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A BERT-based Two-Stage Model for Chinese Chengyu
Recommendation

MINGHUANTAN, JING JIANG, and BING TIANDAI, SingaporeManagement University, Singapore

In Chinese, Chengyu are fixed phrases consisting of four characters. As a type of idioms, their meanings
usually cannot be derived from their component characters. In this paper, we study the task of recommending
a Chengyu given a textual context. Observing some of the limitations with existing work, we propose a
two-stage model, where during the first stage we re-train a Chinese BERT model by masking out Chengyu
from a large Chinese corpus with a wide coverage of Chengyu. During the second stage, we fine-tune the
retrained, Chengyu-oriented BERT on a specific Chengyu recommendation dataset. We evaluate this method
on ChID and CCT datasets and find that it can achieve the state of the art on both datasets. Ablation studies
show that both stages of training are critical for the performance gain.

CCS Concepts: • Computing methodologies→ Natural language processing.

Additional Key Words and Phrases: question answering, chengyu recommendation, idiom understanding

1 INTRODUCTION
Chengyu (成语) in Chinese are fixed phrases with idiomatic meanings. They usually consist
of four characters and their meanings often cannot be directly derived from their component
characters [Wang and Yu 2010]. For example, the Chengyu “虎头蛇尾” means “to start strong but
finish weak.” However, the literal meanings of the four Chinese characters are “tiger,” “head,” “snake”
and “tail.” Most Chengyu originated from ancient literature like Chinese Classics, which may be
hard to grasp even for native speakers. But when properly used, Chengyu can make the language
concise and elegant [Liu et al. 2019b], which is why they are being widely used in both formal
writings and colloquial conversations. Researchers have shown that it is important for Chinese
language processing methods to consider Chengyu when performing various NLP tasks such as
computer-assisted essay writing [Liu et al. 2019b] and machine translation [Ho et al. 2014; Shao
et al. 2018b].
In this paper we study how to train neural network models to “understand” Chengyu. While

there are different ways to evaluate whether a model “understands” Chengyu, here we focus on
the task of Chengyu recommendation, that is, given a context such as a paragraph of text with
a missing word in the middle, the machine needs to recommend a Chengyu to fill in the blank.
Table 1 shows an example of the Chengyu recommendation task. We choose this task because it is
very similar to how we would test a human’s understanding of Chengyu.

Despite the importance of Chengyu in Chinese language understanding, there have been only a
few pieces of work on Chengyu recommendation using neural models [Jiang et al. 2018; Liu et al.
2019b; Zheng et al. 2019]. Existing work falls under two settings. The first setting is to recommend
a Chengyu given a context without any candidate answers. In this case essentially all Chinese
Chengyu are candidates. We refer to this setting as open-ended Chengyu recommendation. Liu
et al. [2019b] studied this setting and proposed an encoder-decoder model that generates the
answer Chengyu character by character. However, because Chengyu’s meanings are oftentimes
not compositional from their component characters, this method may generate characters that
cannot be combined into a meaningful Chengyu and thus affect the performance. The second
setting assumes that a relatively small set of candidate Chengyu is given, from which the machine

Authors’ address: Minghuan Tan, mhtan.2017@phdcs.smu.edu.sg; Jing Jiang, jingjiang@smu.edu.sg; Bing Tian Dai, btdai@
smu.edu.sg, Singapore Management University, School of Computing and Information Systems, 80 Stamford Road, Singapore,
Singapore, Singapore, 178902.
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1:2 Minghuan Tan, Jing Jiang, and Bing Tian Dai

Passage:改建过程中，随时可以添加一些经典的内置储藏柜。用这样的柜子存放香料和调
味品，使用金属罐来增添老式情调，完全不会有 的感觉。
During the renovation process, you can add some classic built-in storage cabinets at any time. With
such a cabinet to store spices and condiments, together with metal jars to create an old-fashioned
atmosphere, you will not feel at all.

Candidates:
◦深明大义 deep and righteous ◦前功尽弃 all one’s previous efforts wasted
◦天旋地转 very dizzy ◦七零八碎 bits and pieces
◦错落有致 well-arranged  杂乱无章 disorganized
◦井然有序 in good order

Table 1. An example passage with a blank to be filled, together with the candidate answers. The answer
beside the solid circle is the ground truth answer.

needs to pick the best answer. Table 1 is such an example. We refer to this setting as multiple-choice
Chengyu recommendation. Jiang et al. [2018] and Zheng et al. [2019] both formulated the task in
this way and trained the recommendation model to separate the ground truth Chengyu from the
incorrect candidate answers. However, this training objective ignores the fact that other Chengyu
not in the candidate set are essentially also negative examples and not utilizing these negative
examples may potentially lose much useful information.
In this paper, we focus on multiple-choice Chengyu recommendation, mainly because the two

benchmark datasets we have, ChID [Zheng et al. 2019] and CCT [Jiang et al. 2018], both define
the task as multiple-choice recommendation. To address the aforementioned limitations with
existing work, we first treat each Chengyu as a single token rather than four separate characters.
We further hypothesize that considering all other Chengyu not in the candidate set as negative
examples may help multiple-choice recommendations. Hence, we propose a two-stage Chengyu
recommendation model. Our model consists of a pre-training stage and a fine-tuning stage. The
pre-training stage produces a Chengyu-oriented Chinese BERT model trained on open-ended
Chengyu recommendation task. The fine-tuning stage further fine-tunes the pre-trained BERT
on multiple-choice Chengyu recommendation data in order to optimize it for multiple-choice
recommendation.

Another limitation with existing studies is that the corpora they used do not have a high coverage
of Chengyu. The ChID dataset, for example, covers 3,848 Chengyu. However, Chinese Chengyu
dictionaries typically include around 20,000 Chengyu entries. To address this limitation, we collect
a large corpus of Chinese text covering a much wider range of Chengyu and use this corpus for the
pre-training stage.

