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Abstract: For calculating non-life insurance premiums, actuaries traditionally rely on separate
severity and frequency models using covariates to explain the claims loss exposure. In this paper, we
focus on the claim severity. First, we build two reference models, a generalized linear model and a
generalized additive model, relying on a log-normal distribution of the severity and including the
most significant factors. Thereby, we relate the continuous variables to the response in a nonlinear
way. In the second step, we tune two random forest models, one for the claim severity and one for
the log-transformed claim severity, where the latter requires a transformation of the predicted results.
We compare the prediction performance of the different models using the relative error, the root mean
squared error and the goodness-of-lift statistics in combination with goodness-of-fit statistics. In our
application, we rely on a dataset of a Swiss collision insurance portfolio covering the loss exposure
of the period from 2011 to 2015, and including observations from 81 309 settled claims with a total
amount of CHF 184 mio. In the analysis, we use the data from 2011 to 2014 for training and from
2015 for testing. Our results indicate that the use of a log-normal transformation of the severity is
not leading to performance gains with random forests. However, random forests with a log-normal
transformation are the favorite choice for explaining right-skewed claims. Finally, when considering
all indicators, we conclude that the generalized additive model has the best overall performance.

Keywords: regression model; data-driven binning; random forest; performance analysis; severity
modeling

1. Introduction

In the last years, especially in the area of car insurance, many insurers have experi-
enced high fluctuations in their customer portfolio, due to increased competition and the
appearance of new technologies (Kamakura et al. 2003). To stay competitive, products
must be priced adequately (Bieck et al. 2010; Maas et al. 2008). Traditionally, actuaries rely
on linear regression models to calculate the premiums. Such models used explanatory
variables, including the characteristics of the policyholder, of the risk insured, and of the
contract configuration. Usually, two models are separately calibrated, one for the claim
severity and one for the claim frequency (Frees et al. 2016; Ohlsson and Johansson 2010).
The pure premium is then obtained by combining both models. In that framework, the
severity relates to the average claim amount, while the frequency represents the ratio of
the number of claims to the exposure (Bellina 2014; Brisard 2014). Over the last decade,
machine learning techniques have won a lot of attention in the area of insurance ana-
lytics (Denuit et al. 2019a, 2019b; Quan and Valdez 2018). Machine learning methods are
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applied in the context of ratemaking (Dalkilic et al. 2009; Huang and Meng 2019; Lowe and
Pryor 1996; Pelessoni and Picech 1998; Richman 2018), fraud detection (Li et al. 2018; Wang
and Xu 2018), extreme value theory (Velthoen et al. 2021), forecasting (Perla et al. 2020), and
in the explanation of the lapse behavior of customers (Guelman et al. 2012; Hu et al. 2020;
Staudt and Wagner 2020), among others. While such models are used to select relevant risk
factors and automate the creation of categories for continuous variables (Dougherty et al.
1995; Henckaerts et al. 2018), full-pricing applications are scarce, see, e.g., Guelman (2012)
and Henckaerts et al. (2020). In claims modeling, most of the current academic research
focuses on machine learning methods to develop claim frequency models (Denuit et al.
2020; Ferrario et al. 2018; Noll et al. 2018; Schelldorfer and Wüthrich 2019; Wüthrich and
Buser 2018) and much less attention is given to severity modeling (see, e.g., Dewi et al.
2019; Staudt and Wagner 2019).

