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Robust, Fine-Grained Occupancy Estimation via
Combined Camera & WiFi Indoor Localization

Anuradha Ravi, Archan Misra
School of Information Systems, Singapore Management University, Singapore

anuradhar@smu.edu.sg; archanm@smu.edu.sg

Abstract—We describe the development of a robust, accurate
and practically-validated technique for estimating the occupancy
count in indoor spaces, based on a combination of WiFi &
video sensing. While fusing these two sensing-based inputs is
conceptually straightforward, the paper demonstrates and tackles
the complexity that arises from several practical artefacts, such
as (i) over-counting when a single individual uses multiple
WiFi devices and under-counting when the individual has no
such device; (ii) corresponding errors in image analysis due to
real-world artefacts, such as occlusion, and (iii) the variable
errors in mapping image bounding boxes (which can include
multiple possible types of human views: {head, torso, full-body})
to location coordinates. We develop statistical techniques to
overcome these practical challenges, and finally propose a novel
fusion algorithm, based on inexact bipartite matching of these two
streams of independent estimates, to estimate the occupancy in
complex, multi-inhabitant indoor spaces (such as university labs).
We experimentally demonstrate that this estimation technique is
robust and accurate, achieving less than 20% error, in an approx.
85m2 lab space (with the error staying below 30% in a smaller
25m2 area), across a wide variety of occupancy conditions.

Index Terms—Indoor Localization, Occupancy Estimation,
Camera Occupancy, RADAR Occupancy

I. INTRODUCTION

Unobtrusive, cost-effective and fine-grained sensing of hu-
man occupancy in indoor spaces is a key enabler for many
smart computing applications, such as occupancy-aware en-
ergy management [1] and dynamic recommendation of meet-
ing spaces [2]. As an alternative to custom or purpose-built
solutions (e.g., [3], [4]), there has been strong interest in the
use of both WiFi-based [5] and vision-based [6] occupancy
technologies, which piggyback on the existing commonly-
deployed infrastructure (WiFi Access Points (APs) and secu-
rity cameras).

Both WiFi and camera-based occupancy estimation tech-
niques have their advantages, as well as unique limitations. For
universal coverage, WiFi-based solutions cannot assume the
active participation of (use of custom software on) all mobile
devices, but must employ only passive sensing-based server-
side localization techniques, which have been demonstrated
to have median errors of ∼6-8 meters [7]. Practical WiFi-
based techniques thus cannot support fine-grained localization
(e.g., cannot accurately count people inside a 5x5m2 meeting
space), and fundamentally compute device occupancy, which
can lead to both errors of under-counting (when individual
occupants do not possess a WiFi-enabled device) and over-
counting (when an individual carries multiple WiFi-enabled

devices). On the other hand, deep neural network (DNN)-
based vision sensing techniques (e.g., YoLoV3 [8], SSD [9])
have recently achieved impressive accuracy, with high object
detection accuracy and localization errors of usually 2-3 me-
ters under careful calibration. However, vision-based people
counting techniques suffer especially from false negatives, due
to artefacts such as full or partial occlusion, partial visual
coverage and poor ambient lighting.

Our research is motivated by our ongoing work to support
energy-efficient, smart usage of an operational, 5-story com-
mercial Zero-Energy Building (ZEB). While previous work
has focused primarily on optimizing HVAC settings (e.g., [10]
achieved ∼ 17.8% of energy savings without compromising
occupant comfort), we shall also perform occupancy-aware
optimization of LED lighting (using ideas discussed in [11],
[12]). Such fine-grained adjustment, especially of lights that
are typically separated by distances of 1-2 meters, requires
accurate estimation of occupancy at similarly fine-grained
spatial resolutions of 20-25m2. To achieve this objective, we
tackle the challenge: How do we fuse the sensing modalities
of both WiFi and cameras to achieve accurate, finer-resolution
occupancy estimation in indoor shared spaces? While the idea
of fusing WiFi and camera sensing is not completely new, prior
work (such as [13], [14]) has addressed this under fairly lim-
ited or specially-instrumented scenarios, without considering
many impairments characteristic of real-world public spaces.
In particular, our experience with real-world, shared spaces
indicate the need to tackle the different Localization Errors
& Variance encountered due to the problems of over/under-
counting (for WiFi) and false negatives (for camera) mentioned
previously.
Key Contributions: In this paper, we present the design of a
practical WiFi+ camera-based occupancy estimation system,
and show that it can overcome the challenges mentioned
above to provide accurate, high-resolution estimates of human
occupancy. The paper makes the following key contributions:
• Improved Accuracy of Practical Camera-based Human Lo-

