable tau neutrino below a few eV=c2,

a region accessible only to neutrino oscillation experiments. For unstable neutrinos the

cosmological bound is less stringent and depends on the nature of the decay. If the

decay mode is a non-radiative one, as into neutrinos or into one neutrino and a more

exotic particle like the majoron or the goldstino, the few MeV=c2 mass region is no

longer excluded [4]. Such a neutrino could also improve the agreement of the big-bang

nucleosynthesis model with present data [4]. Decays of the type �� ! �i + �j + ��k and

�� ! �i+j, where j is a light boson, are directly related to � ! `i+`j+ �̀
k and � ! `i+j,

for which experimental bounds from e+e� experiments [5] exist. In this way a region of

the (m�� ; ��� ) plane can be excluded.

Indirect bounds on the mass of �� can also be derived from the decay rates of the tau.

The most stringent of these limits is m� < 48 MeV=c2 at 95% con�dence level (CL) [6].

Direct bounds have been derived from the reconstruction of multi-hadronic decays of the

tau and several experiments [7, 8, 9] have obtained similar limits of about 30 MeV=c2.

The upper limit on the tau neutrino mass is currently 24 MeV=c2 at 95% CL and has

been derived by ALEPH from �� ! 3�� 2�+ (�0) ��
1 decays [10].

In this paper the �� ! 3�� 2�+ (�0) �� analysis has been extended to the full data

sample collected during the LEP phase I. In addition, the same technique is also applied to

the decays of the tau into three prongs, �� ! 2�� �+ �� and the two limits are combined,

to give a more stringent bound on the tau neutrino mass.

Combining the above information as in reference [11] only a relatively small region of

the (m� ; ��) plane, shown in Fig. 1, remains allowed by present data.

2 The method

The bound on the neutrino mass limit is derived using the method described in [10]. The

tau decay is described as a two-body decay:

��(E� ; ~p� )! h�(Eh; ~ph) + �� (E�; ~p�)

1Charge conjugation is always implied throughout this paper.
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where the hadronic system h� is composed of three, �ve or six pions. In the tau rest

frame the energy of the hadronic system is �xed by the values of the masses m� ; m� and

mh:

E�

h =
m2

� +m2
h �m2

�

2m�

The value of m� can be computed from the above expression for given values of mh

and E�

h. In the laboratory frame the hadronic energy is

Eh =  (E�

h + � p�h cos �)

where � =
q
(E2

� �m2
� )=E

2
� is the tau velocity,  =

q
1=(1� �2) and � is the angle between

the direction of the tau and that of the hadronic system in the tau rest frame. The tau

energy is assumed to be equal to the beam energy. Initial and �nal state radiation, which

reduce the tau energy, are properly taken into account in the �t procedure, as explained

later.

Since the tau direction is not determined, the neutrino mass cannot be computed

directly. However the value of Eh partially recovers the loss of information. The value

of Eh must fall inside the interval E
max;min
h =  (E�

h � � p�h); this de�nes the kinematic

allowed regions shown in Fig. 2 for di�erent values of the tau neutrino mass. Two

hypothetical events are also drawn as points with error ellipses. The ellipsoidal shape

of the error is due to the measurement correlation, �, between the values of mh and

Eh. Since both mh and Eh are determined from the measured momenta of the particles

composing the hadronic system a positive correlation arises between these two quantities.

The value of � is approximately 0.5-0.7 for all the modes considered in this analysis. The

size of the two ellipses in Fig. 2 is set using the average values of �mh
, �Eh

and � in the

�� ! 3�� 2�+ �� mode. Event 2 clearly constrains the neutrino mass more than event

1, even though the latter has a higher hadronic mass. This illustrates the advantage of

�tting the distribution of Eh and mh rather than mh alone.

The density of events in the (mh; Eh) plane is essentially determined by the distribution

d�=dmh as for �xed values of mh and E� , the Eh distribution is uniform between Emin
h

and Emax
h . In the proximity of the Z pole the distortions caused by initial and �nal state

radiation and by tau polarisation (which introduces a slope) are small.

