Study of the five-charged-pion decay of the $\boldsymbol{\tau}$ lepton

D. GIBAUT

Manoj THULASIDAS
Singapore Management University, manojt@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Programming Languages and Compilers Commons

Citation

1

This Journal Article is brought to you for free and open access by the School of Computing and Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

Study of the Five-Charged-Pion Decay of the τ Lepton

D. Gibaut, ${ }^{1}$ K. Kinoshita, ${ }^{1}$ B. Barish, ${ }^{2}$ M. Chadha, ${ }^{2}$ S. Chan, ${ }^{2}$ D.F. Cowen, ${ }^{2}$ G. Eigen, ${ }^{2}$ J.S. Miller, ${ }^{2}$ C. O'Grady, ${ }^{2}$ J. Urheim, ${ }^{2}$ A.J. Weinstein, ${ }^{2}$ D. Acosta, ${ }^{3}$ M. Athanas, ${ }^{3}$ G. Masek, ${ }^{3}$ H.P. Paar, ${ }^{3}$ J. Gronberg, ${ }^{4}$ R. Kutschke, ${ }^{4}$ S. Menary, ${ }^{4}$ R.J. Morrison, ${ }^{4}$ S. Nakanishi, ${ }^{4}$ H.N. Nelson, ${ }^{4}$ T.K. Nelson, ${ }^{4}$ C. Qiao, ${ }^{4}$ J.D. Richman, ${ }^{4}$ A. Ryd, ${ }^{4}$ H. Tajima, ${ }^{4}$ D. Sperka, ${ }^{4}$ M.S. Witherell, ${ }^{4}$ M. Procario, ${ }^{5}$ R. Balest, ${ }^{6}$ K. Cho, ${ }^{6}$ M. Daoudi, ${ }^{6}$ W.T. Ford, ${ }^{6}$ D.R. Johnson, ${ }^{6}$ K. Lingel, ${ }^{6}$ M. Lohner, ${ }^{6}$ P. Rankin, ${ }^{6}$ J.G. Smith, ${ }^{6}$ J.P. Alexander, ${ }^{7}$ C. Bebek, ${ }^{7}$ K. Berkelman, ${ }^{7}$ K. Bloom, ${ }^{7}$ T.E. Browder, ${ }^{7, *}$ D.G. Cassel, ${ }^{7}$ H.A. Cho, ${ }^{7}$ D.M. Coffman, ${ }^{7}$ D.S. Crowcroft, ${ }^{7}$ P.S. Drell, ${ }^{7}$ R. Ehrlich, ${ }^{7}$ P. Gaidarev, ${ }^{7}$ R.S. Galik, ${ }^{7}$ M. GarciaSciveres, ${ }^{7}$ B. Geiser, ${ }^{7}$ B. Gittelman, ${ }^{7}$ S.W. Gray, ${ }^{7}$ D.L. Hartill, ${ }^{7}$ B.K. Heltsley, ${ }^{7}$ C.D. Jones, ${ }^{7}$ S.L. Jones, ${ }^{7}$ J. Kandaswamy, ${ }^{7}$ N. Katayama, ${ }^{7}$ P.C. Kim, ${ }^{7}$ D.L. Kreinick, ${ }^{7}$ G.S. Ludwig, ${ }^{7}$ J. Masui, ${ }^{7}$ J. Mevissen, ${ }^{7}$ N.B. Mistry, ${ }^{7}$ C.R. Ng, ${ }^{7}$ E. Nordberg, ${ }^{7}$ J.R. Patterson, ${ }^{7}$ D. Peterson, ${ }^{7}$ D. Riley, ${ }^{7}$ S. Salman, ${ }^{7}$ M. Sapper, ${ }^{7}$ F. Würthwein, ${ }^{7}$ P. Avery, ${ }^{8}$ A. Freyberger, ${ }^{8}$ J. Rodriguez, ${ }^{8}$ R. Stephens, ${ }^{8}$ S. Yang, ${ }^{8}$ J. Yelton, ${ }^{8}$ D. Cinabro, ${ }^{9}$ S. Henderson, ${ }^{9}$ T. Liu, ${ }^{9}$ M. Saulnier, ${ }^{9}$ R. Wilson, ${ }^{9}$ H. Yamamoto, ${ }^{9}$ T. Bergfeld, ${ }^{10}$ B.I. Eisenstein, ${ }^{10}$ G. Gollin, ${ }^{10}$ B. Ong, ${ }^{10}$ M. Palmer, ${ }^{10}$ M. Selen, ${ }^{10}$ J. J. Thaler, ${ }^{10}$ K.W. Edwards, ${ }^{11}$ M. Ogg, ${ }^{11}$ A. Bellerive, ${ }^{12}$ D.I. Britton, ${ }^{12}$ E.R.F. Hyatt, ${ }^{12}$ D.B. MacFarlane, ${ }^{12}$ P.M. Patel, ${ }^{12}$ B. Spaan, ${ }^{12}$ A.J. Sadoff, ${ }^{13}$ R. Ammar,,14 S. Ball, ${ }^{14}$ P. Baringer, ${ }^{14}$ A. Bean, ${ }^{14}$ D. Besson, ${ }^{14}$ D. Coppage, ${ }^{14}$ N. Copty, ${ }^{14}$ R. Davis, ${ }^{14}$ N. Hancock, ${ }^{14}$ M. Kelly, ${ }^{14}$ S. Kotov, ${ }^{14}$ I. Kravchenko, ${ }^{14}$ N. Kwak, ${ }^{14}$ H. Lam, ${ }^{14}$ Y. Kubota, ${ }^{15}$ M. Lattery, ${ }^{15}$ M. Momayezi, ${ }^{15}$ J.K. Nelson, ${ }^{15}$ S. Patton, ${ }^{15}$ D. Perticone, ${ }^{15}$ R. Poling, ${ }^{15}$ V. Savinov, ${ }^{15}$ S. Schrenk, ${ }^{15}$ R. Wang, ${ }^{15}$ M.S. Alam, ${ }^{16}$ I.J. Kim, ${ }^{16}$ B. Nemati, ${ }^{16}$ J.J. O'Neill, ${ }^{16}$ H. Severini, ${ }^{16}$ C.R. Sun, ${ }^{16}$ M.M. Zoeller, ${ }^{16}$ G. Crawford, ${ }^{17}$ C. M. Daubenmier, ${ }^{17}$ R. Fulton, ${ }^{17}$ D. Fujino, ${ }^{17}$ K.K. Gan, ${ }^{17}$ K. Honscheid, ${ }^{17}$ H. Kagan,,${ }^{17}$ R. Kass, ${ }^{17}$ J. Lee, ${ }^{17}$ R. Malchow, ${ }^{17}$ Y. Skovpen, ${ }^{17, \dagger}$ M. Sung, ${ }^{17}$ C. White, ${ }^{17}$ F. Butler, ${ }^{18}$ X. Fu, ${ }^{18}$ G. Kalbfleisch, ${ }^{18}$ W.R. Ross, ${ }^{18}$ P. Skubic, ${ }^{18}$ M. Wood, ${ }^{18}$ J.Fast, ${ }^{19}$ R.L. Mcllwain, ${ }^{19}$ T. Miao, ${ }^{19}$ D.H. Miller, ${ }^{19}$ M. Modesitt, ${ }^{19}$ D. Payne, ${ }^{19}$ E.I. Shibata, ${ }^{19}$ I.P.J. Shipsey, ${ }^{19}$ P.N. Wang, ${ }^{19}$ M. Battle, ${ }^{20}$ J. Ernst, ${ }^{20}$ L. Gibbons, ${ }^{20}$ Y. Kwon, ${ }^{20}$ S. Roberts, ${ }^{20}$ E.H. Thorndike, ${ }^{20}$ C.H. Wang, ${ }^{20}$ J. Dominick, ${ }^{21}$ M. Lambrëcht, ${ }^{21}$ S. Sanghera, ${ }^{21}$ V. Shelkov, ${ }^{21}$ T. Skwarnicki, ${ }^{21}$ R. Stroynowski, ${ }^{21}$ I. Volobouev, ${ }^{21}$ G. Wei, ${ }^{21}$ P. Zadorozhny, ${ }^{21}$ M. Artuso, ${ }^{22}$ M. Goldberg, ${ }^{22}$ D. He, ${ }^{22}$ N. Horwitz, ${ }^{22}$ R. Kennett, ${ }^{22}$ R. Mountain, ${ }^{22}$ G.C. Moneti, ${ }^{22}$ F. Muheim, ${ }^{22}$ Y. Mukhin, ${ }^{22}$ S. Playfer, ${ }^{22}$ Y. Rozen, ${ }^{22}$ S. Stone,,22 M. Thulasidas, ${ }^{22}$ G. Vasseur, ${ }^{22}$ X. Xing, ${ }^{22}$ G. Zhu, ${ }^{22}$ J. Bartelt, ${ }^{23}$ S.E. Csorna, ${ }^{23}$ Z. Egyed, ${ }^{23}$ and V. Jain ${ }^{23}$