calization: The ability to translate the image-specific bound-
ing box coordinates of human objects to the physical-
world space coordinates is an essential prerequisite for
fine-grained, camera-based occupancy estimation. Prior ap-
proaches for such coordinate translation assume the use of
homographic mappings, which require complex calibration;
moreover, they implicitly assume a consistent view (e.g.,
full body) of all human subjects. We propose a simpler,



regression-based mapping technique, which combines sepa-
rate DNN pipelines for human and face detection, to achieve
an average localization error of 1.7 meters, irrespective of
whether the human is close to or far from the camera and
whether the human object is fully or partially visible.

• Introduce a Robust Algorithm for Human-Device Matching:
To support high fidelity WiFi-and-camera based occupancy
estimation, while accommodating individuals with varying
number of personal devices, we propose a novel algorithm
for matching the human objects (and their corresponding
bounding boxes) identified in image frames to one or
more WiFi-enabled devices. The algorithm treats the set of
identified devices and human objects as elements of two
bipartite graphs, and then employs approximate b-matching
techniques to accurately match humans to devices, while
accommodating the possibility of individuals having either
no or multiple WiFi-enabled devices.

• Demonstrate Practical Effectiveness at Multiple Spatial
Granularity: We implement and evaluate a real-world pro-
totype, based on b-matching based fusion of RADAR-based
passive WiFi localization and YoLoV3-based human object
detection. Our experimental studies show that our system
can estimate total human occupancy, with an estimation
error of less than 20% over an 85m2 shared, lab space.
The estimation error increases slightly to ∼ 30% when
performed over a smaller 25m2 area. This represents a
significant reduction, of ∼ 10−15% over a competitive pure
camera-based approach, and over 40% over a pure WiFi-
based alternative.

II. RELATED WORK

Occupancy estimates can be derived by a range of tech-
niques, including the use of custom sensors, performing sensor
fusion on muti-sensor data streams ( [15], [16], [17] [18]),
incorporating energy utilisation patterns along with sensor
data [19], studying occupant behavioural patterns [20], or
utilising WiFi to count devices and camera modules to count
people. We discuss some of the key prior approaches that
leverage on WiFi and camera sensing to estimate the people
count.

A. WiFi and Camera Based Estimation

Camera-based head detection approaches (e.g., [21]) use
overhead cameras to count and track people by employing
image-processing based techniques for accurately detecting
the head, and achieve people counting accuracy of 96%.
POEM, a work by Erickson et al., [22] used a particle
filtering approach to combine the occupancy estimates from
a network of cameras with the occupancy estimates obtained
from a network of motion detectors, using such occupancy
estimates to infer the desired temperature set point and achieve
∼30% reduction in the energy consumption. Soltanaghaei et
al., [23] characterize occupancy states as {moving, stationary,
unoccupied} by leveraging WiFi PHY layer Channel state
information, with an accuracy of 96.7%. Wang et al., [24]
deploy cameras at the entrance of workspaces to count the

number of heads entering and leaving, using additional sensing
of per-hour CO2 levels, to alleviate false positive and false
negative errors.

B. WiFi-Camera Fusion

The limited prior work on fusing camera-based human lo-
calization with WiFi-based sensing typically lacks the robust-
ness to deal with various real-world artefacts and challenges.
In particular, [13] presented an approach for opportunistic
localization, where (a) vision-based object detection used
background subtraction methods (unlike our focus on more
modern DNN-techniques) and thus worked only for non-
stationary humans, and (b) the fusion estimate, based on a
linear weighted sum of WiFi & camera location estimates,
implicitly assume the presence of a single user with a single
device. Similarly, Domingo et al., [14] integrate WiFi and
camera-based location estimates for a finer-grained tracking
of trajectories of non-stationary humans, utilizing a highly-
instrumented environment with a significantly higher density
of WiFi APs and camera deployment (36 cameras over an
80m2 lab space, compared to our use of 2 cameras over an
85m2 area). This approach uses multiple camera views to
perform camera localization, and performs client-side WiFi
localization (using a custom Android App on each user’s
mobile device that provides RSSI measurements every 2 secs).
It is thus not directly applicable to our goal of performing such
localization universally, without explicit user participation.