The neutrino mass is extracted from a maximum likelihood �t to the analytical

expression of 1=� � d2�=dEhdmh, after this has been convolved with radiative

corrections [12] and detector e�ects. The expression used in the �t is:

1

�
� d2�

dmhdEh

/ jMj2(m2
� ; m

2
h; m

2
�) � �1=2(m2

� ; m
2
h; m

2
�)

In the notation of Tsai [13], the matrix element M is:

[p�k�(g
��g�� + g��g�� � g��g��) + ik�p�"

���� ] � [(g�� � q�q�=q
2) � v(q2) + q�q� � a(q2)]

where p and k are the four-momentum of the � and of the �� respectively, q
2 = (p�k)2 =

m2
h, v(q

2) and a(q2) are the spectral functions for vector and scalar �nal states respectively.
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This gives:

jMj2 = 1

2
[!1(m

2
� ; q

2; m2
�) � v(q2) + !0(m

2
� ; q

2; m2
�) � a(q2)]

!1(m
2
� ; q

2; m2
�) = (m2

� + 2q2)(m2
� � q2)�m2

�(2m
2
� � q2) +m4

�

!0(m
2
� ; q

2; m2
�) = m2

� (m
2
� � q2)�m2

�(2m
2
� + q2) +m4

�

The phase space term �1=2(m2
� ; m

2
h; m

2
�) is given by:

�1=2(m2
� ; q

2; m2
�) =

q
(m2

� � q2)2 � 2m2
�(m

2
� + q2) +m4

� ' (m2
��q2)�m2

� �
m2

� + q2

m2
� � q2

+O(m4
�)

The above formulae show that the e�ects of m� in the matrix element are extremely small

and that the sensitivity to a massive neutrino increases rapidly near q2 = m2
� .

The exact functional form of the spectral functions entering the expression for M is

not predicted by theory nor can it be inferred from e+e� data via CVC [14] as is done for

modes with two or four pions in the �nal state. For three- and �ve-prong modes this is

not possible because the current is axial. For the six-prong mode the CVC prescription

alone is insu�cient, as explained in [15]. Nevertheless, since the spectral functions are

expected to vary slowly with q2 in the small region close to the kinematic boundary, the

uncertainty in their form plays only a minor role in the determination of the bound on

m� .

In presence of neutrino mixing the distribution of mh would be the incoherent

superposition of three distributions:

1

�
� d2�

dmhdEh

/
X

j

jV�jj2 � jMj2(m2
� ; m

2
h; m

2
�j
) � �1=2(m2

� ; m
2
h; m

2
�j
)

where V�j is the appropriate neutrino mixing matrix element. The contributions from

the two lighter neutrinos are bound by the data of oscillation experiments like E531 [16]

and the experiments at the Bugey Reactor [17] to be at most of the order of 10�3 in the

large �m region. Therefore the bound on m�� has been determined neglecting the mixing

between the tau and other families.

3 The ALEPH detector

The ALEPH detector and its performance are described in detail in [18, 19, 20]. A brief

description of the elements of the apparatus relevant to the present analysis is given here.

Charged particles are tracked in an axial magnetic �eld of 1.5 T using a silicon

microstrip vertex detector with two-dimensional readout, a drift chamber and a time

projection chamber (TPC). This combined tracking system provides up to 31 coordinates

and up to 338 measurements of the speci�c ionization for each track. For high momentum

particles the transverse momentum resolution is �pT =pT = 6 � 10�4 pT (GeV=c). The

mass resolution for a multibody decay, such as D0 ! K����+�+, is typically of the order

of 10 MeV=c2.
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Surrounding the tracking detectors are the electromagnetic calorimeter (ECAL), the

superconducting solenoid, the hadron calorimeter (HCAL) and the muon chambers.

The ECAL is a lead wire-chamber calorimeter with cathode pad readout in 0:9� � 0:9�

projective towers divided into three longitudinal segments, with an energy resolution of

�E=E = 0:18=
q
E(GeV) + 0:009. The �ne segmentation of the ECAL is relevant for

photon identi�cation and �0 reconstruction. The HCAL is formed by 1.2 m of iron,

composing the magnet return yoke, interleaved with 23 layers of streamer tubes, while

the muon chambers consist of four layers of streamer tubes.

Charged particle (electron, muon, hadron) identi�cation is performed with a likelihood

method using the combined information of all subdetectors [21], while photons are

reconstructed from ECAL clusters [22].

4 Data selection

The data selection is aimed at introducing the smallest possible bias towards lower values

for the determination of the upper limit. Since at LEP the separation of �+�� events from

other processes is relatively easy, the main concern is the rejection of background from

misidenti�ed tau decays. The topology of the background which lowers the neutrino mass

limit is the one with a true �nal state multiplicity lower than the observed one as, in this

case, the reconstructed values of the hadronic mass and energy are systematically higher

than the true ones. The event selection has been designed to reduce such contamination

to a negligible level. A moderate background from tau decays with multiplicities higher

than the observed one has been tolerated whenever the loss of e�ciency implied by the

full background rejection was judged to be too large.