1.1. Aim and Methodology

In this paper, we focus on insurance claim severity modeling and add insights to the
existing body of research (see, e.g., Charpentier 2014, chp. 14, and the literature review
below). Our research aims to respond to the following research question: what is the best
performing model to model the claim severity in collision car insurance? Driven by our
data, we focus on the log-normal distribution assumption which is often used. However,
the impact of the distribution assumption on the prediction of damage levels from different
models has been given less attention until now. Our objective is to calibrate prediction
models for the claim severity and compare the performance of generalized additive models
(GAM), generalized linear models (GLM), and random forests (RF). Traditionally, the
performance of models is evaluated with the help of goodness-of-fit statistics (GOF). We
extend this step by applying goodness-of-lift statistics (GOL), see Denuit et al. (2019). Two
reference models are derived, an optimal GAM and a GLM using data-driven binning for
continuous covariates following the techniques of Henckaerts et al. (2018). Because the
GLM with categorical variables is still the favorite model setup in many insurance compa-
nies, it is important for us to measure the performance of the data-driven binning method
along GOF and GOL. In the RF setup, we consider two models using the log-transformation
of the claims, like in the GLM, and the claim severity without transformation. We com-
pare the performance of these models to the one of the reference models. Our aim is to
measure the impact of the log-transformation on the performance of the severity level, i.e.,
we measure, with the help of GOF and GOL, the performance of the models when back-
transforming the log predictions. This back-transformation will be discussed in detail in
this paper. We calibrate our models using comprehensive claims data from a Swiss insurer
covering 81 309 settled claims. Inn order to measure the prediction performance, we split
the data in training and test samples covering the period from 2011 to 2014, respectively,
the year 2015.

1.2. Literature on Models and Prediction Performance

GLM introduced by Nelder and Wedderburn (1972) are the “industry standard” to
explain the claim severity. In such models, the response variable is distributed according to
a distribution of the exponential family (e.g., a Gamma or a log-normal distribution), which
is well suited for non-life insurance claims (Ohlsson and Johansson 2010). Traditionally,
a log-normal distribution is applied in GLM by log-transforming the dependent variable
and then assuming a normal distribution (Frees et al. 2016). While covariates interact as
linear predictors in GLM and given that continuous variables rarely interact this way in
practice, Hastie and Tibshirani (1990) extend the linear models by relating the response to
the continuous variables through a smoothing function in GAM. Because insurers prefer the
simplicity of GLM with categorical variables, we use evolutionary trees to derive optimal
classes for the continuous variables. The data-driven binning approach closely follows
the work of Henckaerts et al. (2018) and Staudt and Wagner (2019). In our procedure,
we take particular care in optimizing the number of classes using a penalty function
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(Grubinger et al. 2014). Following the Bayesian information criteria (BIC), we propose an
“optimal” GAM using smoothing functions for the continuous variables and a GLM relying
only on categorical variables. While GAM and GLM need a prior variable and interaction
selection, this is automated in RF through a specified algorithm. Thus, the interactions
that are included in RF models are not limited to a user-specified selection (Hastie et al.
2009; Kuhn and Johnson 2013). Usually, RF models are optimized through the root mean
squared error (RMSE) optimization function. However, this optimization function relates
to the assumption that the response is normally distributed. Because the claim distribution
is right-skewed with only positive values, this assumption is not fulfilled. Hence, we also
tune an RF model using the log-transformation used in the regression models. This allows
for us to compare the performance among GAM, GLM, and RF models, and to study the
impact of the choice of the distribution assumption on the predictions.

While the BIC serves to assess the model performance in GAM and GLM, this function
cannot be applied to RF models. Chai and Draxler (2014); Cort and Kenji (2005); Willmott
et al. (2009) propose using the RMSE or the mean absolute error (MAE) to assess the
performance of machine learning models. Denuit et al. (2019) extend these measures of
evaluation and suggest using the area between the concentration and Lorentz curve (ABC)
and the integrated concentration curve (ICC). These measures are called GOL statistics
and they consider the appropriateness of the predictions, including customers’ claim
severity. With the help of the ABC and ICC, we measure the relation between the observed
and predicted claim severity (Denuit et al. 2019). On a macro-level, the overall coverage
of the total claims by the predictions can be measured with the relative error (RE). In
our discussion, we highlight the advantages and disadvantages of the different models.
Additionally, we focus on the smoothness of the predictions through contiguous values
of the (continuous) risk factors on the individual level. For this purpose, the confidence
intervals on the predictions play a major role. However, machine learning and non-
parametric models only provide predictions at given points (Khosravi et al. 2011). We build
confidence intervals while using the bootstrap method, where new samples are randomly
built with replacement and a part of the observations are held out (Carney et al. 2003;
Veaux et al. 2014). The so-obtained confidence intervals for the RF model are compared
with the ones of the GAM and GLM. We measure the overall prediction performance with
the RMSE, MAE, ABC, ICC (individual error), and the RE (overall error).

