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Key role of MIF-related neuroinflammation
in neurodegeneration and cognitive
impairment in Alzheimer’s disease
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Abstract

Background: Macrophage Migration Inhibitory Factor (MIF) is a potent proinflammatory cytokine that promotes
the production of other immune mediators. MIF is produced by most cell types in the brain including microglia,
astrocytes and neurons. Enhanced expression of MIF might contribute to the persistent activation of glial, chronic
neuroinflammation and neurodegeneration. Here, we investigated the effect of MIF on inflammatory markers and
spatial learning in a mouse model of sporadic AD and on tau pathology in AD patients.

Methods: We examined the effects of MIF deficiency and pharmacological MIF inhibition in vitro and in vivo. In vitro,
quantitative PCR and ELISA were used to assess cytokine production of STZ-treated glial cells. In vivo, C57BL/6 mice were
subjected to intracerebroventricular streptozotocin injection (3mg/kg, ICV-STZ). Neuroinflammation and contextual
learning performance were assessed using quantitative PCR and fear conditioning, respectively. Pharmacological MIF
inhibition was achieved with intraperitoneal injections of ISO-1 (daily, IP, 20mg/kg in 5% DMSO in 0.9% NaCl) for 4 weeks
following ICV-STZ injection. The findings from ISO-1 treated mice were confirmed in MIF knockout C57BL/6. To assess the
role of MIF in human AD, cerebrospinal fluid levels of MIF and hyperphosphorylated tau were measured using ELISA.

Results: Administration ICV-STZ resulted in hippocampal dependent cognitive impairment. MIF inhibition with ISO-1
significantly improved the STZ-induced impairment in contextual memory performance, indicating MIF-related
inflammation as a major contributor to ICV-STZ-induced memory deficits. Furthermore, inhibition of the MIF resulted in
reduced cytokine production in vitro and in vivo.
In human subjects with AD at early clinical stages, cerebrospinal fluid levels of MIF were increased in comparison with
age-matched controls, and correlated with biomarkers of tau hyper-phosphorylation and neuronal injury hinting at MIF
levels as a potential biomarker for early-stage AD.
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Conclusions: The present study indicates the key role of MIF in controlling the chronic cytokine release in
neuroinflammation related to tau hyperphosphorylation, neurodegeneration, and clinical manifestations of AD,
suggesting the potential of MIF inhibition as therapeutic strategy to slow down neurodegeneration and clinical disease
progression.

Keywords: Macrophage migration inhibitory factor, Neuroinflammation, Alzheimer’s disease, Cerebrospinal fluid,
Cognitive impairment, Microglia, Astrocyte, ISO-1

Introduction
Alzheimer’s Disease (AD) is an aging-associated disease
defined by progressive neurodegeneration, neuroinflam-
mation and the presence of protein aggregates consisting
of amyloid β (Aβ) and hyperphosphorylated tau (Selkoe
2001). Existing therapeutic options for AD remain inad-
equate. While Aβ-centric therapies have largely failed to
show clinical efficacy, several immunomodulatory thera-
peutic approaches have been investigated to target chronic
neuroinflammation as a key component of AD pathogen-
esis (Varvel et al. 2009; Lim et al. 2000; Yan et al. 2003). A
rationale for implicating inflammatory diseases in AD eti-
ology has been provided by genomic studies showing asso-
ciations between AD and polymorphisms in a number of
genes involved in immune cell function, such as Apolipo-
protein E (APOE), Triggering receptor expressed on mye-
loid cells 2 (TREM2), CD33 (Jonsson et al. 2013; Guerreiro
et al. 2013; Griciuc et al. 2013).
Epidemiological evidence and studies in different mouse

models have suggested that blocking chronic inflammation
associated with the innate immune response of CNS atten-
uates AD-like pathology (Bacher et al. 2008; Walker and
Lue 2007). Therefore, finding a proper target within this
inflammatory cascade is of utmost importance, keeping in
mind that and ideal therapeutic strategy should inhibit det-
rimental aspects of the inflammatory response while leaving
the beneficial anti-inflammatory response unaffected.
Expressed by neurons and glia, macrophage migration in-

hibitory factor (MIF) represents a relevant target for anti-
inflammatory therapies due to its central role in inflamma-
tion (Hoi et al. 2007). The MIF protein forms a donut-
shaped homo-trimer with each monomer consisting of six
beta sheets and two antiparallel alpha helices (Sugimoto
et al. 1996). Depending on the concentration of the protein,
both the MIF monomer and trimer exert biological functions
(Mischke et al. 1998). These functions comprise enzymatic,
cytokine, and chemokine activities (Lue et al. 2002). In con-
trast to most proinflammatory cytokines, MIF is stored in
vesicles as a preformed mediator (Nishino et al. 1995).
Release of MIF from different cell types is triggered by