The analyses presented here are based on the data collected by ALEPH from 1991

to 1995 in the proximity of the Z resonance. The events were registered by means of

a redundant trigger system with e�ciency very close to 100%. Subsequently they were

�ltered o�ine with the standard ALEPH �+�� selection [23] which retains 93:2% of the

� pairs inside the geometrical acceptance of 84:2%. The contamination of this selection

from q�q events amounts to 0:25%.

The selected events were divided into hemispheres by a plane perpendicular to the

thrust axis. Each hemisphere was classi�ed on the basis of the number of charged

particles, reconstructed �0's, and unpaired (residual) photons. Charged particles are

de�ned as good if they have at least 100 MeV=c momentum, at least four TPC hits, polar

angle j cos �j < 0:95, and originate from a 10 cm long, 1 cm wide cylinder centred at the

nominal beam interaction point. Photons are de�ned as good if they survive a cut on

a likelihood estimator, described in [24], which takes into account the characteristics of

the shower in the ECAL. Neutral pions are de�ned as good if they survive a cut on a

likelihood estimator, also described in [24], based on the previous photon estimator and

on the quality of a �t constraining the invariant mass of the two daughter photons. In

contrast to the analysis in [24], events with a �0 candidate in which the two daughter

photons were not resolved but recognised from the ECAL cluster shape were rejected.
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2�� �+ �� 3�� 2�+ �� 3�� 2�+ �0 ��

Selection e�ciency 49.0 24.7 7.0

Lower Multiplicity 0.1 0.3 0.3

� Background Higher Multiplicity 6.4 7.1 -

Nuclear Interactions 0.2 0.2 0.3

q�q Background 0.3 0.1 0.1

Table 1: Selection e�ciencies and contaminations (in %). The background for �� !
3�� 2�+ (�0) �� refers to the whole (mh; Eh) plane while for �

� ! 2�� �+ �� is evaluated

in the �tted region only.

Decays with three (�ve) good charged tracks, no other charged tracks, no good �0

and no good residual photons were classi�ed as �� ! 2���+�� (�� ! 3�� 2�+ �� )

candidates. Decays with �ve good charged tracks, no other charged tracks, one good �0

and no residual photons were classi�ed as �� ! 3��2�+�0�� . Decays with one or more

identi�ed electrons or with a pair of tracks compatible with a photon converting inside

the tracking volume were rejected. From the four-vectors of the charged tracks and of

the reconstructed �0 the invariant mass, mh, and the total energy, Eh, were computed

assuming that all particles are pions, so that tau decays involving kaons are reconstructed

with slightly smaller invariant mass and energy. No attempt to identify kaons is made.

Additional cuts are applied to increase the purity of the selected sample. The sum

of the absolute values of the impact parameters of the charged tracks is required to be

less than 0:8 cm in the �ve-prong mode and less than 0:6 cm in the three-prong mode;

the recoiling hemisphere is required to have fewer than four charged tracks and a total

invariant mass, built from both charged particles and photon candidates, smaller than

the tau mass. Finally the total electric charge of the event is required to be null or �1.
Due to the large number of candidates the selection and the �t in the �� ! 2�� �+ ��

channel are restricted to the region of the (Eh; mh) plane 0:89 < Eh=Ebeam < 1:07 and

0:76 < mh < 1:83 GeV=c2. The �tted region is shown in Fig. 3. The size of region

has been chosen large enough to make the limit on the tau neutrino mass insensitive to

variation of the region boundaries. All the �gures concerning the �� ! 2�� �+ �� channel

given in the following refer the �tted region only.

The e�ciency and the contamination for the �� ! 2�� �+ �� , �
� ! 3�� 2�+ ��

and �� ! 3�� 2�+ �0 �� channels are reported in Table 1. The lower e�ciency of the

last mode is caused by stringent cuts on �0 reconstruction which are needed to suppress

the cross-channel contamination from �� ! 3�� 2�+ �� . The background from tau

decays has been divided into three categories: events from modes with true �nal state

multiplicity higher than that of the signal, modes with lower multiplicity and events

where the multiplicity is modi�ed because one or more charged particles interacted with

the material of the detector. The e�ciencies and the backgrounds have been estimated

by reconstructing events generated with the KORALZ [25] program with a GEANT [26]
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based simulation of the ALEPH detector. The variation of the e�ciencies in the (Eh; mh)

plane is discussed in section 6.3.