1.3. Main Results

The main results of our case study are, as follows: in terms of GOL and GOF, GAM is
leading to the most appropriate model on the training and test samples. Using a combi-
nation of GOL and GOF is bringing enhanced insights in the model interpretation, which
GOF alone cannot give. The GLM obtained with the method of Henckaerts et al. (2018)
has a good overall performance. However, GAM generates better predictions on the test
sample. The log-transformed RF model has a good performance on the right-skewed data,
whereas the overall expenses are not covered. The log-transformed RF model shows much
lower values for the overall predictions in the violin plot when compared to the other
models. The RF model based on a normal distribution assumption covers the total amount
of claims well. However, this model is not outperforming other measures. Further, on
the selected profiles, RF yields results with low variations along the continuous variables.
This helps to explain why RF covers individual claims less well. The log-transformation
requires a back-transformation which impacts the performance. Bootstrapping and confi-
dence intervals help to explain the variation of the different factors, so that RF can be an
additional asset next to GLM and GAM in practice.

The remainder of the paper is structured, as follows: in Section 2, we describe the
available data, analyze the severity distribution, and provide descriptive statistics. In
Section 3, we derive the GAM, GLM, and RF models, and then calibrate them on the
training data. In Section 4, we describe and discuss the performance of the models on our
test sample. We conclude in Section 5.
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2. Description of the Dataset

Our study relies on a longitudinal dataset of a Swiss car insurer comprising all closed
collision claims that were registered during the period from 2011 to 2015. In Section 2.1, we
describe the available data and risk factors. We study the distribution of the claim severity
and provide GOF statistics in Section 2.2. We lay out the relative frequencies along the risk
factors in Section 2.3.

2.1. Available Data and Variables

We concentrate on the claim severity, as laid out in the Introduction. Because most
customers do not declare damage (Denuit and Lang 2004; Klein et al. 2014; Ohlsson
and Johansson 2010), no claims are registered for these customers and the number of
available observations is typically low, which also explains the limited number of studies
(Charpentier 2014, chp. 14). Our data stem from a Swiss collision car insurance portfolio
and report the claims that are made by policyholders during the period from 2011 to 2015.
A longer history of observations outbalances the disadvantages of the heterogeneity over
the years, e.g., varying weather conditions or number of traffic accidents (Denuit and
Lang 2004; Denuit et al. 2007). We denote, by S, the claim severity, which is expressed
in Swiss francs (CHF). We restrict our study to private policyholders and only consider
settled claims in the present work.1 Our full data cover a total of 81 309 claims over five
years summing up to CHF 184 mio. In line with the theory of model evaluation, we
divide our dataset in a training and a test sample for assessing the prediction performance
(Hastie et al. 2009; James et al. 2013; Kuhn and Johnson 2013). Our training data span four
calendar years (2011–2014) and they cover 65,950 claims. The test sample consists of the
2015 data and includes 15,359 claims observations. This setup represents, for example,
an environment where an insurer uses available data from earlier years (2011–2014) to
predict the claim severity for the following period (2015). In terms of financial volume, we
consolidate a total claim amount of CHF 149 mio for the training data and CHF 35 mio for
the test data.