Unlike these prior works, we consider a multi-person, par-
tially occluded environment (with both stationary & moving
subjects), tackle the device-person association challenge when
individuals are free to carry zero or multiple WiFi-enabled
devices and resolve the false-negatives of camera-based occu-
pancy estimation by including additional unmatched devices.

III. SYSTEM OVERVIEW

In our work, we set up a real-world testbed in an academic
research workspace (layout illustrated in Figure 1, including
camera locations denoted as C i and C Fi and representative
WiFi landmarks denoted by L i), instrumenting the area with
2 cameras spaced 8m apart, sending video feeds to our server.
We utilize the commercially deployed Aruba [25] WiFi AP
infrastructure to perform server-side indoor localization. To
establish an understanding of baseline performance, we first
individually studied the accuracy of occupancy estimation
based on either WiFi-based server-side localization (using
the RADAR [26] algorithm) or camera-based human object
detection (using the YoLoV3 object detector [27]).

To illustrate the key challenge, Figure 2 plots the perfor-
mance of camera and WiFi system compared to the manually-
recorded ground truth in our ∼ 85m2 testbed space over
a 3 hour duration, estimated once every 2.5 minutes. We
observed that WiFi-based estimation produces significantly
higher counts (140.1% estimation error), most likely because
human tend to carry multiple WiFi-enabled personal devices.
Moreover, due to effects such as shadowing and multipath,
WiFi devices located outside the region of interest occasionally



Fig. 1: Floor Plan for Observation Area (with Camera & WiFi
Deployment) Fig. 2: WiFi & Camera vs. Ground Truth Occupancy

get mapped to fingerprinted landmarks inside, leading to a
spurious increase in the device count. Camera-based analysis,
on the other hand, provides better occupancy estimates (18.9%
estimation error), but suffers from multiple false negatives and
false positives (for example, human-like toy action figures
detected as humans). Our target is to reduce the occupancy
errors to approx. 15-20%, estimated over areas of roughly
25− 40 m2 (as desired by our candidate smart applications).
In this section, we outline the basic steps of WiFi-based
device localization and camera-based human object detection
(both reusing state-of-the-art techniques), deferring our novel
enhancements to the (a) camera-based estimation process and
(b) the subsequent fusion pipeline to Sections IV-V.

A. WiFi based Location Estimation

We estimate the WiFi-based occupancy by first comput-
ing the location of each device based on the fingerprinting-
based RADAR algorithm [26], as applied to server-side WiFi
measurements collected passively by WiFi APs. The WiFi
fingerprints are computed at designated landmarks, 4-5 meters
apart. In the default version of RADAR, the mean RSSI mea-
surements, obtained by multiple APs, are compared with the
fingerprint readings at different landmarks, and the device is
mapped to the landmark with the smallest Euclidean distance
(in the RSSI space). Because of a variety of well-known
artefacts (e.g., shadow fading, impact of humans, different
antenna gains of mobile devices), such an approach exhibits a
median localization error of ∼ 6−8 meters [7]. To improve the
localization accuracy, even if modestly, we utilize a modified
“weighted centroid” version of the base RADAR algorithm,
where (a) the localization procedure first finds the top-k (k = 3
in our implementation) closest landmark locations for each
location estimation interval (Tl = 5 secs), and (b) then
computes the device’s location ( Xr, Y r) as the weighted mean
of these top-3 locations, as follows:

Xr =
( x1

RSSIError1
) + ...+ ( xk

RSSIErrork
)

RSSIError1 + ...+RSSIErrork

(1)

Y r =
( y1

RSSIError1
) + ...+ ( yk

RSSIErrork
)

RSSIError1 + ...+RSSIErrork

(2)