A total of 2939 �� ! 2�� �+ �� candidates and 52 (3) �� ! 3�� 2�+ (�0) ��
candidates are selected in the data in good agreement with the expectations of 2908

�� ! 2�� �+ �� and 50 (4) �� ! 3�� 2�+ (�0) �� decays based on the PDG [5] average

branching fractions. The distributions in the upper part of the (Eh; mh) plane are shown

in Fig. 3 and Fig. 4.

5 The Likelihood Function

The likelihood equations for the �� ! 3�� 2�+ (�0) �� and the �� ! 2�� �+ �� modes

have been treated di�erently. In the �rst case an unbinned likelihood �t was performed

while in the second, due to the large number of events, the (Eh; mh) plane has been

divided into bins. The size of the bins has been chosen similar to the energy and mass

resolutions in most of the (mh; Eh) plane, and decreased in the region of the plane more

sensitive to a massive neutrino. Several other binnings have been used to check that the

�t does not depend on a particular choice. In each bin the Poisson probability to �nd the

observed number of events has been calculated. In both �ts the probability density is:

P(m�) =
1

�
� d2�

dEhdmh


 G(Ebeam; E� )
R(mh; Eh; �; �mh
; �Eh

; :::)
 "(mh; Eh)

L =
NY

i

Pi(m�)

where G(Ebeam; E� ) is the radiation kernel, R(mh; Eh; �; �mh
; �Eh

; :::) and "(mh; Eh) are

the detector resolution and the selection e�ciency of each mode respectively. The

expressions used forR are described in section 6.2. Events outside the kinematic boundary

contribute to the likelihood only through the detector resolution or the initial/�nal state

radiation kernel; hence the upper limit derived from the �t is not sensitive to events with

hadronic energies or masses which are many standard deviations away from the kinematic

boundary.

The �ts to the 2939 �� ! 2�� �+ �� and to the 55 �� ! 3�� 2�+ (�0) �� events

give 95% CL upper limits on the tau neutrino mass of 22:3 MeV=c2 and 21:5 MeV=c2

respectively. The two likelihoods are shown in Fig. 5 and Fig. 6. The 95% con�dence

level is taken as the point where the logarithm of the likelihood is 1.92 lower than its

maximum.

A possible bias in the �t procedure was investigated by �tting Monte Carlo samples

with massive neutrinos. In all cases the �ts were correctly sensitive to the input neutrino

mass. For the �� ! 2�� �+ �� channel the likelihood distributions of three samples

with 0; 20 and 40 MeV=c2 input neutrino mass were �tted �nding preferred values of

the neutrino mass and 95% CL intervals of 2:4+10:6
�2:4 MeV=c2, 17:7+20:0

�17:7 MeV=c2 and

44:5+11:6
�23:6 MeV=c2 respectively. The samples correspond to about 3.5, 1 and 1 times the
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data statistics; the minus log-likelihood distributions for the last two samples are shown

in Fig. 7. For the �� ! 3�� 2�+ �� channel, two samples corresponding to three times

the data statistics, with input masses of 30 and 60 MeV=c2 were �tted giving neutrino

masses of 34:2+23:5
�34:2 MeV=c2 and 69:1+19:6

�13:6 MeV=c2 respectively (again the errors refer to

95 % CL intervals).

6 Systematic Uncertainties

Several sources of systematic errors have been considered. For each source a new �t was

performed, having changed in the likelihood the appropriate quantity by one standard

deviation. The di�erence between the value of the 95% CL upper limit on m�� obtained

from the original �t and the one with the modi�ed likelihood has been taken as the

systematic error due to that source. All the variations were then summed in quadrature

to give the global systematic error which was added linearly to the result of the original

�t. In principle the unmodi�ed likelihood had to be convolved with the error probability

density function of each source of error [27]. Since the number of error sources is very

large and a�ects the likelihood through complicated expressions, the standard procedure

is numerically clumsy. However, the procedure used in this work is conservative, in the

sense that each individual one-sigma shift produces a variation of the upper limit on the

tau neutrino mass larger than the one obtained convolving the likelihood expression with

an additional gaussian error probability density function.

The sources of systematics considered belong to four major categories: tau properties,

such as tau mass, energy and polarisation; detector e�ects, such as absolute momentum

calibration and resolution; selection e�ciency and background contamination; and tau

decay modelling. The corresponding variations of the neutrino mass limit are reported in

Table 2.

6.1 Tau properties

The values of the tau mass and polarisation have been varied according to the uncertainties

quoted in [36] and [37] respectively. The tau energy is assumed to be equal to the beam

energy on which the error given in [38] was assumed. The impact of these systematics on

the tau neutrino mass limit is small.