We conduct experiments first on the ChID dataset to evaluate our two-stage model for multiple-
choice Chengyu recommendation. We find that the two-stage model works very well, achieving
state-of-the-art performance and substantially outperforming previous methods on the official
release of ChID. We also conduct ablation studies to test the effectiveness of pre-training and fine-
tuning separately, and we find that both stages of training are critical for the performance gain. We
further test the model on a ChID competition dataset and CCT, another Chengyu recommendation
dataset, and find that our model also works well on both, outperforming the state of the art. We
further show that the Chengyu embeddings produced by pre-training can also be used for Chengyu
emotion prediction and achieve decent performance.
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2 RELATEDWORK
2.1 Multiword Expressions and Idiom Recognition
Multiword Expressions (MWEs) are defined as “idiosyncratic interpretations that cross word
boundaries (or spaces)" or simply words-with-spaces [Sag et al. 2002]. Discrimination between
compositional and non-compositional MWEs [Katz and Giesbrecht 2006] has been an important
research topic as idiomatic uses of non-compositional MWEs can affect the semantics of the text.
Recognition of idioms as a special kind of MWEs with non-compositionality has important

values in sentence understanding and failures of recognition may lead to mistranslation between
languages [Hashimoto et al. 2006; Lin 1999]. Statistical approaches [Hashimoto et al. 2006; Katz
and Giesbrecht 2006] use lexical knowledge and linguistic properties to create either token-level or
phrase-level classifiers to identify idioms. However, manually annotated data are required given
additional challenges of ambiguity and fixedness.
In this work, we focus on a special kind of idiom, i.e., Chengyu in Chinese, which has high

fixedness and low ambiguity. The recognition of Chengyu is straightforward since they almost
always consist of four consecutive characters and can be identified from a Chengyu dictionary.

2.2 Chinese Chengyu Recommendation
Chinese Chengyu Recommendation (CCR) has been addressed in recent years by [Jiang et al. 2018;
Liu et al. 2019b]. Jiang et al. [2018] formulate the CCR task as a cloze-test via incorporation of two
BiLSTM networks to encode the definition of Chengyu and the context sentence separately followed
by computing bilinear attentions following [Chen et al. 2016]. Liu et al. [2019b] reformulate the
CCR problem as context-to-idiom machine translation problem by leveraging the attention-based
encoder-decoder framework under the assumption that Chengyu are constructed from a pseudo
language with positional vocabularies. Zheng et al. [2019] constructs the first large scale Chengyu
cloze-test dataset ChID and offers strong baselines using Attentive Reader (AR) [Hermann et al.
2015] and Stanford Attentive Reader (SAR) [Chen et al. 2016].

Different from all the previous works, we aim at including as many Chengyu as possible and our
pretraining task is open-ended Chengyu recommendation, which is more challenging.

2.3 Pre-training of Language Models
In the past several years, pre-trained language models have been shown to be highly effective
in many NLP tasks. LM-LSTMs [Dai and Le 2015] is the first language model that adopts self-
supervised pre-training using millions of in-domain documents. ULMFiT [Howard and Ruder 2018]
improves language modeling transfer learning robustness and efficiency through discriminative
fine-tuning, slanted triangular learning rate and gradual unfreezing. ELMO [Peters et al. 2018]
pre-trains a bidirectional language model (biLM) offering high quality deep context-dependent
representations.
With the Transformer [Radford et al. 2018; Vaswani et al. 2017] drawing more attentions,

BERT [Devlin et al. 2019] proposes a two stage framework constructed over a multi-layer bidirec-
tional Transformer. During pre-training, a large amount of data is fed into the model to be trained
using self-supervised pre-training tasks. During fine-tuning, the model will be supervised by the
labels of downstream tasks. BERT adopts two pre-training tasks, namely, the Masked Language
Model (MLM) task and the Next Sentence Prediction (NSP) task.
There has been much work following BERT that modifies existing pre-training objectives and

designs new pre-training tasks. Basically, these modifications can be grouped into masking-based
approach and structural-based approach. The WWM method is masking-based since it is trying to
fix masking where whole word is segmented into word pieces. Similar masking-based approaches
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Fig. 1. Left: The network structure used for pre-training. Right: The network structure used for fine-tuning.

include masking random contiguous spans in SpanBERT [Joshi et al. 2020] and dynamic masking
proposed in RoBERTa [Liu et al. 2019a]. The NSP task is a structural prediction task that a binary
classification for predicting whether two segments follow each either in the original text. With
further ablation study, NSP is either removed [Joshi et al. 2020; Yang et al. 2019] due to inconsistent
improvement or restricted to use sentences from a single document [Liu et al. 2019a]. More
structure-aware pre-training tasks are proposed by ERNIE 2.0 [Sun et al. 2020], StructBERT [Wang
et al. 2020] and ALBERT [Lan et al. 2020]. ERNIE 2.0 uses Token-Document Relation Prediction
and Sentence Reordering. StructBERT strengthens BERT with both word structural objective and
sentence structural objective.
Chinese is an ideographic language with no word delimiter between words in written Chinese

sentences [Li and Yuan 1998]. Therefore, BERT variations with Chinese compatibility are also based
on new pre-training tasks. Chinese-BERT-wwm [Cui et al. 2019a] uses Chinese Word Segmenta-
tion (CWS) tools to identify word boundaries and mask a whole word explicitly. ERNIE [Zhang
et al. 2019] incorporates a multi-stage knowledge masking strategy which adds word-level mask,
phrase-level mask and entity-level mask, an extension to WWM.
In this work, We pre-train an Chengyu-oriented BERT based on Chinese-BERT-wwm as it has

minimum difference from BERT. Given the fact that CWS tools can handle only a small percentage
of Chengyu, we believe masking in Chinese-BERT-wwm is still sub-optimal. We therefore propose
new pre-training tasks by isolating each Chengyu as a token with external embeddings and using a
large Chengyu corpus to perform pre-training.