Fig. 3: WiFi - Camera Fusion: Bipartite Graph Matching

B. Camera-based Estimation and WiFi-Camera Fusion

We now provide an overview of the basic components (as
part of the baseline approach) of the overall estimation process.
Camera based Occupancy Estimation: To compute occu-
pancy based on visual sensing, the individual frames obtained
from the monitoring cameras are first processed using a state
of the art object detection algorithm, such as YoLoV3 [27], to
extract the bounding box coordinates of the detected humans.
These boxes are subsequently converted from their on-screen
(pixel) coordinates to the real-world (physical) coordinates
via a process of coordinate mapping. Direct application of
such DNN-based object detectors were seen to result in
both high false positives and false negatives due to factors
such as incomplete coverage (some portions of the physical
space are not surveilled, sometimes due to privacy concerns)
and multiple blind spots (occluded in the camera’s field of
view (FoV)). In particular, investigations with an off-the-shelf
detector and images from our ceiling-mounted CCTV cameras
were seen to result in 2-5 false negatives (FN) and ∼ 2 false
positives (FP) per frame.
WiFi-Camera Multimodal Fusion : The outputs from the
WiFi and camera-based localization systems are subsequently
fused together, based on the presumptive ability of each sens-
ing mode to compensate for each other’s errors, to develop an
improved estimation of the number of distinct human objects
within the region of interest. Central to such fusion and im-
proved occupancy estimation is the idea of human←→device



matching, where one or more devices localized by the WiFi
localization process is matched to one of the human beings
captured by “bounding boxes” embedded within an image
frame. This matching process is driven by the intuitive as-
sumption that a user will be physically proximate to his or
her personal devices. Figure 3 visually illustrates this core
concept, which can be modeled as a form of inexact bipartite
graph matching (b-matching) between a set of “device” (“D”)
nodes and a set of “human” (bounding box or “B”) nodes.
The inexact matching arises from the possibility that a single
human may have (and thus be associated with) multiple
devices or may not possess any WiFi-enabled device.

The b-matching step is further complicated by the presence
of visually occluded regions. Users in such an occluded region
would not be visible in the camera FoV, but may be repre-
sented by one or more localized WiFi devices. To incorporate
such “invisible users” in the overall occupancy estimate, we
increase the occupancy count by counting unmatched devices
located in such occluded regions. The final total occupancy
thus includes the (a) occupancy count of human objects
(camera bounding boxes), matched to one or more devices via
a b-matching algorithm; (b) unmatched devices located within
visually occluded regions and (c) any unmatched humans not
mapped to the devices due the distance constraints.

IV. IMPROVED CAMERA-BASED HUMAN LOCALIZATION

In this section, we describe an enhancement to camera-
based localization subsystem that makes it robust to the real-
world artefact of partial & occluded views of humans. The
enhanced approach improves the estimation of the physical
world coordinates of a human, from the pixel-level bounding
box coordinates extracted from individual image frames by a
standard, state-of-the-art object detection DNN, YoLoV3 [27].

The classic technique for translating pixel coordinates to
physical world coordinates involves the use of a homographic
mapping function [28]. However, building such a homographic
matrix requires precise knowledge of the camera’s pose and
the 3-D layout of the space, and is also subject to the intrinsic
indeterminacy of projecting a 3-D space to 2-D coordinates:
from pure geometry, a point in a 2-D space corresponds to a
line in the 3-D space within the camera’s FoV (field-of-view).

To overcome these limitations, we first trained a linear
regressor (with annotated ground-truth data) that takes these
features as covariates and outputs the corresponding x and
y coordinates in the physical space (z = 0, implying that
we attempt to map the human’s coordinate on the floor of
the lab). This simple regression model, however, turned out
to have high error variance (as high as 17 meters). This
problem persisted when we shifted to a multiclass logistic
regressor, where a detected object was mapped to one of
several location classes (each corresponding to a location
grid). Each human object, identified by the object detector
(YoLoV3) is associated with the following bounding box
values: bounding box centers (Xcenter, Ycenter), bounding
box height and width (Bdht & Bdwd)). Closer inspection of
the actual captured data revealed a major reason for this error:

as illustrated in Figure 4, due to occlusion and partial views,
the DNN human detector can provide a bounding box for three
distinct types or classes of human views: (a) full-body (FB), (b)
torso-only (TO) and (c) head only (HO), each of which may be
present in one or more images. Each of these classes of views
are associated with different distances of human objects from
the camera. Accordingly, at the same physical location, the
size of the bounding boxes, can vary depending on the class
of view above.