6.2 Detector e�ects

Detector e�ects concern mainly two aspects: the parametrisation of the resolution function

R and the calibration of the detector.

The form of R has been determined di�erently for the �� ! 3�� 2�+ (�0) �� and

the �� ! 2�� �+ �� decays. In the �rst case each event de�ned a precise kinematic

con�guration which was used as input to generate many thousands of identical Monte

Carlo events. These events were then passed through the full detector simulation and
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reconstructed. This procedure predicts a Gaussian shape for R, with a resolution in mh

about 1.4 times larger than that computed directly from the tracking error matrix, a

consequence of the very special topology of these events. Since the value of the invariant

mass and energy are correlated, the function used to describe R is a two-dimensional

Gaussian depending on three parameters (�m; �E and �). Small non-Gaussian tails were

also found and have been taken into account in the expression of R up to �10�m;E. These

tails originate from hard scattering in the subdetector walls, incorrect hit assignments in

the vertex detector and in the inner drift chamber.

In the case of �� ! 2�� �+ �� there are too many candidates to apply the same

procedure. Therefore the expression for R was derived as a function of mh and Eh in each

bin of the (mh; Eh) plane. SinceR is a function of the pion four-momenta ~pi this procedure

averages di�erent kinematic con�gurations giving the same values of mh and Eh. However

R is well described by the sum of two (two-dimensional) Gaussians with the addition of a

7� at tail. The dependence on mh and Eh of each parameter entering the expression for

R has been studied and taken into account. For both modes di�erent parametrisations

of R have been tried by varying the extent and the shape of the non-Gaussian tails.

For completeness, several events lying near the kinematic boundary have been specially

investigated by using the duplication technique used for the �� ! 3�� 2�+ (�0) �� events.

The mean values and the resolutions entering the expressions forR have been varied to

take into account possible calibration errors. For the �nal states with only charged pions

the correct momentum calibration is important as both the total energy and the invariant

mass are computed from the measured momenta. The calibration of the absolute value

of the momentum uses a parametrization of the deviations from the measured values of

the form:

� = j ~p� ~p0 j = k1 � j ~p j+ q � k2 � j ~p j2
where ~p is the measured momentum, ~p0 the true momentum, q the electric charge and

k1 and k2 two constants related to distortions in the magnetic �eld and to sagitta errors

respectively. The two e�ects have been disentangled by measuring quantities proportional

to the sum or the di�erence of momenta of oppositely charged particles with similar

momenta.

The value of k1 = (2� 3)� 10�4 was derived from the measurement of the D0 mass in

D0 ! K��+ decays. For these decays, the error on the invariant mass of the kaon-pion

system is dominated by the error on j~pKj � j~p�j, which in turn is dominated by the k1 term.
The measured mass of D0 candidates is shown in Fig. 8. The spectrum is �tted with a

Gaussian for signal events and a polynomial for the background, as explained in [35]. The

measured value is compatible with the current world average [5], with a statistical error

smaller than 0:5 MeV=c2. The upper limit for k1 was used in computing the systematics.

The value of k2 = (4 � 5) � 10�6GeV=c�1 was derived from e+e� ! �+�� events from

the di�erence of muon momenta. Also in this case no net e�ect was observed. For typical

momenta of 10-15 GeV=c, the possible e�ects on mh and Eh due to the k2 term are much

smaller than those related to k1.

The momentum resolution was also determined from D0 ! K��+ decays by

comparing the width of the D0 peak in the data, �DTD0 , with the one in the Monte Carlo
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simulation, �MC
D0 , which agreed at the 10% level. A possible dependence of k1 and of

�DTD0 =�MC
D0 on the momentum of the D0, the angle between the pion and the kaon, the

polar angle of the D0 and the data taking period were investigated. No sizeable e�ect

was observed.

The mass of the hadronic system is also sensitive to possible miscalibration of the

angular separation between the charged tracks. This e�ect is much less important in

D0 ! K��+ decays since the opening angle between the kaon and the pion is large with

respect to the angular resolution of the tracking system. In order to determine the mh

calibration and resolution, the following decays have been used: D0 ! K��+���+ (for

the �� ! 3�� 2�+ �� mode) and D+ ! K��+�+ (for the �� ! 2�� �+ �� mode).