proinflammatory stimuli with lipopolysaccharide (LPS)
(Bernhagen et al. 1993), DNA damage and others (Wang
et al. 2016). It acts as an early stage cytokine by initiating
the inflammatory response and a mediator to maintain

the inflammatory response (Bernhagen et al. 1993; Roger
et al. 2016). The increase of MIF as an early-stage cytokine
is also associated with the release of other cytokines,
contributing to chronic neuroinflammation and possibly
accelerating the neurodegenerative process. Initially proin-
flammarory cytokines activate microglia and subsequently
enhance the clearance of detritus from pathological pro-
cesses. However, prolonged expression of these immune
mediators might have detrimental effects in the CNS
(Krstic and Knuesel 2013).
MIF’s role in AD pathology has been investigated in

many aspects, including immune response, insulin regula-
tion and oxidative stress (Bacher et al. 2010; Kassaar et al.
2017). In AD pathology, MIF mainly binds the CD74/
CD44 receptor complex followed by multiple intracellular
signaling pathways, such as the activation of the extracel-
lular signal regulated kinase (ERK) 1 and 2, the
Phosphoinositid-3-Kinase (PI3K)-Akt signal transduction
cascade, Nuclear factor ‘kappa-light-chain-enhancer’ of ac-
tivated B-cells (NFκB), and the Adenosinmonophosphat
(AMP)-activated protein kinase (AMPK) pathway (Su
et al. 2017). Of note, a recent report performed on human
AD brain samples suggests a causal relationship between
certain CD44 splice variants and neuronal cell death, thus
indicating that CD44 contributes to AD pathology in
humans (Pinner et al. 2017). Furthermore, it has been
demonstrated that attenuation of MIF in experimental
models of AD dampens the astrocytes activation and tau
hyperphosphorylation (Li et al. 2015).
A number of AD mouse models exist. Most transgenic

models display overexpression of mutated human Aβ or
tau proteins. While these models were crucial in under-
standing the effects of Aβ and tau proteins on cellular
brain function and cognition, clinical studies targeting
Aβ and tau have so far failed to show efficacy (Nazem
et al. 2015). However, after Biogen’s initial failure in two
clinical trials of Aducanumab, reanalysis of the clinical
trial data presented during the Clinical Trials in Alzhei-
mer’s Disease conference in December 2019, surprisingly
suggested a turnaround by providing information that
the highest dose of aducanumab just might slow down
the cognitive and functional decline caused by AD.
The ICV-STZ mouse model is a non-transgenic mouse

model mimicking some aspects of sporadic AD, including
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neuroinflammation, disruption of tau phosphorylation, in-
sulin signaling, Aβ pathology and cognitive deficits (Nazem
et al. 2015; Grunblatt et al. 2007; Salkovic-Petrisic et al.
2006; Chen et al. 2012; Grieb 2016; Zhang et al. 2018).
Here we investigated the role of MIF as upstream

regulator for cytokine production from glia cells during
neuroinflammation. It was shown before that MIF defi-
ciency attenuates tau hyperphosphorylation and astro-
cytic activation (Li et al. 2015). However, the effects of
MIF deficiency on proinflammatory cytokines and cogni-
tion in vivo in the ICV-STZ model have not yet been ad-
dressed. To this end, we have assessed the STZ-induced
inflammatory response in vitro and in vivo in ISO-1
treated and in MIF deficient mice. Furthermore, we
found a robust correlation between MIF levels and
hyperphosphorylated tau in the cerebrospinal fluid (CSF)
of AD patients. This is in line with a previous report that
stated that MIF-related inflammation is associated to
amyloid pathology, tau hyperphosphorylation, and neur-
onal injury at the early clinical stages of AD (Oikono-
midi et al. 2017).
Our findings corroborate a crucial role of MIF in AD

pathology and highlight its diagnostic and therapeutic
potential.

Methods
Primary microglia and astrocytes cell culture
Primary microglia were prepared from mice at postnatal
day p3. Using magnetic activated cell sorting technology
by MACS® Neural Tissue Dissociation Kit following the
manufacturer’s protocol. Astrocytes cells were separated
from the forebrains of mouse pups at E16. Cerebellum
was removed and sterile scalpel was used to incise down
the midline of the brain. Tissues were dissected a culture
dish containing 37 °C HBSS. The isolation of the cells
was performed in accordance with the Siebenheber and
Wooten protocol (Seibenhener and Wooten 2012).
Cells from both sexes were included in the culture.