3 TWO-STAGE CHENGYU RECOMMENDATION
In this section, we first give the formal definition of the Chengyu recommendation task. We then
present our two-stage model.

3.1 Task Definition
The Chinese Chengyu recommendation task can be formally defined as follows. We are given a
passage 𝑃 , which we represent as a sequence of tokens (𝑤1,𝑤2, . . . , [MASK], . . . ,𝑤𝑛). Here each
token is a single Chinese character, except for the special “blank” token [MASK], which represents
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the missing Chinese Chengyu that we need to recommend. We are also given a set of 𝐾 candidate
Chinese Chengyu denoted asA = {𝑎1, 𝑎2, . . . , 𝑎𝐾 }. Our goal is to select the best option 𝑎∗ ∈ A that
fits the context in 𝑃 . We have shown a concrete example in Table 1.
To train a Chengyu recommendation model, we assume that we are given a set of training

examples, where each example is a triplet containing a passage, a candidate set and the ground truth
answer. The training data is denoted as {(𝑃𝑖 ,A𝑖 , 𝑎

∗
𝑖 )}𝑁𝑖=1. We also useV to denote the vocabulary

of all Chinese Chengyu observed in the training data, i.e., V = ∪𝑁𝑖=1A𝑖 .

3.2 Model Overview
The model consists of a pre-training stage and a fine-tuning stage. The pre-training stage uses a
Chinese corpus we have collected that covers a large set of Chengyu to produce a Chengyu-oriented
Chinese BERT model, which we call the Chengyu-BERT.1 The training task for Chengyu-BERT
is a Masked Language Model task where only Chengyu are masked. We can also think of the
training task as essentially open-ended Chengyu recommendation. The fine-tuning stage further
optimizes the pre-trained Chengyu-BERT for multiple-choice Chengyu recommendation, where
the goal is to choose a Chengyu among a small set of candidates given a context. The purpose of
the fine-tuning stage is to learn the subtle differences between a Chengyu and its “near synonyms”,
i.e., other Chengyu which have similar meanings but still cannot be used as substitutes. These
“near synonyms” occur often as candidate answers in multiple-choice Chengyu recommendation
such as in the ChID dataset. We will see later that the two stages share similar network structure
but have some major differences due to the differences between open-ended recommendation and
multiple-choice recommendation.
It is worth noting that an alternative way to use open-ended Chengyu recommendation to

assist multiple-choice recommendation is multitask learning, where the two tasks are jointly (i.e.,
concurrently) rather than sequentially trained. In this paper we do not adopt the multitask learning
approach because of two reasons. First, the unlabeled dataset we use for pre-training the Chengyu-
BERT is very large while the specially prepared multiple-choice recommendation data used for
fine-tuning is relatively small. Therefore, training the two together would lead to an imbalanced
objective function. Second, by separating the training of the two sequentially, the pre-trained
Chengyu-BERT can also be used directly for Chengyu recommendation without fine-tuning or
even for other Chengyu-related tasks such as Chengyu emotion prediction, which we will detail in
Section 4.

3.3 Pre-training Stage
Our pre-training is done on top of Chinese-BERT-wwm [Cui et al. 2019a], which is an improved
version of the original Chinese version of BERT [Devlin et al. 2019]. Chinese-BERT-wwm uses
Whole Word Masking [Devlin et al. 2019] in its Masked Language Model pre-training task, and
is found to work better for a number of NLP tasks [Cui et al. 2019b; Duan et al. 2019; Shao et al.
2018a]. However, Chinese-BERT-wwm is not ideal for Chengyu recommendation, because we find
that only a small percentage (around 1%) of Chengyu in our Chengyu vocabulary is detected as
whole words in Chinese-BERT-wwm. We thus use an extended version (trained with more data) of
Chinese-BERT-wwm called Chinese-BERT-wwm-ext to initialize our model but re-train the model
using a special Masked Language Model task where only Chengyu are masked. This can also be
seen as the open-ended Chengyu recommendation task.

Specifically, we assume that we have a large corpus of unlabeled Chinese text. Let V denote the
Chengyu vocabulary, i.e., the set of all Chengyu found in the corpus. Let 𝑐 = (𝑤1,𝑤2, . . . ,𝑤𝑐 ,𝑤𝑐+1,

1Note that this Chengyu-BERT is not meant to be a generic BERT for any Chinese NLP task.
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𝑤𝑐+2,𝑤𝑐+3, . . . ,𝑤𝑛) denote a context sequence where each 𝑤𝑖 (1 ≤ 𝑖 ≤ 𝑛) is a Chinese character
and (𝑤𝑐 ,𝑤𝑐+1,𝑤𝑐+2,𝑤𝑐+3) forms a Chengyu. We first merge (𝑤𝑐 ,𝑤𝑐+1,𝑤𝑐+2,𝑤𝑐+3) into a single word
𝑣 ∈ V whereV is our Chengyu vocabulary. We then mask 𝑣 with the special token [MASK] and
feed the sequence into an 𝐿-layer BERT. Following standard practice, we prepend [CLS] to the
beginning of the sequence and append [SEP] to the end of the sequence. We also include position
embedding. For segment embedding, we treat the sequence as a single segment.
To evaluate whether a Chengyu is suitable for the given context, ideally we need to match

the Chengyu with the entire sequence of hidden vectors produced by BERT. However, because
in the open-ended recommendation setting we have a large number of candidates, it would be
too expensive to match each Chengyu with the entire sequence of hidden states. We therefore
focus on the token [CLS], which represents an aggregated representation of the entire sequence,
and the token [MASK], which represents the local context of the blank. Let h𝐿CLS ∈ R𝑑 denote the
hidden vector produced by the last layer of BERT representing [CLS], and h𝐿MASK ∈ R𝑑 the similarly
produced hidden vector representing [MASK]. We define the representation of the masked sequence
h ∈ R𝑑 using a fusion function 𝑓 , i.e., h = 𝑓 (h𝐿CLS, h𝐿MASK). We tried a few different choices of 𝑓 in
our preliminary experiments and found the following form, which follows the practice of [Tai et al.
2015; Wang and Jiang 2017], to be slightly better:

h = W


h𝐿CLS
h𝐿MASK

h𝐿CLS ⊙ h𝐿MASK
h𝐿CLS − h𝐿MASK

 ,
where ⊙ is element-wise multiplication between two vectors and W ∈ R𝑑×4𝑑 is a matrix to be
learned.