In these decays the topology of the hadronic �nal state is very similar to that of the

corresponding tau mode. The correlation between Eh and mh has been taken into account

in the computation of the systematics from the above e�ects. The ECAL calibration for

�0 in �� ! 3�� 2�+ �0 �� events was deduced from the value of the �(770) mass measured

in �� ! �� �� decays.

6.3 Selection e�ciency and background simulation

The selection criteria for both modes imply very loose kinematic requirements, so that

the selection e�ciencies are expected to be independent of mh and Eh. The e�ciencies

were mapped in the plane (mh; Eh) using simulated data. In the case of �� ! 2�� �+ ��
the e�ciency depends linearly on mh alone. This e�ect arises because at larger values of

mh the mean opening angle between the daughter tracks is larger and hence two-track

confusion is reduced. In the �� ! 3�� 2�+ (�0) �� mode the daughter tracks are more

separated than in the �� ! 2�� �+ �� mode and no dependence on either mass or energy

is observed. The systematic error arising from the dependence of the selection e�ciency

upon mh and Eh has been evaluated by conservatively varying the e�ciency slopes by

�10%. The e�ect of the size of the �tted box region has been investigated by varying the

boundaries by 20 MeV=c2 in mass and by 1 GeV in energy. The corresponding variations

of the upper limit on the neutrino mass are small.

The background from non-� events has been investigated on data by inverting some of

the hemisphere selection cuts. For example, non-� hemispheres in the �ve- or three-prong

topology are selected requiring in the recoiling hemisphere the invariant mass to be greater

than the tau mass and the number of tracks to be greater than �ve. Similarly �ve- and

three-prong selected hemispheres with masses much greater than the tau mass provide

an (almost) independent tag for non-� recoiling hemispheres, so that the multiplicity and

the invariant mass distribution of the background are measured. The number of non-�

background events is computed combining this information under the assumption that

correlations between the hemispheres are negligible. The estimated background is found

in good agreement with the prediction from fully simulated hadronic and four-fermion

events and has a negligible e�ect on the determination of the neutrino mass limit.

In the �� ! 2�� �+ �� analysis all sources of background from other tau decays

which could mimic a massless neutrino have been reduced to a negligible level. Therefore

9



the knowledge of the absolute normalisation and the shape of this background has no

e�ect on the determination of m�� . The uncertainty on the other sources of background

(mainly �� ! ���+���0�� and �� ! K��+���� ) has been introduced by varying the

global contribution by �10%. In the �� ! 3�� 2�+ (�0) �� analysis the probability

that a �� ! 3�� 2�+ �0 �� candidate is in fact a �� ! 3�� 2�+ �� event is 7%. This

has been taken into account by introducing the �� ! 3�� 2�+ �0 �� candidates as

�� ! 3�� 2�+ �� in the likelihood equations with a 7% statistical weight. The other

sources of background are negligible.

6.4 Spectral Functions

The decay �� ! 2�� �+ �� is described using the model of K�uhn and Santamaria [28],

inspired by the asymptotic limit (q2 ! 0) of chiral theory. This model is implemented in

the KORALZ [25] program. In its framework the scalar term entering the expression of

M is neglected, since it is suppressed by PCAC. The vector term is fully dominated by

the a1(1260) resonance, which decays according to the chain a
�

1 ! �0(�0 0)�� ! �+����.

The hadronic current J
�
had is written:

J
�
had =< �(q1) �(q2) �(q3)jJ�had(0)j0 >= �i

2
p
2

3f�
BWa1(q

2) [B�(s1) � V �
1 +B�(s2) � V �

2 ]

where f� is the pion decay constant, qj (j = 1; 2) are the four-momenta of the two like-sign

pions, q3 is the four-momentum of the unlike-sign pion, sj = (qj + q3)
2, V

�
j and B� are

given by:

V
�
j = q

�
j � q

�
3 � q�

q�(qj�q3)

q2
B�(sj) =

BW�(770)(Sj )
+� BW�(1450)(sj)

1+�

and BWx(sj) are the Breit-Wigner functions with energy-dependent widths. The values

of ma1 ;�a1 and � are �tted to the ARGUS data [28].

This approach has been re�ned by several authors who consider the distortions to the

a1 propagator due to the e�ect of the K
�(892) �K threshold [29], by introducing a pseudo-

scalar �(1300) resonance [30] or a non-resonant term [31] in the decay amplitude. The

inclusion of a �(1300) term considered in [30] would introduce an additional contribution

to the total width �3� of about 5%. The scalar part of the spectral function peaks at

q2 ' m2
�(1300), becoming almost constant after q2 ' 2:2 (GeV=c2)2; its contribution has

been recently bound by OPAL [32] to be smaller than 0:84% at 95 % CL. All these

improvements have a minor e�ect on the �� ! 2�� �+ �� �t because they distort

the invariant mass distribution slightly. Only the presence of a narrow resonance close

to the mass end-point would have a signi�cant e�ect on the m�� limit determination.