(CLEO Collaboration)

[^0]The branching fractions for the five-charged-particle decays of the τ lepton have been measured in $e^{+} e^{-}$annihilations using the CLEO II detector at the Cornell Electron Storage Ring. Assuming all charged particles to be pions, the results are $B\left(3 \pi^{-} 2 \pi^{+} \geq 0\right.$ neutrals $\left.\nu_{\tau}\right)=(0.097 \pm 0.005 \pm$ $0.011) \%, B\left(3 \pi^{-} 2 \pi^{+} \nu_{\tau}\right)=(0.077 \pm 0.005 \pm 0.009) \%, B\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\right)=(0.019 \pm 0.004 \pm 0.004) \%$, and $B\left(3 \pi^{-} 2 \pi^{+} 2 \pi^{0} \nu_{\tau}\right)<0.011 \%$ at the 90% C.L. $B\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\right)$ is measured for the first time by exclusive π^{0} reconstruction. The results are compared with the predictions from the partially conserved-axial-current and conserved-vector-current hypotheses assuming isospin invariance.

PACS numbers: 13.35.Dx

The decay of the τ lepton provides a test of the standard model prediction of the hadronic weak current. The branching fraction into the five-pion final state can be calculated using current algebra and the partially conserved-axial-current hypothesis (PCAC) [1]. The sixpion branching fraction is related to the $e^{+} e^{-}$cross section for the production of six pions by the conserved-vector-current hypothesis (CVC). A measurement of this branching fraction tests the absolute prediction of CVC while the shape of the six-pion mass spectrum tests CVC as a function of $Q^{2}\left(=M_{6 \pi}^{2}\right)$. The branching fractions for the five-charged-particle final states have been measured previously with limited statistics [2]. Presented in this Letter is a new result on the inclusive five-charged-particle decay with the assumption that all charged particles are pions. Also included are measurements of the exclusive branching fractions for the decays [3] $\tau^{-} \rightarrow 3 \pi^{-} 2 \pi^{+} \nu_{\tau}$ and $\tau^{-} \rightarrow 3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}$ with much improved precision. The first limit on the decay $\tau^{-} \rightarrow 3 \pi^{-} 2 \pi^{+} 2 \pi^{0} \nu_{\tau}$ is also presented.

The data used in this analysis have been collected from $e^{+} e^{-}$collisions at a center-of-mass energy of $\sqrt{s} \sim 10.6$ GeV using the CLEO II detector [4] at the Cornell Electron Storage Ring (CESR). The total integrated luminosity of the sample is $1.70 \mathrm{fb}^{-1}$, corresponding to the production of $1.56 \times 10^{6} \tau^{+} \tau^{-}$events. CLEO II is a general purpose spectrometer with excellent charged particle and electromagnetic energy detection.

Each $\tau^{+} \tau^{-}$candidate event is required to contain six charged tracks with zero net charge. Each track must project back to the $e^{+} e^{-}$interaction point and be in the central region of the detector, $|\cos \theta|<0.90$, where θ is the polar angle from the beam axis. The former requirement suppresses the "migration" background from τ decays with a $K_{S} \rightarrow \pi^{+} \pi^{-}$or photon conversion. The K_{S} background is further reduced by rejecting events containing a detached vertex with a $\pi^{+} \pi^{-}$mass within 10 $\mathrm{MeV} / c^{2}(\sim 2 \sigma)$ of the nominal K_{S} mass [5]. Photon candidates are required to have a minimum energy of 60 MeV in the barrel region $(|\cos \theta|<0.80)$ and 100 MeV in the end cap region ($0.80<|\cos \theta|<0.95$) and a lateral profile of energy deposition consistent with that expected for a photon. The photon candidates must also be isolated from the charged tracks. The event is divided into two hemispheres using the plane perpendicular to the thrust axis of the event [6]; there must be one charged particle in
one hemisphere recoiling against five charged particles in the other (1 vs 5 topology). The total momentum vector of the particles in each hemisphere must be in the barrel region to minimize possible systematic effects. The sum of the shower energies must exceed $0.15 \sqrt{s}$.