We further assume that each Chengyu 𝑣 ∈ V has an embedding vector e𝑣 (to be learned), which
is to be compared with h for prediction. We use softmax to compute the probability of selecting 𝑣
given the context 𝑐:

𝑝 (𝑣 |𝑐) = exp(e𝑣 · h)∑
𝑣′∈V exp(e𝑣′ · h)

. (1)

It is important to note that the probability here is normalized over all Chengyu in V . Assume we
have 𝑁 training examples. Let 𝑐𝑛 be the context of the 𝑛-th example, and let 𝑎∗𝑛 be the ground truth
answer for the 𝑛-th example. The loss function is then defined as follows:

𝐿V = −
𝑁∑
𝑛=1

log𝑝 (𝑎∗𝑛 |𝑐𝑛). (2)

The left side of Figure 1 illustrates the model used for pre-training.

3.3.1 Pre-training Data. We need a large corpus with a wide coverage of Chengyu for the pre-
training stage. We collect the data through the following pipeline. (1) Chengyu Vocabulary:We
construct an initial Chengyu vocabulary of 33,237 Chengyu by merging Chengyu found in multiple
online resources, including Chengyu Daquan2, Xinhua Chengyu Dictionary3, Chengyu Cloze Test4
and ChID5. (2) Chengyu Corpus:We collected a large corpus of Chinese text by crawling e-books
online. Then for each Chengyu from the Chengyu vocabulary we retrieve contiguous sentences as
its context. We choose to discard the context if its length is less than fifteen characters. Using this
2http://www.guoxue.com/chengyu/CYML.htm
3https://github.com/pwxcoo/chinese-xinhua
4https://github.com/bazingagin/chengyu_data
5https://github.com/zhengcj1/ChID-Dataset

http://www.guoxue.com/chengyu/CYML.htm
https://github.com/pwxcoo/chinese-xinhua
https://github.com/bazingagin/chengyu_data
https://github.com/zhengcj1/ChID-Dataset
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procedure, we are able to collect a total number of 11 million contexts covering 22,786 Chengyu. (3)
Subsampling: Although we have built a training set in huge number, we find that the distribution
of sentences is extremely skewed for different Chengyu. The imbalance may hurt our pre-training
task. Following [Mikolov et al. 2013], we use a subsampling approach to counter the imbalance
between rare and frequent Chengyu as follows:

𝑃 (𝑣) =
{
1 𝑐 (𝑣) ≤ 10
1 −

√
𝑡

𝑓 (𝑣) 𝑐 (𝑣) > 10
, (3)

where 𝑣 is a Chengyu, 𝑐 (𝑣) is the count of contexts of 𝑣 in the dataset, 𝑓 (𝑣) ∈ [0, 1] is the relative
frequency of 𝑣 and 𝑡 is a chosen threshold. After using the subsampling method listed above, we
are able to reduce the training instances to 5.9 million.

3.4 Fine-tuning Stage
For the second stage of fine-tuning, we assume that we have a set of training data where each
training instance consists of a context sequence 𝑐 = (𝑤1,𝑤2, . . . , [MASK], . . . ,𝑤𝑛) with [MASK]
representing the blank to be filled, a small set of candidate answers A = {𝑎1, 𝑎2, . . .}, and the
ground truth correct answer 𝑎∗ ∈ A. Note that those incorrect candidates in A are often “near-
synonyms” of 𝑎∗. The fine-tuning model follows the same way of using BERT to encode the input
sequence as in the pre-training stage. The output of the 𝐿-layer BERT is a sequence of hidden
vectors h𝐿1 , h

𝐿
2 , . . . , h

𝐿
𝑛 , corresponding to the 𝑛 tokens in the input sequence, including the [MASK]

token.
It is worth noting that a major difference of the fine-tuning model from the pre-training model

is the probability of choosing candidate 𝑎 is normalized over just the small candidate set A. This
allows us to focus on learning the subtle differences between the ground truth answer 𝑎∗ and its
“near-synonyms”.

Formally, the probability of choosing 𝑎 ∈ A given context 𝑐 is

𝑝 (𝑎 |𝑐) = exp(e𝑎 · h)∑
𝑎′∈A exp(e𝑎′ · h)

. (4)

Note that here the probability is normalized over the candidate set A.
Assume that we have 𝑁 training examples. Let 𝑐𝑛 denote the context of the 𝑛-the example and

𝑎∗𝑛 the ground truth answer of the 𝑛-th example. We can define the following objective function:

𝐿A = −
𝑁∑
𝑛=1

log𝑝 (𝑎∗𝑛 |𝑐𝑛). (5)

Finally, in the fine-tuning stage, the training data for multiple-choice Chengyu recommendation
can also be used as open-ended recommendation training data if we ignore the candidate set. We
therefore can have an objective function below that combines the probability of the ground truth
answer as computed by Eqn. (4) and the probability as computed by Eqn. (1), i.e., normalized over
all Chengyu in V:

𝐿 = 𝐿V + 𝐿A . (6)
The right side of Figure 1 illustrates the model used for fine-tuning.