DMEM medium with 10% glucose, 10% fetal bovine serum
(FBS, Thermo Fisher Scientific, Waltham, MA, USA) and
1% penicillin-streptomycin (Thermo Fisher Scientific) was
used to maintain the cells. The purity of isolated microglia,
astrocyte cells was determined by Western blot using anti-
Iba1 (Fujifilm Wako Chemicals, Osaka, Japan), GFAP (Cell
Signaling Technologies, Frankfurt am Main, Germany) and
β-Actin (Cell Signaling) antibodies prior to performing
in vitro experiments (Suppl. Figure 1).
Streptozotocin (STZ, Zanosar™ Teva Phramaceuticals,

North Wales, PA, USA) was used to for cell treament. Cell
viability was determined by XTT assay to determine the
working concentration of the STZ for each cell type. Su-
pernatants were collected for ELISA (R&D Systems, Min-
neapolis, MN, USA) at different time points, and the cells

were used for isolation of mRNA using QIAGEN RNeasy
mini-kit (Qiagen, Hilden, Germany).

Animals
Male C57BL/6 (n = 20) and male MIF-KO (n = 20) mice
were used for this study (6 month, Jackson Laboratories,
Bar Harbor, ME). MIF KO mice were backcrossed into
C57BL/6 for six to eight generations and bred using
homozygous MIF KO animals (Jackson Laboratories, Bar
Harbor, ME, USA; (Bozza et al. 1999)). Genomic PCR
was performed to genotype MIF locus of all progeny.
Covariates such as litter size (5 mice per cage), cohort
size (n = 10 mice tested at a time) and enrichment were
kept constant across the tested groups. The mice were
kept on a reverse light/dark cycle (9 am to 9 pm: dark)
with ad libitum access to chow and water. All experi-
ments were performed at the dark cycle and in accord-
ance with the NIH guideline under approved protocols
by animal Committee of the Feinstein Institute for Med-
ical Research, Northwell Health System.

Intracerebroventricular (ICV) injection of STZ or vehicle
STZ (Zanosar™ Teva Phramaceuticals) or vehicle (phos-
phate saline buffer used for dissolving STZ) were stereo-
taxically injected into the left lateral ventricle of 6-
month-old male C57BL/6 or MIF-KO mice. The animals
were anesthetized using 3% inhalant Isoflurane (Attane™,
Minrad Inc., Orchard Park, NY, USA) and positioned
into a stereotactic apparatus (David Kopf instruments,
Tujunga, CA, USA). Each animal received 3.0 mg/kg
STZ in 2.0 ul 0.9% saline into the left ventricle of the
brain, using the bregma zero coordinate (place of injec-
tion, − 1.0 mm lateral, − 0.3 mm posterior and − 2.5 mm
below). For analgesia, animals received buprenex post
operatively 0.1 mg/kg subcutaneously.
ISO-1 was synthesized at the Al-Abed lab as previ-

ously described (Xue et al. 1997). The ICV-STZ group
received either 20 mg/kg ISO-1 in 5% DMSO in 0.9%
NaCl or vehicle (5% DMSO in 0.9% NaCl) starting day 3
after surgery. CNS efficacy of ISO-1 has previously been
demonstrated (Conboy et al. 2011). Behavioral tests were
performed 28 days after the surgery. Brains were removed
immediately, the hippocampus was isolated, homogenized
in TRIZOL reagent (Thermo Fisher Scientific) and flash
frozen in liquid nitrogen followed by storage at − 80 until
mRNA isolation.

Quantitative PCR
The hippocampi of the animals were stored in 200 μl TRI-
ZOL reagent (Thermo Fisher Scientific) for RNA isolation.
50 μl 1-Bromo-3-chloropropan was added to the samples
and the mRNA was isolated using QiAgen mRNA isola-
tion kit (Qiagen). 0.5 μg RNA was retrotranscribed using
iScript cDNA synthesis kit (Biorad, Hercules, CA, USA).
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Primers were designed based on accession numbers from
a library of primers for SYBR green and were ordered
from Fisher Scientific. Quantitative PCR (qPCR) was per-
formed on a LightCycler 480 (Roche Life Science, Basel,
CH) using SYBR Green Master Mix (Merck, Darmstadt,
Germany). The quantity of target genes was normalized to
housekeeping gene of choice (β-actin) using the compara-
tive Threshold Cycle (CT) method (ΔΔCT), and n = 10
samples were used for controlling each cohort. In this
method, the average of the Ct values for the house-keeping
gene and the target genes of interest are compared in the
experimental and control conditions, returning 4 different
values. ΔΔCT is calculated by subtracting differences be-
tween target and housekeeping values under control condi-
tion from differences between target and housekeeping
values under experimental conditions. Value of 2^ ΔΔCT is
calculated to get the expression fold change. Results were
expressed as mean ± standard error of the mean (SE) of at
least four different animals for each experimental group.