Table 1 summarizes the available explanatory variables for the process of ratemaking
(Frees 2015), i.e., building homogeneous classes of policyholders (see, e.g., Laas et al.
2016; Staudt and Wagner 2018). Most of the factors are determined at the moment of
underwriting of the contract (a priori variables, Denuit and Lang 2004; Denuit et al. 2007;
Verbelen and Antonio 2016). The age of the policyholder AG, the bonus-malus level BM,
the horsepower of the vehicle HP, the value of the car VC, the value of the accessories as
a percentage of the car value AP, the age AC, and weight WC of the car, as well as the
longitude LO and latitude LA of the policyholder’s main residence are continuous variables.
The bonus-malus level, i.e., the percentage factor applied on the gross premium, measures
by experience the riskiness of the policyholder and it is reevaluated every year (a posteriori
variable, Antonio and Valdez 2012). If a policyholder has a zero claim history, the value
drops below 100%. The variables LO and LA, as well as the categorical variables canton CA
and language region LR, relate to the policyholder’s residence area. The linguistic regions
divide Switzerland into three regions, namely, the German-, French-, and Italian-speaking
areas (Lüdi and Werlen 2005). A more detailed segmentation is given by the 26 cantons.
Further, the values for LO and LA are derived from combining the postal code and the
name of the place of residence. In our work, we code LR and CA with numbers for data
confidentiality reasons (see, e.g., the descriptive statistics in Section 2.3 and Figure A1 in the
Appendix A). The nationality N A is recorded along eight categories, where the following
classes are used by the insurer: Switzerland, France, Germany and Austria, Spain, Portugal,
Italy, Eastern Europe, and Turkey, as well as a class for all other countries. The car usage
UT is divided along private use with/without irregular or regular commuter route and

1 In fact, a very small share of claims is not closed and our data report mostly identical reserves for each open claim making such records hard to
interpret. By omitting open claims, which may relate to more difficult cases and higher amounts, we keep in mind that the overall claim distribution
might differ and that our findings underestimate the total claim amount. Nevertheless, the basis for the study is the same for all of the considered
models, allowing for us to compare them.
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professional use. The car is described along the body style CS, the car brand CB, and the
number of seats NS. To aggregate car brands, we also consider the group that the car
brand is associated with CBg and the country of origin of the brand CBc. Car styles CS
follow four categories, namely, hatchback and sedan, limousine, convertible, and other. The
variable NS encompasses three classes: having less than, exactly, or more than five seats.
The insurance deductible ID is considered along four categories, as offered by the insurer:
CHF 300, 500, 1000, and 2000 (or more). Finally, the binary variables gender (GE), buying
the contract online (IT), bonus-malus level protection (BS), zero-alcohol engagement (PM),
driving license withdrawal (DW), and driving more or less than 10 000 km per year (DD)
are available.

Table 1. Summary of the variables that are available in the data.

Variable Description

Continuous variables
AG Age of the policyholder (in years)
BM Bonus-malus level (in %)
HP Horsepower of the vehicle (in hp)
VC Value of the car without accessories (in CHF)
AP Value of the accessories of the car as a percentage of the car value
AC Age of the car (in years)
WC Weight of the car (in kg)
LO Longitude of the policyholder’s main residence (6.0–10.5◦ E)
LA Latitude of the policyholder’s main residence (45.8–47.8◦ N)

Categorical variables
CA 26 cantons of Switzerland and Principality of Liechtenstein
LR Language regions along three classes: German, French, Italian
N A Nationality along the following classes: Switzerland (CH), France (FR), Germany and

Austria (DE-AT), Spain (ES), Portugal (PT), Italy (IT), Eastern Europe and Turkey (EE-TR),
other (OT)

UT Utilization along three classes: private use with/without irregular commuter route (PE),
private use with regular commuter route (PR), professional use (PL)

CS Car body style along four classes: hatchback and sedan (CH), limousine (CL), convertible
(CC), other (CO)

CB Car brand
CBg Car brand group
CBc Car brand country
NS Number of seats along three classes: 4−, 5 and 6+ seats
ID Deductible along four classes: CHF 300, 500, 1000 and 2000+

Binary variables
GE Gender of the policyholder (male/female)
IT Online contract underwriting (yes/no)
BS Bonus-malus level protection (yes/no)
PM Zero-alcohol engagement (yes/no)
DW Driving license withdrawal (yes/no)
DD Driving less than 10,000 km per year (yes/no)