Fig. 4: Frame with Differently-Sized Bounding Boxes and
Distinct Human Views

To tackle this variation, we incorporated a second DNN
model to perform head/face detection–more specifically, given
a set of pixels belonging to a bounding box, we apply
a retrained YoLoV3-Head Detection DNN model [29] on
the extracted set of pixels to compute the bounding box
coordinates of the ‘head/face’ object, which provides two
additional covariates, Hdht and Hdwd, corresponding to the
height and width of the detected head/face. (Note that in
cases where the YoLoV3 detector just isolated a human’s
torso, these variables would be null.) Our modified human+
head regressor now takes output of two cascaded object
detectors (one identifying the human object with the other
identifying an embedded head object) to derive the following
6 covariates: (XCenter, YCenter, BBht, BBwd, Hdht, Hdwd),
which are then used in the logistic regression model:

XC , Y C = Logistic(XC , YC , BBht, BBWd, Hdht, Hdwd)
(3)

The Hdht and Hdwd parameters effectively help to distinguish
between a location that is closer to a camera and one that’s
further away.
Performance Evaluation: Table I provides examples of the
usefulness of these distinct covariates in the classification. As
observed from the data, human objects located at landmark
locations 117 and 122 have similar center coordinates, height
and width for their YoLoV3-generated bounding boxes, but the
significant difference in the size of the head object helps to
disambiguate between these two candidate landmark locations
(which are physically 8.5 meters apart, with landmark 122
being closer to the camera and consequently capturing a



larger-sized head). Similarly, landmark locations 33 and 41
are physically 6 meters apart: the width of the bounding
box and the height and width of the embedded head objects
help to discriminate between individuals located at these two
landmarks.

TABLE I: Camera-based Localization: Classifier Covariates at
Different Landmarks

X Cen Y Cen BB ht BB Wd Hd ht Hd Wd Loc.
95 43 190 583 21 25 117
95 44 187 581 135 148 122
16 33 115 95 74 73 33
16 28 103 170 31 28 41

Empirical evaluation showed that the initial 4-covariate
classifier (mapping a bounding box to a landmark) achieved
an accuracy of 90.2% with the images captured, with the
accuracy increasing to 97.9% when the enhanced 6-covariate
classifier (which included the head width and height) model
was used. Figure 5 then plots the error in such human object
localization (for both the baseline 4-covariate regressor and
the refined 6-covariate model), as a function of the ground-
truth distance of the human from the camera. We see that the
enhanced regressor is able to localize humans across a range
of camera-human distances, irrespective of whether the camera
obtains a full or partial view, with an error ≤ 1.5− 2 meters,
which is well within the spatial resolution desired for our final
occupancy estimator.

Fig. 5: Camera Localization Error

V. WIFI - CAMERA FUSION ALGORITHM

We now describe our fusion algorithm that computes overall
occupancy from the (a) estimated set of device locations
(obtained by WiFi) and (b) human locations (determined from
camera data). The fusion algorithm first models the problem
of establishing an association between the devices and the
set of humans (bounding boxes) as one of inexact bipartite
graph matching, between one set of nodes containing the
WiFi-based device location coordinates and the camera-based
human object coordinates. The weight of an edge between a

pair of nodes in this graph represents the Euclidean distance
between the corresponding physical coordinates. We specify
a maximum permissible distance between any viable node
pair, thereby defining the “admissible edges” in the graph.
Our inexact b-matching optimisation algorithm then selects
the set of edges that provide the best collective matching
across all such viable node pairs, while accommodating the
reality that one individual can be associated with multiple
personal devices. Formally, we constrain a valid matching by a
parameter “b” (set to b = 2 in our implementation), indicating
one human object may be matched to a maximum of b devices
(in our case, typically, a smartphone and a personal computer).

As b − matching is known to be NP-Hard, we utilize a
heuristic to compute the maximum number of such (device,
bounding box) associations subject to the above constraints.
As a pre-processing step, we first compute the bipartite graph,
containing only the ”admissible edges”. Admissibility is de-
fined based on a distance constraint: any feasible node pair
should have a distance that lies in an interval {Dmin,Dmax}.
These values are derived empirically. Figure 6 gives the
CDF plot for the localization error, obtained by placing
test devices at different landmarks, defined as the Euclidean
distance between the ground-truth location and the RADAR-
based estimate. Based on the plot, we set an admissible range
{Dmin =3.5m, Dmax = 6m}, corresponding roughly to the
10th and 70th percentile of this estimation error. The fusion
algorithm then picks the ”optimal” set of associated (device,
bounding box) pairs. Finally, we obtain the occupancy count
based on a combination of such associated (device, bounding
box) pairs as well as the remaining unassociated nodes.