4 EXPERIMENTS ON CHENGYU RECOMMENDATION
In this section, we present the evaluation of our two-stage Chengyu recommendation model for
multiple-choice recommendation.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Minghuan Tan, Jing Jiang, and Bing Tian Dai

4.1 Data and Experiment Settings
To facilitate the study of Chengyu comprehension using deep learning models, Zheng et al. [2019]
released a large-scale Chinese Idiom Dataset called ChID. The dataset was created in the “cloze”
style. The text includes novels and essays from the Internet and news articles. To construct the
candidate answer set for each masked Chengyu, the authors considered synonyms, near-synonyms
and other Chengyu either irrelevant or opposite in meaning to the ground truth Chengyu. The
example in Table 1 is from ChID.

In-domain Out Total

Train Dev Test Out Total

Passages 520,711 20,000 20,000 20,096 580,807
Distinct Chengyun 3,848 3,458 3,502 3,626 3,848
Total blanks 648,920 24,822 24,948 30,023 728,713

Table 2. Some statistics of the ChID-Official dataset.

We use two different versions of the ChID datasets.
• ChID-Official: The first version is the official release of ChID. The data was released with
a training set, a development set and a few different test sets. Besides the standard test set,
the authors also constructed the following test sets: (1) Ran: In this test set, the candidate
Chengyu were randomly sampled from the vocabulary V . No synonyms or near-synonyms
were intentionally added as candidates. (2) Sim: In this test set, the candidates were sampled
from the top-10 Chengyu most similar to the ground truth Chengyu. It is therefore more
challenging than the Ran test dataset. (3) Out: This is an out-of-domain test dataset. The test
passages come from essays (whereas the training and development data comes from news
and novels). The Test, Ran and Sim share the same context but have different candidate
sets. Some statistics of the data can be found in Table 2.

• ChID-Competition: ChID-Competition6 is the data for an online competition7 on Chinese
idiom comprehension. The data is a modified version of the ChID-Official. Different from
ChID-Official, for each entry in ChID-Competition, a list of passages with blanks is given,
and they share the same set of candidate Chengyu. Each candidate can be used only once
within each entry. Table 3 shows part of an example entry. We can see that the three Chengyu
“方兴未艾", “一日千里", “日新月异" in the candidate set share similar meanings and are all
suitable for the blank Q000381 in Passage 2. However, Q000382 in Passage 3 can only choose
“日新月异" and Q000383 in the Passage 4 can only choose "方兴未艾". As a result, "一日
千里" will be the correct answer for Q000381. The challenge here is that the ground truth
answers will be similar in semantic meaning and models need to distinguish their differences
while comparing similar contexts to make the correct decisions. Therefore, under this setting,
some heuristic global optimization strategies can be used to improve the performance. ChID-
Competition is divided into four subsets: Train, Dev, Test and Out (for out-of-domain test
data).

Although ChID is a large-scale dataset for Chengyu recommendation, it actually covers only
over 3000 Chengyu. We therefore consider another Chengyu recommendation dataset that covers
more Chengyu.
6https://github.com/zhengcj1/ChID-Dataset/tree/master/Competition
7https://biendata.com/competition/idiom/

https://github.com/zhengcj1/ChID-Dataset/tree/master/Competition
https://biendata.com/competition/idiom/
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Passage 2: 最近十年间，虚拟货币的发展可谓Q000381。美国著名经济学家林顿·拉鲁什曾预言：
到2050年，基于网络的虚拟货币将在某种程度上得到官方承认，成为能够流通的货币。现在看来，这
一断言似乎还嫌过于保守. . . . . .
In the last decade, the development of virtual currency can be described asQ000381. Lyndon LaRouche, a famous
American economist, predicted that virtual currency based on the Internet would be officially recognized as a
currency in circulation to some extent by 2050. That assertion now seems too conservative. . . . . .
Passage 3: “平时很少能看到这么多老照片，这次图片展把新旧照片对比展示，令人印象深刻。”现场
一位参观者对笔者表示，大多数生活在北京的人都能感受到这个城市Q000382的变化，但很少有人能
具体说出这些变化，. . . . . .
"It’s rare to see so many old photos, but this exhibition shows old and new photos in comparison, which is
very impressive." A visitor to the scene told me that most people living in Beijing can feel the Q000382 changes
of the city, but few people can describe these changes in detail. . . . . . .
Passage 4: 从今天大盘的走势看，市场的热点在反复的炒作之中，概念股的炒作Q000383，权重股走
势较为稳健，大盘今日早盘的震荡可以看作是多头关前的蓄势行为。. . . . . .
Judging from the trend of the market today, the hot spot in the market is repeated speculation, speculation
of concept stocks Q000383, the trend of the weighted stocks is relatively stable, the market today morning
trading shock can be seen as the preparation before the multi-head. . . . . . .

Candidates:
□百尺竿头 already have a great achievement □随波逐流 go with the stream; drift along
□方兴未艾 be in the ascendant □身体力行 earnestly practise what one advocates
□一日千里 at a tremendous pace □三十而立 be independent at the age of thirty
□逆水行舟 sail against the current □日新月异 change with each passing day
□百花齐放 All flowers bloom together. □沧海一粟 a drop in the ocean

Table 3. An example in ChID-Competition. We show only three passages out of the five passages in this
entry.

• CCT: Chengyu Cloze Test (CCT) [Jiang et al. 2018]8 is also a cloze-style dataset which
contains 108,987 sentences covering 7,395 unique Chengyu. CCT data is crawled from the
web and shows basic usage of each Chengyu9.

We use 6 Nvidia 2080Ti GPU cards and a batch size of 60 per card with a total 5 training epochs
for pre-training and fine-tuning. We choose the best model based on the performance over Dev set
of ChID. The initial learning rate is set to be 5𝑒−5 with 10% warm-up steps. We use the optimizer
AdamW in accordance with a linear learning rate scheduler. We choose 128 as the maximum length
and we truncate passages longer than this limit by keeping only the 128 characters surrounding
[MASK], with [MASK] in the middle. Our code has been released online as ChengyuBERT10.

4.2 Results on ChID-Official
We first conduct experiments using the ChID-Official dataset. We try to answer the following
research questions using the ChID-Official dataset. R1: Does our two-stage model perform better
than previous methods? R2: Are both stages of training in our model necessary? R3: For the
objective function shown in Eqn. (6), do we need both 𝐿V and 𝐿A?