The dominant sources of background are hadronic events and τ migration events from τ^{-} $\rightarrow \pi^{-} \pi^{+} \pi^{-} n \pi^{0} \nu_{\tau}(n \geq 1)$ with a photon conversion or Dalitz decay. The migration events are suppressed by requiring a minimum invariant mass of $40 \mathrm{MeV} / c^{2}$ for all pairs of oppositely charged tracks in the 5-prong hemisphere, unless an electron candidate is identified, in which case the pair mass cut is $150 \mathrm{MeV} / c^{2}$ on all combinations with this track. The hadronic background is suppressed with several selection criteria. The number of photons in the 1-prong hemisphere is restricted to be two or fewer. For the case of two photons, both must be in the barrel and have an invariant mass within $20 \mathrm{MeV} / c^{2}$ ($\sim 3 \sigma$) of the nominal π^{0} mass. The total momentum of the particles in the 5-prong hemisphere is required to be greater than $\frac{1}{3} \sqrt{s}$. The total invariant mass of the particles in each hemisphere must satisfy $M_{1}<1.2$ and $M_{5}<1.7 \mathrm{GeV} / c^{2}$. The 5-prong hemisphere must have a positive pseudoneutrino mass squared:

$$
M_{\nu}^{2}=M_{\tau}^{2}+M_{5}^{2}-2 M_{\tau} E_{5}^{*}>0
$$

where M_{τ} is the τ mass and E_{5}^{*} is the energy of the 5prong system in the τ rest frame. This definition assumes that the τ has the full beam energy and that the τ direction is given by the momentum vector of the 5 -prong hemisphere. This cut selects events with taulike kinematics, suppressing both the hadronic background and the τ migration background from lower multiplicity decays where the 5 -prong momentum is not a good approximation of the τ direction. These selection criteria yield a sample of 495 inclusive events.

A subset of events in which the track in the 1-prong hemisphere is identified as a lepton is selected from this inclusive sample. This subset has smaller hadronic contamination than the 1-prong tag sample and thereby provides a verification of the background calculation. An electron candidate must have an energy deposition in the calorimeter consistent with the measured momentum and a specific ionization in the drift chamber consistent with that expected for an electron. A muon candidate must penetrate more than 3 absorption lengths of iron.

FIG. 1. The mass spectra of the (a) 5π and (c) $5 \pi \pi^{0}$ candidates selected with the 1 -prong tag. The M_{ν} cut, which suppresses the hadronic background by $\sim 50 \%$, has been removed because it is unphysical for $M_{5}>M_{\tau}$. The histograms show the hadronic background, normalized for $M_{5}>2.0 \mathrm{GeV} / c^{2}$. (b) and (d) are the corresponding spectra selected with the lepton tags. In (b) and (d) the invariant mass of the photon pair forming the π^{0} must be within $20 \mathrm{MeV} / c^{2}$ of the nominal π^{0} mass.

Candidates for the three exclusive decay modes are identified from the inclusive sample according to the photon information in the 5 -prong hemisphere. For 5π decay candidates, no photons are allowed. For $5 \pi \pi^{0}\left(2 \pi^{0}\right)$, there must be two (four) photons in the barrel and no photons in the end cap. In the case of one (three) photon(s), an additional lower quality photon with an energy above 30 MeV is sought. If more than one low quality photon is found, the photon with the best combination of energy and isolation from the charged tracks is used. This increases the detection efficiency while minimizing the dependence on the modeling of hadronic interactions.

The mass spectra for the 5π and $5 \pi \pi^{0}$ candidates are shown in Figs. 1(a) and 1(c). An excess of events above the hadronic background for $M_{5}<M_{\tau}$ is observed. The signal over background is greatly enhanced for the events selected with a lepton tag as shown in Figs. 1(b) and 1(d). The invariant mass spectrum of the two photons from the $5 \pi \pi^{0}$ candidates is shown in Fig. 2. A π^{0} signal is evi-

FIG. 2. The invariant mass spectrum of the two photons of the $5 \pi \pi^{0}$ candidates. The curve shows a fit to the data (see text). The hatched histogram shows the hadronic background.
dent, corresponding to the first direct observation of the $5 \pi \pi^{0}$ decay. The number of π^{0} candidates is extracted by fitting this mass spectrum with a Gaussian plus a secondorder polynomial background. The mass and width are constrained to the Monte Carlo expectations. No $5 \pi 2 \pi^{0}$ events are observed with two exclusive $\gamma \gamma$ pairs having an invariant mass within $20 \mathrm{MeV} / c^{2}$ of the nominal π^{0} mass [7]. The number of events in each decay mode, together with the hadronic and τ migration backgrounds, detection efficiencies, and resulting branching fractions are shown in Table I [8].