Fig. 6: CDF of Observed WiFi localization error (meters)

A. b-matching based Optimization

The primary goal of our b-matching algorithm is to find
a maximal matching–i.e., one that finds the largest number
of feasible (device, human) associations. The input to such
an algorithm consists of a set of world coordinates of the
bounding boxes (XC , Y C) of only human objects1, computed
as described in Section IV, estimated on a ”per-frame” basis
and a set of world coordinates of the devices (XR, Y R) as
described in Section III, estimated from the real-time WiFi
feeds from Aruba infrastructure at every ”5sec” interval.

1While DNN object detectors can detect other object classes, we consider
only identified “human objects”.



Given the differences in sampling frequencies, we perform b-
matching only on the frames (once 5 secs), where the camera
and WiFi location timestamps coincide.

Mathematically, the maximal matching objective can be
described as follows. Let Eij denote an edge between the
ith bounding box and the jth device, with B & D denoting
the total number of bounding boxes and devices, respectively.
Let I(i, j) be an indicator function, such that I(i, j) = 1
if bounding box i is associated with device j. Moreover, a
bounding box is said to be “covered” (CB(i) = 1) if it is
associated with at least one device (i.e.,

∑D
j=1 I(i, j) ≥ 1),

while a device is said to be “covered” (CD(j) = 1) if it is
associated with 1 bounding box (i.e.,

∑B
i=1 I(i, j) = 1). The

b-matching objective is then as follows:

bmatch(Opt) = max
{I(i,j}

{
B∑

i=1

CB(i) +

D∑
j=1

CD(j)}

subject to the following constraints
D∑

j=1

I(i, j) ≤ b; // bounding box matched to at most 2 devices

B∑
i=1

I(i, j) <= 1; // each device matches to at most 1 human;

I(i, j) = 0 iff;Dmin < Eij < Dmax // edge feasibility check
(4)

Fig. 7: Illustrating the Iterative b-matching Algorithm

We developed an improved b-matching heuristic that op-
erates iteratively through a three-step matching process, with
each iteration being applied on a reduced subset of nodes that
excludes nodes that have already met their association upper
bound (2 for bounding boxes, 1 for devices). Algorithm 1
details the pseudocode of the b-matching process. Each iter-
ation starts off with a device-centric matching step, whereby
we match devices that have only one feasible edge–i.e., can
be mapped to only a single candidate human. Subsequently,
we execute a human-centric matching step, where we match
any available bounding boxes that have only a single feasible
edge (i.e., can be mapped to only a single available device). In
case of multiple such bounding boxes, the device is matched
to the closest bounding box–i.e., the one with the least edge
weight. If neither of the above steps are feasible, we execute
a greedy assignment step, whereby we pick the edge (among
the remaining unassigned (box, device) edges) with the lowest
weight and match the corresponding bounding box and device.

Algorithm 1 WiFi - Camera Fusion Logic

1: {Input - (Xc, Y c) : Per-Frame Camera World Coordinates,
(Xr, Y r) : Radar localization coordinates for each device
at 5sec interval.}

2: if i < j then
3: {Match bounding box with device }
4: b=2 {Each bounding box is mapped to multiple devices.

Thus, b=2.}
5: else
6: Match device with bounding box.
7: b=1 {Each Device is mapped only to one bounding box.

Thus, b=1.}
8: end if
9: G : Call Construct-Graph((XC , Y C),(XR, Y R))

10: OCR : Call BFS(G) {OCR is the fusion occupancy count
}

11: OF : Occupancy Final = OCR + OC + OR {}OC

represents the number of unmatched bounding boxes, OR

is the count of devices identified across occluded region
11: procedure CONSTRUCT GRAPH((XC , Y C),(XR, Y R))
12: G.Nodes((XC , Y C)1...i,(XR, Y R)1...j ) {Add nodes to

graph}
13: for Each (XC , Y C)1 to (XC , Y C)i and (XR, Y R)1 to

(XR, Y R)j do
14: Eij = ((XC −XR)−Y C − Y R)2 {Here, E represents

the distance between camera and RADAR coordinates.}
15: if Dmin < Eij < Dmax then
16: G.AddEdge(Eij) {Add edge to graph}
17: end if
18: end for
18: end procedure
18: procedure BFS(G)
19: BD = GBD

{Create set of devices that are mapped to each
bounding box}

20: for Each Edge in GEdges do
21: BD = Minimum(COUNT (BD))
22: if COUNT (BD) = 1 then
23: Selected-Edges.add(G.Edge(contains(BD)))
24: else
25: BD = Minimum(Distance(BD)
26: Selected-Edges.add(G.Edge(contains(BD)))
27: end if
28: G.remove(Selected-Edges)
29: end for
29: end procedure=0

This sequence of steps is then repeated iteratively, until no
further matching is possible.