2.2. Claim Distribution

The distribution of the claim severity S is right-skewed (see Figure 1) and it is com-
monly well described by a Weibull, Gamma, or log-normal distribution (Eling 2014;
Ohlsson and Johansson 2010). For choosing the most adequate distribution assumption, we
consider three GOF, namely, the Kolmogorov-Smirnov (KS), the Cramer van Mises (CvM),
and the BIC measures. Both KS and CvM measures relate to the empirical distribution
whereas BIC is linked to the log-likelihood. While the KS measure quantifies the distance
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between the empirical distribution function of the sample and the cumulative distribution
function (Durbin James 1973), CvM extends KS by using the minimum distance estimation
(Csorgo and Faraway 1996). The BIC measures the quality of fit (Schwarz 1978). All three
measures state that the claim severity S on the training sample is best explained by the
log-normal distribution (see Table 2 and Figure 1). In our study, we do not distinguish
between the small and large claims and consider all of them together, i.e., we do not split or
truncate the dataset, as done in some claim severity models (Albrecher et al. 2017; Denuit
and Lang 2004). In collision insurance, and as we only consider settled claims, we do not
have as many extremely large claims when compared to other claims data (linked, e.g., to
liability insurance). From the graphical illustration, we observe that most of the claims are
below CHF 2500 in the training sample. This also holds for the test sample.
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Figure 1. Illustration of the distribution of the claim severity S in the training dataset.

Table 2. GOF statistics for the distribution of the claim severity S in the training dataset.

Distribution Weibull Gamma Log-Normal
KS 0.057 0.068 0.043
CvM 96.328 110.973 34.269
BIC 1,150,200 1,150,469 1,147,293

2.3. Descriptive Statistics

Figure A1 in the Appendix A illustrates the relative frequency of the claim severity
S in the training sample along the risk factors. Given the distribution of S along the ages,
we note that the quartile values are at 39, 50, and 62 years. Most policyholders (91%) have
the lowest bonus-malus level, which means that they pay 30% of the standard premium.
The quartiles along the insured vehicles’ horsepower are at the values of 102, 135, and
163. Twenty-five percent of the cars’ values are below CHF 24,800, the median value
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is CHF 33,900 and the upper quartile CHF 43,720. Most of the insured cars (78%) have
accessories that are worth less than 10% of the car value. Half of the policyholders drive
rather new cars that are aged below three years. The quartiles in the car weights are 1200,
1400, and 1600 kg. The distribution of the customers along the cantons (numbered from
1 to 26) and language regions (1, 2, 3) shows that the insurer is particularly active in one
canton and one language region. Most customers have Swiss nationality (85%) and they
use their car solely for private purposes (81%). They are 69% to drive a limousine with five
seats (80%). Moreover, the most popular car brand is VW (23%), which originates from
Germany (39%) and it is a member of the group VW. The second-largest car band group
is PSA (16%), and it includes the major brands Peugeot, Citroën and Opel. This group
contains cars with origins of France and Germany. Most cars are produced in Germany,
followed by Japan. The insurance deductible is CHF 300 for 80% of the portfolio. Men are
responsible for two-thirds (65%) of the claims. Most contracts are not underwritten online
(98%) and they include a bonus-malus level protection (91%). Most of the policyholders do
not take the zero-alcohol engagement (98%). Nevertheless, they have no driving license
withdrawal (99%) and drive more than 10,000 km per year (82%).

3. Model Parameterization

In this section, we link the claim severity S to the risk factors laid out above. First,
we derive optimal GAM and GLM under the BIC (see Section 3.1) following Henckaerts
et al. (2018) and Staudt and Wagner (2019). Second, we use RF to model S and log S by
considering the RMSE as an optimization function (Section 3.2).