Behavioral assessment, fear conditioning
Fear conditioning was used for assessing contextual mem-
ory in mice. It was performed in a conditioning chamber
(clear Plexiglas, dim light, metal grid floor) with a video
camera mounted on the top of the chamber for recording
the trials. FreezeFrame software (Coulbourn Instruments,
Holliston, MA) was used to analyze the videos. Mice were
habituated to the chamber on the day 1 for 10min. On
day 2, mice were given five paired conditional stimuli
(tone, 20-s long, 5 kHz, 80 dB) co-terminated with an
unconditional stimulus (foot shock, 1 s, 1 mA). On day 3,
animals were placed back in the chamber and ‘freezing’ of
each individual mouse was measured as fear response in
the form of total freezing time.
Blood plasma and cerebrospinal fluid MIF levels in pa-

tients with AD and controls.
Cerebrospinal fluid (CSF) and plasma MIF levels were

measured in subjects with early clinical AD (i.e. mild cog-
nitive impairment (MCI) or mild dementia with core AD
pathology confirmed by well-established CSF biomarkers;
N = 19) and healthy controls with normal cognition and
matched for age, gender and education (N = 14). As an
important proportion of elderly subjects with normal cog-
nition may have cerebral AD pathology thus being at pre-
clinical stages of the disease, we included in the control
group only participants with normal CSF AD biomarkers
as defined as a CSF ptau 181/Aβ1–42 ratio < 0.0779, as
previously described (Popp et al. 2017). All study partici-
pants were recruited and assessed at the Department of
Psychiatry, University Hospital of Lausanne, Switzerland.

Ethical statement
All in vivo animal experiments were performed in accord-
ance to the National Institute of Health (NIH) guidelines

and under protocols approved by the institutional animal
care and use committee (IACUC) of the Feinstein Insti-
tute for Medical Research. The institutional ethical com-
mittee from the University Hospitals of Lausanne
approved the protocol of the human study (No. 171/2013)
and all participants signed written informed consent.

Data analysis
Graphs were prepared using Prism software. Data are
expressed as means ± SEM. Statistical analysis was per-
formed using the R program environment or Prism soft-
ware (Team RC 2013). For fear conditioning, the daily
performance of the treatment groups was analyzed using
One or Two-way ANOVA followed by paired student T
test or Bonferroni’s post-test. Paired student t test was
performed on ELISA results to test against the null hy-
pothesis and Tukey test was used to assess differential
expression on qPCR data.
To verify whether MIF concentrations differ between

subjects with AD and controls we used the Kruskal-
Wallis test for group comparison. Continuous variables
not normally distributed according to the Kolmogorov-
Smirnov test were log-transformed. To further explore
whether MIF concentrations may be related to amyloid
pathology, neuronal injury, and tau hyperphosphoryla-
tion two-sided correlation analyses between the MIF
levels and the CSF concentrations of Aβ1–42, tau and
ptau181, respectively, were performed using the Pear-
son’s statistics.

Results
Streptozotocin induced extracellular MIF release
Primary cell cultures of astrocytes and microglia from
C57BL/6 mice were incubated with 0.5 mM and 1mM
STZ (respectively for astrocytes and microglia). Using
ELISA, we observed a significant increase of extracellular
MIF levels in both cell types after 24 h (Fig. 1a). It has
been previously shown that upregulation of Mif tran-
scription is delayed (Lanahan et al. 1992) and that MIF
protein is pre-stored intracellularly, which allows for its
release as an early-phase cytokine (Atsumi et al. 2007).
ISO-1 was previously shown to block the tautomerase
active site of MIF molecule without affecting the amount
of the protein itself (Al-Abed et al. 2005).
STZ treatment induced MIF-dependent IL-1β and IL-6

production at both transcriptional and translational levels.
Using primary microglia and astrocytes, we assayed for