In order to answer R1, we compare ourmodel with the following baselines:LM uses a bidirectional
LSTM language model to compute the hidden representation of the blank from both forward and
backward directions and then concatenates the two hidden states as the final representation for the

8https://github.com/bazingagin/chengyu_data
9http://zaojv.com
10https://github.com/VisualJoyce/ChengyuBERT

https://github.com/bazingagin/chengyu_data
http://zaojv.com
https://github.com/VisualJoyce/ChengyuBERT
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blank. AR is the attentive reader model [Hermann et al. 2015] and SAR is the Stanford attentive
reader model [Chen et al. 2016]. AR and SAR use different attention mechanisms over the context
when computing the attention-based representation for the blank. All three models use Chengyu
embeddings and are supervised using a loss function the same as 𝐿A . LM, AR and SAR are all
methods implemented and reported in [Zheng et al. 2019].

In addition, we implemented a baseline that uses Chinese-BERT-wwm-ext directly for Chengyu
recommendation. In this baseline, which we call BERT-BL, We first concatenate each candidate
Chengyu in characters with the given context passage by a special token [SEP] to construct a single
sequence and feed it into BERT. Then we fine-tune a linear classifier over the hidden representations
of [CLS] of each candidate sequence to choose the best one as the choice. We also show human
performance as a reference point. Finally, we refer to our complete two-stage model as Two-Stage.
In order to answer R2, we consider the following degenerate versions of our model: w/o Pre-

Training: In this version of our model, we do not perform pre-training and directly use Chinese-
BERT-wwm-ext for the second stage of fine-tuning. w/o Fine-Tuning: In this version of our
model, we directly use the pre-trained Chengyu-BERT and the Chengyu embeddings for Chengyu
recommendation. We first rank all Chengyu in the vocabularyV based on the pre-trained Chengyu-
BERT, and then pick the candidate in A that is ranked the highest as the answer.
In order to answer R3, we consider another two degenerate versions of our model: w/o 𝐿V : In

this version, we exclude 𝐿V in the objective function Eqn. (6). w/o 𝐿A : In this version, we exclude
𝐿A in the objective function Eqn. (6).

We use accuracy as our performance metric. Here Accuracy is defined as the percentage of test
examples where the recommended Chengyu is the same as the ground truth candidate Chengyu.

Model Dev Test Ran Sim Out

Human[Zheng et al. 2019] - 87.1 97.6 82.2 86.2

LM [Zheng et al. 2019] 71.8 71.5 80.7 65.6 61.5
AR [Zheng et al. 2019] 72.7 72.4 82.0 66.2 62.9
SAR [Zheng et al. 2019] 71.7 71.5 80.0 64.9 61.7

BERT-BL 79.33 79.42 88.84 72.93 73.11

Two-Stage 85.43 85.36 95.04 78.74 82.03
w/o Pre-Training 81.87 81.75 92.87 74.13 71.97
w/o Fine-Tuning 81.12 81.26 92.52 74.06 79.94
w/o 𝐿V 86.15 86.31 94.25 80.54 83.52
w/o 𝐿A 84.76 84.62 94.83 77.69 80.84

Table 4. The experiment results in terms of accuracy on ChID-Official. The metric used in this task is accuracy
for multiple-choice problems.

The results are shown in Table 4. For Human, LM, AR and SAR, the performance shown in the
table is taken directly from [Zheng et al. 2019]. We can observe the following from the table. (1) Our
Two-Stage model can substantially outperform all the baselines. This shows the effectiveness of
our two-stage model and the usefulness of our collected unlabeled Chinese corpus for pre-training.
(2) The performance of Two-Stage is also clearly higher than the two degenerate versions w/o
Pre-Training and w/o Fine-Tuning. This shows that both stages of training are critical for us
to achieve the optimal performance. (3) Comparing the performance of w/o 𝐿V , w/o 𝐿A and our
complete model, we can see that 𝐿A is more critical. We do observe that in most cases, whether
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or not to include 𝐿V does not make any substantial difference. For the split Sim, which uses
near-synonyms as candidate answers, using 𝐿A can improve the performance with a significant
margin than using 𝐿V only. But for the test setRan, which uses randomly selected wrong candidate
answers, using Two-Stage performs slightly better than 𝐿A . We believe this is because when the
wrong candidate answers are randomly chosen, these wrong answers are no longer near-synonyms
to the correct answer, and therefore 𝐿A is kind of similar to 𝐿V .

Overall, the experiments on ChID-Official show that our two-stage model is indeed very effective
for this task, and both stages of training are critical.

4.3 Results on ChID-Competition
To further test the competency of our model, we next evaluate the model on ChID-Competition.
There are some differences between ChID-Official and ChID-Competition, which we have detailed
earlier. Because in ChID-Competition multiple contexts are considered together with the same set
of candidates, we use some heuristic methods to post-process the predictions in order to globally
optimize the results.

Table 5 shows the comparison between our model and the top systems on the leaderboard. In the
first part of the table, we show the top-3 systems on the competition leaderboard.11 In the second
part of the table, we list several other pretrained language models extracted from the benchmark
CLUE [Xu et al. 2020]12. Because of the special settings of ChID-Competition, we find that removing
𝐿A helps the performance on ChID-Competition, so we also show the performance of w/o 𝐿A . We
can see that our Two-Stage model can still achieve consistently better performance than the top 3
systems submitted to the leaderboard, and the w/o 𝐿A setting works even better. This shows again
that our model indeed works better than other existing methods on the ChID dataset.