Figure 7 provides an illustrative example of the b-matching
algorithm. The figure illustrates the feasible set of edges, and
their corresponding weights, between 4 bounding boxes (B1-
B4) and 6 devices (D1-D6). In the first iteration, B3 is mapped
with D6 & D4 and B1 is matched to D5, as these are the
only possible matching for these devices. Subsequently, B4 is



matched with D2, as this is the only feasible matching for this
bounding box. Based on these matchings, devices D2, D5 and
D6 are excluded from further consideration. In the next round
of iteration, B2 is matched with D1 as this is the only feasible
remaining assignment for B2.

B. Computing the Final Occupancy Count

At the end of the matching process, we may still be left with
a set of unmatched bounding boxes and a set of unmatched
devices. The final occupancy count is then computed as:

1) We first compute, the sum of all the matched boxes
(OCR) and the unmatched boxes (OC), representing the
total number of observed human objects.

2) Subsequently, for the unmatched devices, we form and
count OR, which is likely associated with a human that
was either located in an occluded region or was not
detected by the DNN-based object detector.

The overall estimated occupancy for the given region is then
computed as OCR +OC +OR.

C. Aggregation

After computing occupancy at every time epoch (5secs), we
smoothen the estimate over a longer time interval (5 mins),
as our applications do not require more frequent estimates.
Specifically, to eliminate outliers, we compute the median of
the occupancy count over the 5∗60

5 =60 individual estimates.

VI. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the efficacy of our
proposed system, relative to alternative WiFi or camera-based
approaches. We first present results over the approx. 85m2

research lab area, described in Figure 1 and subsequently study
the accuracy of occupancy detection over a smaller 25m2 area
(which helps us assess the feasibility of using the system for
finer-grained occupancy estimation). To test the system under
varying levels of occupancy (driven by the natural arrival &
departure patterns of lab personnel or visitors), we conduct
the experimental study over 4 different days, capturing the
occupancy data and ground truth for approx. 1.5-2 hours/day.

A. Performance of Occupancy Estimation

We evaluate the performance of 3 distinct algorithms: (a)
the unimodal WiFi-based and camera-based strategies, (b)
our proposed b-matching based approach, with occupancy
estimates once every 5 secs, and (c) our smoothed b-matching
based estimate, aggregated once every 5 mins.

TABLE II: Average Occupancy Estimation Error

Component Error(In Percentage)
WiFi 62.9

Camera 25.3
BMatch 20.7

BMatch (Aggregated) 16.2

We present detailed results on a variety of occupancy
conditions, comparing the proposed techniques against the
manually-annotated ground truth. Table II lists the average
percentage estimation error (averaged over 3 different days
under different occupancy levels) for the different techniques.

Based on the estimation error (and results obtained on
different days), we derive the following observations:
• WiFi-based techniques perform very poorly, resulting in a

significant over-estimate of the occupancy values. The av-
erage error accounted for WiFi-based technique is reported
to be 65.5%, 54.7% and 69.9% on 3 different days, which
is significantly higher than the joint Camera-Wifi b-match
approach whose average error is reported to be 27.0%,
13.3% and 22% respectively.

• In contrast, Vision-based people counting is significantly
more accurate in estimating the number of occupants across
different crowd settings. Across the ∼ 6 hours of data
collected over 3 days, the baseline Camera method offers
an average estimation error of 36%, 21% and and 18.9%.
However, the occupancy count error by itself does not
provide a complete picture, as the false negatives (when
human objects are missed by the object/people detector) and
false positives can often cancel each other in terms of the
overall occupancy estimate.