The hadronic background is calculated empirically using a sample of 1 vs 5 hadronic events obtained from the data. The hadronic sample is selected using the criteria described above, except that $1.7<M_{1}<2.5 \mathrm{GeV} / c^{2}$ and, to increase statistics, the number of photons in the 1 -prong hemisphere is allowed to be as large as six. A few percent correction to the hadronic sample is made to account for contamination from τ decays. Assuming that M_{1} and M_{5} are not strongly correlated, the M_{5} thus obtained should reproduce the hadronic background component in the τ sample. The hadronic mass spectra are superimposed in Fig. 1, normalized to the same number of events for $M_{5}>2.0 \mathrm{GeV} / c^{2}$. The general shape of the background spectrum is reproduced.

The detection efficiency and migration background are calculated using a Monte Carlo technique. The koralb program is used to generate pairs according to the standard electroweak theory, including α^{3} radiative correc-

TABLE I. Summary of the signal, background, detection efficiency, and branching fraction for each decay mode. All errors are statistical only. The upper limit is at the 90% C.L.

	Inclusive		5π			$5 \pi \pi^{0}$			$5 \pi 2 \pi^{0}$
Tag	1-prong	Lepton	1-prong	Lepton	1-prong	Lepton	1-prong		
Data	495 ± 22	159 ± 13	335 ± 18	105 ± 10	38 ± 7	14.9 ± 4.2	0		
$e^{+} e^{-} \rightarrow q \bar{q}$	60 ± 8	5 ± 1	26 ± 6	3 ± 1	7 ± 3	0.8 ± 0.3	\ldots		
Migration	16 ± 3	7 ± 2	14 ± 2	8 ± 1	\ldots	\ldots	\cdots		
$\epsilon(\%)$	16.1 ± 0.2	14.3 ± 0.3	14.2 ± 0.2	12.7 ± 0.3	5.9 ± 0.2	5.4 ± 0.2	0.9 ± 0.1		
$B\left(10^{-4}\right)$	9.7 ± 0.5	9.0 ± 0.8	7.7 ± 0.5	6.7 ± 0.7	1.9 ± 0.4	2.3 ± 0.7	<1.0		

tions [9]. The GEant program [10] is used to simulate the detector response. The five-pion mass spectrum has been adjusted to fit the data. The six-pion spectrum is extracted from the $e^{+} e^{-}$cross section into six pions using CVC [9]. No intermediate resonance is assumed in the decay processes.

The branching fractions for the decays are extracted from the data by normalizing to the luminosity \mathcal{L} and cross section σ,

$$
B=\frac{N-N_{\mathrm{mig}}-N_{q \bar{q}}}{2 \mathcal{L} \sigma B_{\mathrm{tag}} \epsilon},
$$

where $N, N_{\text {mig }}$, and $N_{q \bar{q}}$ are the number of events in the data, migration from other τ decays, and hadronic background, respectively. $B_{\text {tag }}=(85.82 \pm 0.25) \%$ [2] is the branching fraction of the 1-prong tag and ϵ is the detection efficiency.

The systematic errors in the measurements are summarized in Table II. The systematic error from the uncertainty in the photon detection efficiencies is estimated by varying the photon selection criteria. This estimate has been checked [11] by performing similar analyses on other decay modes, $\pi 2 \pi^{0}, 3 \pi, 3 \pi \pi^{0}$, and $\pi \omega$. Another indication of the reliability of the efficiency calculation is that the two exclusive branching fractions do not oversaturate the inclusive measurement. The systematic error in the tracking efficiency has been investigated by relaxing the track quality requirements and by comparing the observed momentum spectrum of the tracks with the Monte Carlo simulation. Potential biases in the hadronic background estimate due to possible correlations in the total invariant masses of the two hemispheres have been investigated by varying the requirements on M_{1} and the 1 -prong photon multiplicity. The hadronic background has also been estimated using continuum Monte Carlo events [12] and 3 vs 5 events from the data. All results are consistent within the statistical errors. The consistency of the branching fractions between the 1-prong and lepton tags indicates the validity of the hadronic background calculation. The systematic error in the modeling of the five- and six-pion decays is estimated by compar-

TABLE II. Summary of systematic errors in percent (relative). The migration of $5 \pi 2 \pi^{0}$ into $5 \pi \pi^{0}$ corresponds to a 68% upper limit.