IL-6 and IL-1β cytokine production, at mRNA and protein
levels. IL-6 is classically considered a proinflammatory
cytokine which was also shown to have regenerative activ-
ity (Scheller et al. 2011). MIF regulates Il6 gene expression
by influencing NF-kβ (Chuang et al. 2010). Although astro-
cytes are known to be the main source of this cytokine
(Quintana et al. 2013), microglial expression of Il6
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Fig. 1 In-vitro results of STZ stimulation on murine Microglia and Astrocytes. a ELISA of MIF secretion in supernatants of astrocytes and microglia
after 24 h STZ treatment. Graphs represent the mean of n = 3 biological replicates (two technical replicates for each) with standard errors of the
mean (± SEM), (*P < 0.05, Student’s t test). b and c mRNA expression levels for different cytokine in response to STZ treatment in astrocytes (b)
and microglia (c) with and without ISO-1 treatment. d- f. Cytokine ELISA of astrocytes after 24 h STZ treatment. Data are means of n = 3
independent biological replicates, error bars represents ± SEM (*P < 0.05, Student’s t test). IL-6 (d), IL-1β (e) and IL-12p40 (f) were released in
response to STZ treatment in astrocytes using different concentrations of ISO-1 to inhibit MIF resulted in dose dependent decrease in cytokine
release in both cell types. g-i Cytokine ELISA in wild type microglia. IL-6 (g) IL-1β (h) and IL-10 (i) were measured after STZ treatment with and
without ISO-1. One-way ANOVA with Tukey’s multiple comparison test was performed. (*P < 0.05, **P < 0.01)
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increases dramatically in the brain of aged mice (Van Wag-
oner et al. 1999), which is associated with cognitive decline.
IL-6 secretion was increased both at RNA expression (Fig.
1b, c) and extracellular protein levels in response to STZ
treatment and attenuated by ISO-1 treatment (Fig. 1d, g).
IL-12p40 secretion in response to STZ was observed only
in astrocytes. It was attenuated in a dose dependent man-
ner in response to ISO-1 (Fig. 1b, f). Gene expression and
protein levels of IL-1β secretion were significantly and dose
dependently inhibited by the MIF inhibitor ISO-1 (Fig. 1b,
c, e, h). Thus, while STZ treatment triggered the secretion
of MIF, IL-1β and IL-6, the secretion of the latter two cyto-
kines was attenuated under ISO-1 treatment.

STZ-induced expression of IL-10 in microglia was not MIF
dependent
STZ was shown to induce the release of proinflamma-
tory mediators, such as IL-6 and TNF- α (Sun et al.
2005). To further investigate these findings in our
model, we investigated the anti-inflammatory cytokine
IL-10 on transcriptional and translational levels (Strle
et al. 2001). We found that STZ led to increased IL-10
secretion in microglia, which remained unaffected even
at the highest concentration of ISO-1 (100 μM, Fig. 1c,
i). Thus, MIF inhibition with ISO-1 had an effect on the
extracellular levels of the proinflammatory cytokines IL-
6, IL-1β and IL-12p40, but not on the anti-inflammatory
cytokine IL-10.

Pharmacological MIF inhibition did not affect cytokine
expression in ICV-STZ model
To investigate the effect of MIF inhibition on cytokine
production in the ICV-STZ in vivo model, mRNA was ex-
tracted from hippocampi of different experimental groups
of mice and reverse-transcribed into cDNA to investigate
expression of several inflammatory cytokines. As a first
step, we looked for upregulation in Gfap and Aif1 (encod-
ing the protein Iba1) as markers for astrocytes and micro-
glia. We observed a significant increase in both, Gfap and
Aif1, as well as the cytokines Il6 and Il12a (Fig. 2a-e). Ex-
pression of these genes was not affected in ISO-1 treated
ICV-STZ C57BL/6. However, we observed a downregula-
tion trend in the case of Gfap, Ifna2, Il6 and Il12a.

Pharmacological MIF inhibition in ICV-STZ mice influences
spatial strategy preference and contextual memory
It has previously been shown that ICV injection of STZ
is followed by tissue damage and neurodegeneration in
the hippocampus (Kraska et al. 2012), and the inhibition
of MIF in ICV-STZ model, attenuated the hyperpho-
sphorylation of tau protein and astrocyte activation (Li
et al. 2015). Considering the in vitro data for MIF inhib-
ition resulting in attenuation of cytokine release in both
microglia and astrocytes, we were interested in testing

hippocampal dependent learning contextual memory
using fear conditioning.
Before behavioral testing, we conducted a primary

screening to assess confounding effects of ICV-STZ. To
this end, mice were tested for muscle and spinal, spino-
cerebellar, sensory and autonomic functions. Notably,
we found no differences between ICV-STZ and ICV-Veh
groups (not shown).
ICV-STZ has been shown to induce contextual mem-

ory deficits in mice (Zhang et al. 2018). To assess the in-
volvement of MIF in contextual memory deficits, we
tested the behavior of the different experimental groups
using the fear conditioning paradigm. In this test, the re-
sponse to a chamber associated with a frightening ex-
perience can be quantified as increased freezing (time
spent without moving) by animals that remember this
chamber.
We observed no significant difference between Veh-IP

and ISO-1-IP (N = 10, daily, IP, 20 mg/kg) treated ICV-
STZ mice with respect to the amount of freezing during
the acquisition phase (Fig. 3a). This indicated that ISO-1
treatment did not affect the baseline response to the test.
Strikingly, ISO-1-IP treated ICV-STZ mice froze signifi-
cantly more in comparison to IP-Veh ICV-STZ animals,
indicating that inhibition of the MIF results in a signifi-
cant increase in the average freezing time of these ani-
mals, representing memory improvement (Fig. 3b).
Taken together, pharmacological inhibition of MIF using
ISO-1 prevented spatial reference and context learning
deficits in the ICV-STZ mouse model.