However, the impact of this distortion in the likelihood �t is reduced by the fact

that the sensitivity to the tau neutrino mass derives mainly from the distribution of

the energy rather than that of the mass. The systematic error due to the use of

the K�uhn-Santamaria model has been evaluated by varying, in a correlated way, the

model parameters in the following ranges: �ma1 = �20 MeV=c2, ��a1 = �60 MeV=c2,
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�m� = �5 MeV=c2, ��� = �10 MeV=c2, �m�
0 = �100 MeV=c2 and ���0 = �100 MeV=c2.

The �� ! 2�� �+ �� data mass spectrum is shown in Fig. 9 together with the K�uhn-

Santamaria model prediction for a massless neutrino.

The situation for the �� ! 3�� 2�+ (�0) �� modes is di�erent. There are very few

studies of the spectral functions, mainly because the number of observed candidates is

extremely small. Experimentally it is seen that the invariant mass of the hadronic system

peaks at high values of q2 and seems unlikely to be dominated by a single resonance. In

the published works by ARGUS, CLEO and OPAL [7, 8, 33] a crude model with no scalar

term and pure phase space, i.e. uniform spectral functions, was used. The description

can be improved by the addition of a spin-one wave. Some studies along these lines have

been performed by assuming a �� ! ������ decay as in [34], or either a �
� ! a�1 �

+����
or a �� ! �0�+������ decay as in the previous ALEPH analysis [10]. In all cases

the inclusion of the intermediate resonances has the e�ect of shifting the shape of the

spectral function to higher q2. In Fig. 10 the invariant mass distribution of the �ve-prong

candidates is compared with those predicted by a pure phase space model and by a model

with an intermediate a1�� state, which seems to be preferred. The numerical e�ects on

the ALEPH bound induced by the use of either model were found to be negligible [10].

6.5 Total Systematic Errors

For each source of systematic error the corresponding variation of the neutrino mass

limit is reported in Table 2. The major e�ects result from energy and mass calibration,

resolution and from the modelling of the resolution functions. The dominant sources of

systematics for the �� ! 2�� �+ �� mode are the energy calibration and resolution.

The sensitivity to energy miscalibration in this channel is much larger than for the

�� ! 3�� 2�+ (�0) �� one because the quadratic dependence on m�� of the energy

endpoint is much more important at lower q2.

The variations for both three- and �ve-prong �nal states are separately summed in

quadrature to obtain the two total systematic errors of 4.2 and 0.8 MeV=c2 respectively.

These errors are summed linearly to the measured mass limits to obtain 95% CL upper

limits of 25:7 MeV=c2 and 23:1 MeV=c2 for the three-prong and �ve-prong modes

respectively. Interestingly the �� ! 2�� �+ �� mode is competitive with the �� !
3�� 2�+ (�0) �� mode thanks to the larger number of candidates which compensate for

the less favourable distribution in the (Eh; mh) plane. The two limits are complementary

since the limit derived from the �� ! 2�� �+ �� mode is more sensitive to the energy

distribution and the others to the mass distribution of the hadronic system.

7 Combined Results

The combined upper limit has been determined from a new likelihood Lcomb, constructed

as the product of the individual �� ! 2�� �+ �� and �� ! 3�� 2�+ (�0) �� likelihoods

L3� and L5(6)�. This likelihood limits m�� below 16:6 MeV=c2 at 95% CL.
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Source Variation of m� limit

(MeV=c2)

�� ! 3�� 2�+ (�0) �� �� ! 2�� �+ �� combined

� mass 0:2 0:3 0:2

beam energy < 0:1 0:1 0:2

� polarisation < 0:1 0:1 0:1

slope of selection e�ciency < 0:1 0:1 0:1

� background 0:3 0:1 0:2

energy-mass calibration 0:3 2:6 0:9

energy-mass resolution 0:2 3:1 1:1

spectral function < 0:1 0:3 0:1

modelling of resolution 0:6 1:1 0:6

total 0:8 4:2 1:6

Table 2: Systematic variation of the 95% CL upper limit on m� (in MeV=c2) for the

individual and combined �� ! 3�� 2�+ (�0) �� and �� ! 2�� �+ �� likelihoods.