	Inclusive	5π	$5 \pi \pi^{0}$	$5 \pi 2 \pi^{0}$
ϵ (photon)	5	7	15	20
ϵ (tracking)	7.5	7.5	7.5	7.5
ϵ (stat)	1.2	1.5	3.0	10
Background (stat)	2.0	2.1	10.8	\ldots
$e^{+} e^{-} \rightarrow q \bar{q}$ (syst)	4.3	2.7	6.9	\ldots
Decay model	4.0	4.0	4.0	\ldots
Migration (syst)	1.4	1.6	+1.1	\ldots
\mathcal{L}	1.0	1.0	1.0	1.0
σ	1.0	1.0	1.0	1.0
Total	11	12	22	24

ing the observed $\pi^{+} \pi^{-}$mass spectrum with the Monte Carlo expectation. The systematic error in the migration background due to the uncertainties in τ decay branching fractions is estimated by changing the branching fractions within the reasonable ranges allowed by their uncertainties [2]. Also included in Table II is the systematic error in the luminosity [13] and cross section and the uncertainty in the detection efficiency due to limited Monte Carlo statistics.

The final branching fractions from the 1-prong tag are

$$
\begin{aligned}
B\left(3 \pi^{-} 2 \pi^{+} \geq 0 \text { neutrals } \nu_{\tau}\right) & =(0.097 \pm 0.005 \pm 0.011) \%, \\
B\left(3 \pi^{-} 2 \pi^{+} \nu_{\tau}\right) & =(0.077 \pm 0.005 \pm 0.009) \%, \\
B\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\right) & =(0.019 \pm 0.004 \pm 0.004) \%, \\
B\left(3 \pi^{-} 2 \pi^{+} 2 \pi^{0} \nu_{\tau}\right) & <0.011 \% \text { at } 90 \% \text { C.L. },
\end{aligned}
$$

where the first error is statistical and the second is the systematic errors added in quadrature. These measurements are consistent with the world averages [2], but the inclusive branching fraction is significantly smaller than the recent result from OPAL [14]. Combining $B\left(3 \pi^{-} 2 \pi^{+} \nu_{\tau}\right)$ with our results $[11,15]$ for $B\left(\pi^{-} 4 \pi^{0} \nu_{\tau}\right)$ and $B\left(2 \pi^{-} \pi^{+} 2 \pi^{0} \nu_{\tau}\right)$ yields the total five-pion branching fraction of $(0.61 \pm 0.06 \pm 0.08) \%$. This is somewhat smaller than the prediction from PCAC of $\sim 1 \%$ [1]. The measurement of $B\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\right)$ is consistent with the prediction [16] from isospin invariance and CVC, $B\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\right) \geq(0.03 \pm 0.01) \%$, based on the $e^{+} e^{-}$ cross section for six-pion production measured by M3N [17]. However, it is significantly smaller than the prediction [16] of $B\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\right) \geq(0.07 \pm 0.01) \%$ based on the measurement by $\gamma \gamma 2$ [18]. The CVC prediction of the $5 \pi \pi^{0}$ mass spectrum (Fig. 3), based on combining the two measurements, is independent of the absolute normalization and reproduces the data.

In conclusion, the branching fractions for the 5 -prong decays of the τ lepton have been measured. The $5 \pi \pi^{0}$ branching fraction is measured for the first time by exclusive π^{0} reconstruction. The sum of $B\left(3 \pi^{-} 2 \pi^{+} \nu_{\tau}\right)$ and $B\left(3 \pi^{-} 2 \pi^{+} \pi^{0} \nu_{\tau}\right)$ saturates the inclusive branching frac-

FIG. 3. The mass spectra of the $5 \pi \pi^{0}$ candidates selected with the 1-prong tag together with the CVC prediction (histogram). The background contamination has been subtracted.
tion and the first limit on $B\left(3 \pi^{-} 2 \pi^{+} 2 \pi^{0} \nu_{\tau}\right)$ has been set. The results are consistent with the world averages [2] and are significantly more precise than other experiments.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation, the U.S. Department of Energy, the Heisenberg Foundation, the SSC Fellowship program of TNRLC, and the A.P. Sloan Foundation.