MIF is necessary for ICV-STZ induced cytokine production
To control for possible off-target effects of ISO-1, we ex-
amined the effect of ICV-STZ injection in MIF-KO
mice. Notably, we observed no upregulation in the
mRNA levels for glial markers such as Gfap and Aif1 as
well as the cytokines Il6 and Il12a in hippocampi of
ICV-STZ injected MIF-KO mice in comparison to ICH-
Veh, which served as control group (Fig. 4a). Consist-
ently with that, STZ-treated primary astrocytes isolated
from MIF-KO mice showed no increase in IL-6 produc-
tion assessed by ELISA compared to WT primary astro-
cytes (Fig. 4b). Notably, ICV-STZ and ICV-Veh treated
MIF-KO mice showed no differences in average freezing
time indicating preservation of contextual memory in
the absence of MIF (Fig. 4c). Thus, MIF deficient mice
were protected from ICV-STZ induced upregulation of
cytokines and context memory deficits.

Cerebrospinal fluid MIF concentrations are increased in
subjects with early AD and correlate with tau and
hyperphosphorylated tau levels
Given the previously established involvement of MIF in
tau hyperphosphorylation (Li et al. 2015) and our
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Fig. 2 In vivo regulation of GFAP, Iba1 and proinflammatory cytokines in different treatment groups of C57BL6 mice. qPCR of Gfap (a) and Aif1
(b), TNF-alpha (c), Il6 (d) and Il12a (e) ex vivo after hippocampal ICV-STZ. Graphs represent the mean ± SEM of 4 to 6 animals, tested in qPCR and
ran as duplicate technical replicates. One-way ANOVA with Tukey’s multiple comparison test was performed. (*P < 0.05)

Fig. 3 Contextual fear conditioning in ICV-STZ wild type animals when treated with ISO-1 vs Vehicle. a Freezing during trace fear-conditioning
(training session, n = 5 for each experimental group). b Freezing 24 h after fear conditioning session. Data is represented as mean ± SEM for n = 5
per group. Statistical testing was performed using Student’s t-test (*P < 0.05, n.s. - not significant)
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findings that MIF inhibition and deficiency protected
from ICV-STZ-induced cytokine induction and spatial
learning deficits, we were wondering about the role of
MIF in human AD. To this end we analyzed CSF levels
of MIF in patients with AD (see Table 1 for demograph-
ics and clinical characteristics of the included partici-
pants). CSF MIF levels, but not plasma levels were
increased at a trend level (p = 0.058) in AD subjects
compared to the controls (Bacher et al. 2010; Popp et al.
2009). While no correlation has been found between
CSF MIF levels and the global cognitive performance as
assessed by the Mini Mental State Examination (Folstein
et al. 1975) we observed a robust correlation between
the CSF levels of MIF with the CSF levels of tau and p-

tau 181 (Fig. 5). Notably, we found no correlation be-
tween CSF levels of MIF and Aβ1–42 (not shown).

Discussion
In this study, we explore the role of MIF in neuroinflam-
mation, tau phosphorylation and cognitive deficits in a
mouse model of sporadic AD and human subjects with
AD. In vitro experiments on primary glia cell cultures
suggested a role of MIF in promoting neuroinflamma-
tion, by regulating the production of other proinflamma-
tory cytokines. We demonstrated that pharmacological
MIF inhibition and MIF deficiency conveyed protection
from spatial learning deficits in the ICV-STZ mouse
model of sporadic AD. Finally, phosphorylation of tau