• Compared to the other baselines, our proposed approach,
which fuses WiFi+ camera estimates and also includes addi-
tional unmatched devices in occluded regions, offers a lower
average error of 20.7%, and performs consistently across a
range of occupancy levels. When smoothed by aggregating
such estimates, the average error drops to 16.2%, which
represents a 9% and 48% reduction in error compared to
the camera and WiFi-based estimators, respectively. Note
that the current matching uses just a single camera frame
(time-synced to the WiFi estimate), which is especially
susceptible to false negatives. Aggregating human objects
detected across multiple frames (in the 5sec interval) should
further reduce the vision-based estimation errors, due to
false positives and negatives of the object detectors–we plan
to study this in future work.

Occupancy Count vs. Occupancy Level: We categorize the
occupancy levels over the entire research lab area into 3 broad
classes: Low (Ground-Truth Occupancy Count: 3-7), Medium
(Ground-Truth Occupancy Count: 8-13) and High (Ground-
Truth Occupancy Count: 14-17). Figure 8 plots the average
occupancy count for all 4 approaches, for three different
occupancy levels. Overall, we see that b-match is able to track
the occupancy levels fairly well, and with lower std. deviation.

B. Finer-Grained Occupancy Estimates

One of our eventual goals is to obtain accurate estimates of
occupancy at finer spatial granularity–i.e., over smaller-sized
regions (as compared to the size of a 85m2 research lab)–so as
to enable applications such as occupancy-driven smart lighting.
To quantify the potential benefit of our approach, we compute
and quantify the occupancy error for a smaller 25m2-sized
region (Region A in Figure 1). Figure 9 plots the estimated



Fig. 8: Occupancy Estimation for Different Crowd Levels

and ground truth occupancy variation vs. time, under High
occupancy. We make the following empirical observations:
• The camera-based method (Camera) achieves poor accuracy,

underestimating the true occupancy primarily because the
object detector DNN is unable to detect humans in the
more distant areas under observation. In particular, the DNN
detected 2 individuals present in farther views only 60%
of time, in contrast to a detection rate of over 99% for
individuals located closer to the camera.

• As before, the WiFi based occupancy estimator had the
highest error. The overestimate in this case was not just
due to the phenomena of individuals carrying multiple
devices, but also due to the inherent 6-8 meter error of WiFi
localization (as shown in Figure 6), which often leads to the
inclusion of extraneous devices.

• The use of b-match (with Aggregation) resulted in an
average estimation error of 29%, a significant improvement
over both camera-based errors (43%) and WiFi-based errors
(226%). In absolute terms, b-match ensured that its estima-
tion error was less than 1-2 individuals 75% of the time.
Overall, we believe that our results demonstrate the supe-

riority of b-match techniques for fusing WiFi and camera-
based data. While camera-based approaches can sometimes be
competitive, they require a far more extensive deployment to
eliminate blind spots and to restrict each camera’s monitoring
zone to relatively short (3-4 meter) distances.

VII. CONCLUSION

In this paper, we have described and evaluated an approach
for accurate human occupancy estimation in indoor public
spaces that fuses together (a) location estimates of WiFi-
enabled devices, obtained via passive infrastructure-side mon-
itoring of WiFi transmissions, and (b) location coordinates of
human subjects obtained via executing state-of-the-art DNN-
based object detectors on camera-generated images. The main
challenge is to overcome the non-negligible errors that arise
from various real-world artefacts, such as the use of multiple
personal devices by a single individual and the presence of
partial/full views of humans in camera images. To robustly
and accurately map DNN-extracted image human bounding

boxes to physical coordinates, we proposed an enhanced
regressor-based mechanism that works across a variety of {full
body, torso, head} views of humans at different distances.
Subsequently, we introduced our novel inexact bipartite graph-
matching algorithm to match human objects to one or more
WiFi devices, as part of an occupancy estimation strategy that
is especially resilient to camera blind spots and occlusions.
Experimental studies conducted over an approx. 85m2 indoor
multi-occupant space shows that b-match (with Aggregation)
is able to estimate the occupancy count with an error of ∼
16%, across a wide variety of crowd levels, human movement
behavior and ambient lighting conditions; over a smaller 25m2

region, the estimation error degrades only modestly to ≤30%.
Our ongoing work is investigating several possible direc-

tions of improvement, including: (a) the refinement of such
estimation based on analysis of historical occupancy patterns,
and (b) the use of more sophisticated “temporal-smoothing”
mechanisms to both eliminate the inclusion of transient indi-
viduals and overcome the false negatives and positives of the
visual object detector.
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