Model Dev Test Out

Top-1 (wssb) 88.35 90.57 85.54
Top-2 (On The Road) 90.59 91.35 84.93
Top-3 (Beenle) 81.94 89.27 84.72

ERNIE-base 82.46 82.28 -
ALBERT-base 70.99 71.77 -
XLNet-mid 83.76 83.47 -
RoBERTa-large 85.31 84.50 -
RoBERTa-wwm-large-ext 85.81 85.37 -

Two-Stage 91.19 91.14 89.40
w/o 𝐿A 92.41 91.98 90.22

Table 5. Experiment results for ChID-Competition. Here we include the top submissions on the leaderboard.

4.4 Results on CCT
We further use the CCT [Jiang et al. 2018] dataset to evaluate our model. Note that the CCT
dataset covers more Chengyu than ChID. Note also that although the number of Chengyu in
CCT is large, CCT does not have enough contexts for each Chengyu and is thus not suitable for
further fine-tuning. Therefore, here we directly use the pre-trained Chengyu-BERT for Chengyu
11We show the top-3 systems on the leaderboard as of the submission date of this paper.
12https://github.com/CLUEbenchmark/CLUE

https://github.com/CLUEbenchmark/CLUE
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recommendation on CCT. We also add a setting to CCT where 7 candidates are considered for each
context instead of 4 (which is the original setting).

Model Candidates Performance

Human [Jiang et al. 2018] 4 70.0
BiLSTM [Jiang et al. 2018] 4 89.5

Pre-training 4 93.7
Pre-training 7 90.5

Table 6. Evaluation on CCT.

Table 6 shows the results. We can see from the table that our two-stage model again can
outperform the baseline performance reported in [Jiang et al. 2018].

4.5 Error Analysis
To better understand where our method fails, we conduct a detailed error analysis over the ChID-
Official dataset. Specifically, we randomly select 200 examples from the evaluation data where our
predictions are different from the ground truth answers. We manually go through these examples
to understand the reasons behind the wrong predictions, and we group the examples into a few
categories, as shown in Table 7.

We now explain the different categories of errors that we have identified:
Violation of Syntactic Rules: Chinese Chengyu also need to follow syntactic rules. Given a

particular context, some candidate Chengyu are not suitable simply because they do not syntactically
fit into the context. For example, the two candidates in row Syntactic Error in Table 7 both refer to
an unbelievable state or achievement. However, the local contextual words “ 地进行" require
a Chengyu that can serve as an adverb. “登峰造极" usually is not used as an adverb, making “神乎
其神" the correct answer.

Inconsistency: While grammatically two Chengyu may both be suitable for the blank locally,
once taking the full context into account, some Chengyu can become less suitable or even strange,
causing inconsistency in meaning. Two common reasons for inconsistency are Logical Error and
Sentiment Error.
For the Logical Error example in Table 7, when we just look at the local context of the blank,

where the crow introduces itself to the cuckoo, either of the two candidates (“快人快语" and “敢作
敢为") is obviously a good choice. Once the cuckoo mentions “speak" in its reply, to be consistent,
“快人快语" (which is about talking) would be the more suitable answer than “敢作敢为" (which is
about taking actions).

While most Chinese Chengyu are neutral, some may carry sentiment of a particular polarity. In
such cases, it is important to choose an idiom whose sentiment fits the context. For the Sentiment
Error example in Table 7, “文质彬彬" and “道貌岸然" both indicate somebody being calm and
polite. However, “文质彬彬" is usually used to praise a person acting like a gentleman while “道
貌岸然" is a negative idiom to describe a hypocritical person. As the context uses words such as
“suddenly assumed" with cues of negative sentiment, “道貌岸然" is more suitable than “文质彬彬"
here.

Synonym and Non-Synonym: For the remaining errors, we find that based on our under-
standing, the predicted idiom may also be suitable for the passage, and therefore they may not
be considered to be real errors. We further separate these into “synonyms” and “non-synonyms”,
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Category Count % Example

Syntactic Error 23 11.5 更有网友将“光棍节”与其他节日进行对比， 地进行日期的主题
研究，从而得出”惊人“结论：“男人节是8·3，妇女节是3·8，他们相加就
是11·11，光棍节就这样诞生了！Somebody online took “the singles day"
and other festivals for comparison, researched the date, thus came to a
surprising conclusion: men’s day is 8 • 3, women’s day is 3 • 8, their sum is 11 •
11, “the singles day" was born!
 神乎其神：magical, magically ◦登峰造极：outstanding

Logical Error 69 34.5 乌鸦答道：“我乃乌鸦， 。”布谷鸟说：“谨向你致意，望你说话永
远这样直爽。至于我，呼唤声调必须悠扬。” The crow replied, “I am a
crow, ." “With all due respect," said the cuckoo, “Salute, hope you always
speak so straightforward. As for me, the call must be melodious."
 快人快语：straight talk from an honest man
◦敢作敢为：act with courage and determination

Sentiment Error 11 5.5 一见到这位警长，他便从九天之外回到地面上来了，于是他的脸上马上
摆出了一副 的样子，说道，那“信我看过了，先生，您办得很对，
应该把那个人逮起来。现在请你告诉我，你有没有搜有到有关他造反
的材料？” The sight of the sheriff brought him back to reality, and his face
suddenly assumed a look, ...
◦文质彬彬：be gentle  道貌岸然：be sanctimonious

Synonym 25 12.5 哈娜姐近来很喜欢在自己的头部造型下功夫，每次都很 。Rihanna
has been working on her head lately, every time is so .
 出人意表：beyond expectations ◦出人意料：beyond expectations

Non-Synonym 56 28.0 协议规定住宿纳入他们公司统一管理，他们在其宿舍墙壁上张贴了《管
理规定》，上面 地写着，严禁在宿舍内聚餐、饮酒等不健康行
为。Under the agreement, accommodation is subject to the unifiedmanagement
of their company, and they have posted management rules on the walls of their
dormitories, which state that unhealthy behaviors such as sharing meals,
drinking are strictly prohibited.
 明明白白：extremely clear ◦白纸黑字：clearly (written)

Misuse 16 8.0 院墙有的残垣断壁，有的只是用树枝夹起围成的栅子，那栅子也不知挺
了多少年， ，缺胳膊断腿。Some of the courtyard walls are in ruins,
some are only grids built from branches, the grids have been barely standing
for years, , missing arms and legs.
 前仰后合：laugh oneself into convulsions
◦东倒西歪：lying on all sides

Table 7. Different categories of errors and their distribution. In each example, the candidate answer shown
with a solid circle is the ground truth answer.

depending on whether the predicted answer is a synonym with the ground truth answer or not. In
the case when the predicted answer is not a synonym of the ground truth answer, the predicted
answer may still be suitable for the context because there is not sufficient context to support that
the ground truth answer is a better choice.