Fig. 4 Effects of MIF deficiency in MIF-KO mice and cells, in vitro and ex vivo and in vivo. a qPCR off hippocampal cytokine expression in MIF-KO
mice after ICV-STZ compared to ICV-Veh treatment. Bars represent the mean ± SEM) of 4 to 6 animals ran as duplicate technical replicates.
Statistical testing was performed using Student’s t-test. b. IL-6 ELISA in STZ-treated wild type and MIF-KO astrocytes. Data is presented as means
± SEM from n = 3 biological replicates (c). Freezing in the contextual fear conditioning task of ICV- with respect to ICV-Veh treated STZ MIF-KO
mice. Data are presented as mean ± SEM for n = 6 animals per group. Statistical testing was performed using Student’s t-test (*P < 0.05, n.s. -
not significant)
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was positively correlated with MIF levels in AD patients.
Our data suggest that MIF inhibition alleviates inflamma-
tion by down-regulating production of proinflammatory cy-
tokines, resulting in improvement of cognitive function.
Our findings provide a direct link between neuroinflamma-
tion, as a recognized causing factor of sporadic AD (Krstic
and Knuesel 2013), tau phosphorylation, the most import-
ant biomarker for AD progression (Braak and Braak 1991)
and cognitive deficits as the defining symptom and major
driver of disability in AD (Cummings 2005).
The complex pathology of AD, combined with the

clinical failure rate of drugs designed for amyloid reduc-
tion, have also raised concerns as to whether targeting
amyloid metabolism might be sufficient as a therapeutic
approach. The observation that people with rheumatoid
arthritis had an unexpectedly low prevalence of demen-
tia indicates that anti-inflammatory drugs might lessen
the risk of Alzheimer’s (Martyn 2003). In fact,

individuals can tolerate substantial amounts of Alzhei-
mer’s pathology in their brains without experiencing de-
mentia, suggesting it may be not only the plaques that
cause neurodegeneration and dementia in AD, but other
disease related processes such as the neuroinflammation
(Bronzuoli et al. 2016). Chronic neuroinflammation is
one of the common features in AD and it is one of the
mechanisms that may intensify the development of Aβ
pathology and significantly contribute to neurodegenera-
tion. Accordingly, it is increasingly considered as a po-
tential therapeutic target for AD.
In this project, the pathogenesis of AD is examined in

the context of chronic inflammation by using the STZ
C57BL/6 animal model for sporadic AD instead of a
transgenic AD mouse model. Transgenic mice, carrying
mutations in the gene for amyloid precursor protein
(APP), are widely used as a model AD. However, these an-
imals rather resemble the familial form of AD (fAD), ac-
counting for only 5–10% of all AD cases. Therefore, in
line with recent finding that insulin resistant brain state
plays a critical role in early sporadic AD pathology (Craft
et al. 2012; Craft and Watson 2004), a new, non-
transgenic, animal model has been proposed as an experi-
mental model of sporadic AD. ICV-STZ in rodents was
shown to cause memory impairment and progressive cho-
linergic deficits, as well as forming Aβ-like aggregates and
causing abnormal Tau hyperphosphorylation, resembling
those in AD patients (Nazem et al. 2015). Using the ICV-
STZ model, we show that MIF-deficiency (genetically or
pharmacologically) attenuates proinflammatory cytokine
production and improves cognitive behavior in mice.
Excess MIF has been documented in CSF of patients

clinically diagnosed with amnestic MCI and mild AD
(Popp et al. 2009), suggesting that MIF could play a role
in the pathogenesis of AD at the pre-dementia and early
dementia stages. Emerging evidence suggests that

Table 1 Clinical characteristics and biomarker measures

Controls (n = 14) AD (n = 19)

Age (years), mean (SD) 70.5 (4.1) 69.7 (4.6)

Gender, No. (%) of males 5 (35.7%) 10 (52.6%)

Education years, mean (SD) 13.1 (2.6) 13.3 (2.5)

MMSE scale, mean (SD) 28.6 (1.8) 23.8 (3.9)*

APOEε4 carriers, No. (%) 2 (14.3%) 9 (47.4%)*

CSF MIF (ng/ml), mean (SD) 0.158 (0.096) 0.270 (0.168)

Plasma MIF (ng/ml), mean (SD) 0.045 (0.077) 0.113 (0.170)

CSF Aβ 1–42 (pg/ml), mean (SD) 990.3 (203.9) 522.8 (134.0)*

CSF tau (pg/ml), mean (SD) 182.1 (44.4) 738.5 (407.9)*

CSF p-tau181 (pg/ml), mean (SD) 42.6 (12.4) 93.9 (35.7)*

MIF macrophage migration inhibitory factor, APOEε4 Apolipoprotein E ε4 allele,
MMSE Mini Mental State Examination
*statistically different (p ≤ 0.05) from CDR 0, using Kruskal-Wallis test for
continuous variables and binomial proportion tests for categorical variables