* Permanent address: University of Hawaii at Manoa, Honolulu, HI 96822.
${ }^{\dagger}$ Permanent address: INP, Novosibirsk, Russia.
[1] T.N. Pham, C. Roiesnel, and T.N. Truong, Phys. Lett. 78B, 623 (1978).
[2] Particle Data Group, K. Hikasa et al., Phys. Rev. D 45, S1 (1992).
[3] In this Letter, charge conjugate states are implied.
[4] Y. Kubota et al., Nucl. Instrum. Methods Phys. Res., Sect. A 320, 66 (1992).
[5] The remaining migration background from $\tau^{-} \rightarrow$ $\pi^{-} K^{0} \bar{K}^{0} \nu_{\tau}$ is negligible ($\sim 0.3 \%$).
[6] Both charged particles and photons are used in the calculation of kinematic variables.
[7] The π^{0} sidebands contain five entries, consistent with the expectation of 4.0 ± 1.3 entries from $5 \pi \pi^{0}$ and hadronic backgrounds.
[8] The detection efficiencies and migration backgrounds for the inclusive, 5π, and $5 \pi \pi^{\circ}$ events are calculated assuming that the branching fraction for the $5 \pi 2 \pi^{0}$ decay is negligible.
[9] S. Jadach and Z. Was, Comput. Phys. Commun. 36, 191 (1985); 64, 267 (1991); S. Jadach, J. H. Kuhn, and Z. Was, ibid. 64, 275 (1991).
[10] R. Brun et al., CERN Report No. CERN-DD/EE/84-1, 1987 (unpublished).
[11] M. Procario et al., Phys. Rev. Lett. 70, 1207 (1993).
[12] T. Sjostrand and M. Bengtsson, Comput. Phys. Commun. 43, 367 (1987).
[13] G. Crawford et al., Nucl. Instrum. Methods Phys. Res., Sect. A 345, 429 (1994).
[14] P.D. Acton et al., Phys. Lett. B 288, 373 (1992).
[15] D. Bortoletto et al., Phys. Rev. Lett. 71, 1791 (1993).
[16] S.I. Eidelman and V.N. Ivanchenko, Phys. Lett. B 257, 437 (1991).
[17] G. Cosme et al., Nucl. Phys. B152, 215 (1979).
[18] C. Bacci et al., Nucl. Phys. B184, 31 (1981).

FIG. 2. The invariant mass spectrum of the two photons of the $5 \pi \pi^{0}$ candidates. The curve shows a fit to the data (see text). The hatched histogram shows the hadronic background.

[^0]: ${ }^{1}$ Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
 ${ }^{2}$ California Institute of Technology, Pasadena, California 91125
 ${ }^{3}$ University of California, San Diego, La Jolla, California 92093
 ${ }^{4}$ University of California, Santa Barbara, California 93106
 ${ }^{5}$ Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
 ${ }^{6}$ University of Colorado, Boulder, Colorado 80309-0390
 ${ }^{7}$ Cornell University, Ithaca, New York 14853
 ${ }^{8}$ University of Florida, Gainesville, Florida 32611
 ${ }^{9}$ Harvard University, Cambridge, Massachusetts 02138
 ${ }^{10}$ University of Illinois, Champaign-Urbana, Illinois 61801
 ${ }^{11}$ Carleton University, Ottawa, Ontario, Canada K1S 5B6 and the Institute of Particle Physics, Montréal, Canada
 ${ }^{12}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$ and the Institute of Particle Physics, Montréal, Canada
 ${ }^{13}$ Ithaca College, Ithaca, New York 14850
 ${ }^{14}$ University of Kansas, Lawrence, Kansas 66045
 ${ }^{15}$ University of Minnesota, Minneapolis, Minnesota 55455
 ${ }^{16}$ State University of New York at Albany, Albany, New York 12222
 ${ }^{17}$ Ohio State University, Columbus, Ohio 43210
 ${ }^{18}$ University of Oklahoma, Norman, Oklahoma 73019
 ${ }^{19}$ Purdue University, West Lafayette, Indiana 47907
 ${ }^{20}$ University of Rochester, Rochester, New York 14627
 ${ }^{21}$ Southern Methodist University, Dallas, Texas 75275
 ${ }^{22}$ Syracuse University, Syracuse, New York 13244
 ${ }^{23}$ Vanderbilt University, Nashville, Tennessee 37235
 (Received 22 April 1994)