Misuse: Finally, we also observe that in some cases the ground truth answer, which is the
Chengyu used in the original text, is actually a misuse of the Chengyu. This could happen if the
writer of the original text has misunderstanding of the Chengyu. Since the original text comes from
the Web and we cannot guarantee the literacy level of the writers, misuse of Chengyu does happen
occasionally in the original corpus. An exmaple is shown in Table 7.
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Our error analysis suggests the following: (1) A significant percentage (40%) of errors may not be
real errors. This suggests that the original ChID dataset could potentially be further improved by
providing multiple correct answers. (2) The most common errors are logical errors, which require
reasoning to correct. It is generally known that reasoning is a challenging problem in training
neural network models for language understanding. For Chinese idiom comprehension, we can see
that there is still much room for improvement when we deal with Chengyu that require reasoning
to understand.

5 CHENGYU EMBEDDINGS FOR EMOTION AND SENTIMENT PREDICTION
We suspect that the Chengyu embedding vectors learned by our pre-training stage may be valuable
for other tasks. To test this hypothesis, we choose a Chengyu emotion and sentiment prediction
task. Previously, Wang and Yu [2010] attempted to use lexicons from the CIKB database to build a
feature-based SVM to predict the sentiment label for a Chengyu. Since CIKB is not available online,
we use Chinese Affective Lexicon Ontology (CALO) [Yu and Jianmei 2008] for our emotion and
sentiment prediction task.

Emotion Sentiment
Coarse-grained Fine-grained Intensity

可歌可泣 good (好) praise (赞扬) 7 appreciative (褒义)
东拼西凑 disgust (恶) reproach (贬责) 3 derogatory (贬义)
欢天喜地 enjoyment (乐) pleasure (快乐) 7 appreciative (褒义)
撼天动地 surprise (惊) surprise (惊奇) 7 neutral (中性)

Table 8. Examples of emotion labels for some Chengyu in CALO.

CALO was created with the purpose of supporting textual Affective Computing (AC) in Chi-
nese language. The construction of CALO was based on mainstream emotional classification
research [Ekman 1992] in combination with conventional Chinese emotion categories. Six cate-
gories, anger (怒), fear (惧), sadness (哀), enjoyment (乐), disgust (恶) and surprise (惊), are used
and consistent with [Ekman 1992]. However, enjoyment (乐) is not sufficient to describe some
positive emotions like respect and belief, so an extra category, “good” (好) was added. There are
therefore 7 main categories in CALO. Each main category was further classified into different
numbers of subcategories according to their intensity and complexity. There are 21 subcategories in
total in CALO. Each entry in CALO is a Chengyu that has an emotion label from the subcategories.

In addition, we also consider three general labels, namely, appreciative, derogatory and neutral,
to indicate the general sentiment of a Chengyu. Ground truth of these labels for different Chengyu
are also found in the CALO dataset.
We take those Chengyu for which we are able to train Chengyu embeddings and which have

entries in CALO. This gives us 14,361 Chengyu, a comparable size with that of [Wang and Yu 2010].
The statistics are shown in Table 9. We randomly split the Chengyu from CALO into training and
testing sets by keeping the testing set size to 3000. Note that the distribution of CALO is skewed to
non-neutral sentiments.

We use the Chengyu embeddings learned from our pre-training to predict the Chengyu sentiments
and emotions. For the baseline method, we treat each Chengyu as a “sentence” and extract features
of the hidden vectors h[CLS] of [CLS] using Chinese-BERT-wwm-ext. For each emotion or sentiment
prediction task, we use a SVM to predict the emotion or sentiment label of each Chengyu. In order
to test whether our learned Chengyu embeddings are useful for emotion detection, we concatenate
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CIKB CALO

Train Test Train Test

Appreciative (A) 6,967 1,011 4,937 1,305
Neutral (N) 8,216 1,100 1,731 458

Derogatory (D) 4,817 889 4,678 1,237
Table 9. The sentiment distribution on the prediction task from CIKB and CALO.

the h[CLS] with the learned Chengyu embedding e and feed the vector into SVM to predict a label.
We train the model and report the label accuracy (ACC) and macro average F1 scores as shown in
Table 10. We can see from the table that our performance is clearly better than the baselines. This
demonstrates the value of the Chengyu embeddings that we have learned.

Emotion Sentiment
Coarse-grained Fine-grained

ACC F1 ACC F1 ACC F1

[CLS] 62.2 45.2 48.2 25.5 64.9 56.8
[CLS] + Our Learned Embeddings 63.9 46.1 49.0 26.3 66.3 57.7

Table 10. The emotion prediction results on CALO.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a BERT-based two-stage model for Chinese Chengyu recommendation.
Our model pre-trains a Chengyu-oriented BERT over a large Chinese corpus we have collected
for open-ended Chengyu recommendation. It then fine-tunes the pre-trained Chengyu-BERT for
multiple-choice Chengyu recommendation. Experiments showed that our proposed two-stage
model could achieve the state of the art on both ChID and CCT datasets. We also conducted ablation
studies to test the effectiveness of the two stages, and found both to be useful.
In the future, we plan to look into the interpretability of neural network models for Chengyu

comprehension, especially to understand how neural network models are able to tell the difference
between a Chengyu and its near-synonyms.
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