Fig. 5 Correlations between the CSF concentrations of MIF and tau. Correlations between the CSF concentrations of MIF and (a) tau, and (b)
ptau181 in subjects with early stage AD. CSF MIF concentrations were correlated with CSF tau and ptau181 levels (log10-transformed
concentrations) (r = 0.629, p = 0.004 and r = 0.612, p = 0.005, respectively). Each dot represents a case from n = 19 cases and n = 14 controls
matched for age, gender and education
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deficiency of MIF attenuates tau hyperphosphorylation
(Li et al. 2015). In a recent report analyzing the most re-
cent publicly available ‘omics’ data, including genomics,
epigenomics, proteomics and metabolomics data, a rank-
ing algorithm was developed to prioritize the anti-AD
targets, which revealed CD33 and MIF as the strongest
candidates (Zhang et al. 2016). MIF is an upstream regu-
lator for other cytokines, thus reasonably inhibiting this
molecule holds promise as protective treatment in
neuroinflammation.
MIF’s contribution to the neurodegeneration in ICV-

STZ model of AD seems to be at various levels. DNA
damage is thought to be the prime activator in STZ
driven neurodegeneration in this model, inducing cellu-
lar mechanism resulting in apoptosis, necrosis and
parthanatos. Poly(ADP-Ribose) Polymerase-1 (PARP-1)
deficient mice are protected from STZ induced diabetes
(Pieper et al. 1999), suggesting this pathway is essentially
involved in neurodegeneration caused by this molecule.
Intracellular MIF is responsible for translocation of
apoptosis-inducing factor (AIF) into the nucleus and
subsequent DNA fragmentation, which is a crucial step
in PARP-1 dependent parthanatos (Wang et al. 2016).
This proposes the role of intracellular MIF molecule in
initiating neurodegeneration in ICV-STZ model, and
explaining the in vivo and in vitro observation with
MIF-KO cells and animals, that we observed no upregu-
lation in cytokine levels after stimulation.
We and others have demonstrated that by triggering

an ongoing and chronic immune response, STZ inter-
feres with hippocampal dependent learning in C57BL/6
mice (Nazem et al. 2015; Sankowski et al. 2019). The ob-
served deficits in contextual fear memory may be related
to neuroinflammation or neurodegeneration caused by
STZ in the hippocampal region. Inhibition of MIF using
ISO-1 had a protective effect, which was reflected in in-
creased average time of freezing of these mice in con-
textual fear conditioning paradigm in comparison to
Veh-IP injected ICV-STZ mice.
Cognitive improvements in ICV-STZ mice following

ISO-1 administration may be related to MIF’s role as up-
stream modulator to enhance the production of different
cytokines, the inhibition of MIF during in vitro experi-
ments resulted in downregulating the production and re-
lease of proinflammatory proteins. Unfortunately, the
question if ISO-1 acts only in the CNS or in the CNS
and the periphery remains to be answered. In cell cul-
ture studies, we previously have shown that blocking
MIF using ISO-1 substantially reduces Aβ-mediated
neurotoxicity, suggesting that a direct effect on microglia
is involved (Bacher et al. 2010).
Hyperphosphorylation of tau, regulated by host ki-

nases, results in the self-assembly of paired helical fila-
ments, leading to the formation of abnormal structures

in the cell body of neurons, known as neurofibrillary
tangles. Tau hyperphosphorylation was shown to be at-
tenuated in MIF deficient mouse models of AD (Li et al.
2015). We measured CSF and plasma MIF levels in sub-
jects with prodromal or mild dementia AD and healthy
controls without AD pathology. CSF MIF levels were
higher in subjects with AD supporting the hypothesis
that MIF expression in the CNS is increased at early
clinical disease stages. In addition, we observed moder-
ate correlations of MIF CSF levels with the CSF ptau181
and tau levels of subjects with AD.
In line with evidence from cell culture and animal

studies, our findings in humans confirms and extends
the correlation between MIF from the initial stages of
AD with both total tau (t-tau) and phosphorylated tau
(p-tau). Correlations of MIF with tau and p-tau in the
CSF have been reported in recent studies on inflamma-
tion markers in neurodegeneration and AD (Brosseron
et al. 2018; Craig-Schapiro et al. 2011). Our data, in
combination with findings of Li et al. (Li et al. 2015),
strongly imply that in addition to restricting neuroin-
flammatory response, the inhibition of MIF can restrain
the tau affiliated progression of AD.

Conclusion
In summary, our in vitro experiments underscore the
important role of MIF in the inflammatory response, as
the inhibition of MIF resulted in down-regulation of
proinflammatory cytokines, whereas the levels of the
anti-inflammatory IL-10 remained unaffected. In animal
experiments, we observed improvement in cognitive
function. The human data support a fundamental role of
MIF in the inflammatory response to AD, and suggest-
ing MIF may hold therapeutic potential for slowing
down the progression of the disease.
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