The systematics on the combined upper limit were determined using L3�, L5(6)� and

the two sets of modi�ed likelihoods L3�
�i
, L5(6)�

�i
used for the systematics on the individual

upper limits. For each source of error i a modi�ed combined likelihood Lcomb
�i

was derived

by multiplying the two corresponding likelihoods, L3�
�i

and L5(6)�
�i

, and a new 95% CL

upper limit computed. The di�erence between this limit and the one computed with

Lcomb was taken as the systematic error deriving from the i � th source. When the

error source a�ected only one of the two modes the likelihood of the other mode used

in constructing Lcomb
�i

was the unmodi�ed one. For example in the case of the three

prong spectral function, the combined modi�ed likelihood is Lcomb
�i

= L3�
�i
� L5(6)�. Table 2

summarises the variation of the two limits and the variation of the combined limit, for

each source of error. In this way a total systematic error of 1:6 MeV=c2 and a �nal 95%

CL limit of 18:2 MeV=c2 were obtained.

Recently the DELPHI Collaboration has suggested the existence of a hitherto unseen

decay mode of the tau in a radial excitation of the a1 [39]. In that analysis this a
0

resonance

is assigned a mass of 1700 MeV=c2 and a width of 300 MeV. Its contribution is �tted to

be (2:3�0:6) %. If a 2.5 % of this resonance is introduced in the �t of the �� ! 2�� �+ ��
mode the agreement between the model and the data deteriorates giving a �2=n:d:f: of

1077/999 with respect to the value of 1059/999 obtained with the KS spectrum alone. If

this resonance were considered in the �t the limit from the �� ! 2�� �+ �� sample would

increase by 6 MeV=c2 and the combined limit would increase from 18.2 to 19.2 MeV=c2.
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8 Conclusions

ALEPH has used the modes �� ! 2�� �+ �� and �� ! 3�� 2�+ (�0) �� to bound the

tau neutrino mass by �tting the distribution of events in the (mh; Eh) plane. An upper

limit of 18:2 MeV=c2 on the tau neutrino mass is obtained at 95% con�dence level. This

result is more stringent than previous determinations but it is not su�cient to close the

window for a massive tau neutrino shown in Fig. 1.
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Figure 1: Bounds on m�� derived from cosmology for a stable or unstable tau neutrino

(solid lines). The limits coming from the non-observation of lepton number violating

decay (dotted line) and from the direct determination given in this paper (dashed line)

are superimposed. The plot is based on the calculation described in Ref. [11]. The gray

area shows the allowed region for an unstable neutrino.
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Figure 2: Two hypothetical events with typical �� ! 2�� �+ �� error ellipses. The lines

indicate the allowed kinematic region for di�erent values of the tau neutrino mass.
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Figure 3: Distribution in the upper part of the (mh; Eh) plane for �� ! 2�� �+ ��
candidates in the data. The three ellipses at mh = 0:6 GeV=c2 show the typical size of

the resolution �rst Gaussian, second Gaussian and the tail. The continuous lines bound

the allowed region for a massless neutrino; the dashed box shows the region used in the

�t.
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Figure 4: Distribution in the upper part of the (mh; Eh) plane for �
� ! 3�� 2�+ (�0) ��

candidates in the data. The grey area is the allowed region for a massless neutrino.

The borderline of the allowed region for a 23 MeV=c2 neutrino is also drawn. The only

�� ! 3�� 2�+ �0 �� event in the plot is the one with the largest hadronic energy.
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Figure 5: Minus log-likelihood of the �� ! 2�� �+ �� data �t as a function of the tau

neutrino mass, normalised at m� = 0.

ℵ

Figure 6: Minus log-likelihood of the �� ! 3�� 2�+ (�0) �� data �t as a function of the

tau neutrino mass, normalised at m� = 0.
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Figure 7: Minus log-likelihood of the �� ! 2�� �+ �� �t as a function of the tau neutrino

mass normalised at m� = 0 for two Monte Carlo samples with input neutrino masses of

20 and 40 MeV=c2. Both samples are statistically equivalent to the data.

Figure 8: Invariant mass of D0 ! K��+ data candidates. The result of a �t is

superimposed.
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Figure 9: Distribution of �� ! 2�� �+ �� invariant mass for data (dots) and the K�uhn

and Santamaria model (continuous line) for a massless tau neutrino.
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•

Figure 10: Distribution of �� ! 3�� 2�+ �� invariant mass for data (dots) and two

models of decay. The continuous line indicates the pure phase space model while the

�lled area is obtained by means of an intermediate a1�� state.
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