3.1. Optimal Regression Models (GAM and GLM)

From the GOF statistics that are provided in Table 2, we observe that the claim
severity S is best approximated by a log-normal distribution. This distribution relates to
the exponential family, namely to the normal distribution, by log-transforming S. In the
following, we use the identity linear link function in a GAM and consider the risk factors
that are summarized in Table 1 in a forward and backward stepwise selection procedure.
Thereby, the BIC provides a measure for the model performance. The BIC penalty is
more severe then, e.g., the Akaike Information Criterion, and will, therefore, favor less
complex models. We rely on the BIC, since we aim to retain well-performing models
that are as simple as possible. In the GAM, continuous variables are included through
a smoothing function and the spatial longitude and latitude information is integrated
through an interaction term (Denuit and Lang 2004; Klein et al. 2014). At this stage, we
do not consider further interactions between the other risk factors. Both forward and
backward stepwise selection processes lead to the following model:

E(log(S)) = β0 + β1 · BS + β2 · CS + β3 · CBg + β4 · ID
+ f1(AG) + f2(HP) + f3(AC) + f4(WC) + f5(LO, LA).

(1)

The selected model only retains 10 of the 25 available explanatory variables. One
binary variable, the bonus-malus level protection BS, is included in the model. Three
categorical variables are included. They are the car body style CS with four categories,
the car brand group CBg with 17 categories, and the insurance deductible ID with four
categories. The continuous variables age of the policyholder AG, horsepower of the car
HP, age AC, and weight WC of the car are considered through the smoothing functions f1
to f4. Spatial information on the policyholder’s main residence enters through a smoothing
function on the interaction between the longitude and latitude in f5(LO, LA). The other
variables are excluded, since they do not improve the model under the BIC. When applying
the model (1) on the data from the training sample, the values of the regression coefficients
and the estimated degrees of freedom are reported in the first column of Table A1 in the
Appendix A. The estimated degrees of freedom that are related to the smoothing functions
correspond to the number of knots of the spline, where a higher degree relates to a higher
number of inflection points. For example, for the age of the policyholder f̂1(AG), we find
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a value of 7.009, which is higher than for the variables HP, AC, and WC (see Figure 2
for a graphical illustration). The weight of the car variable has an estimated degree of
freedom in f̂4(WC) that is almost equal to one (1.002), indicating a quasilinear impact of
WC on the response. Further, we observe that most regression coefficients (upper part
of Table A1) yield high significance levels (p-values that are below 0.001) with only few
sub-categories of the car brand group CBg not being significant. In the following, we test
all interactions between the continuous variables AG, HP, AC, and WC, omitting the other
(categorical, binary and spatial) factors as they would lead to more complex but not more
explicit models. We do not consider the common age-gender interaction, since the gender
variable is excluded from the model following the BIC. We find that none of the studied
interaction terms improve the model under the BIC and we remain with the GAM that is
given in Equation (1).

In Figure 2, we illustrate the effects of the continuous variables through the fitted
smoothing functions f̂1(AG), f̂2(HP), f̂3(AC), and f̂4(WC). The dashed lines indicate the
95% confidence interval. We observe larger intervals, for example, at higher policyholder
ages, where the number of observations is lower. In graph (a), f̂1 indicates a higher effect
for young customers, which relates to higher claim severity in that customer segment. This
effect is decreasing through the age from 18 to 35 years, and they behave non-monotonically
in the range between 35 and 75 years. From 75 years on, the effect on the claim severity
increases again. Conversely, the smoothing function of the horsepower f̂2 that is illustrated
in the graph (b) is decreasing for values from 50 to 250 and then increasing. The age of the
car effect f̂3(AC) in graph (c) is rather constant from zero to three, increasing from three to
seven, and finally becoming non-monotonic. As mentioned earlier, the effect of the weight
of the car WC is rather linear (graph d). Further, we illustrate the spatial effect f̂5(LO, LA)
in Figure 3. Customers living in the Italian-speaking region have the highest effect with
f̂5(LO, LA) = 0.4, which corresponds to, on average, approximatively 40% more severe
accidents than in regions with the baseline (zero) effect. Customers living in the region
of the cities of Bern and St. Gallen have values of f̂5(LO, LA) = −0.2. We observe that
the effect is increasing from −0.2 to 0.0 when moving from both cities to more rural and
remote regions (e.g., Bernese Oberland and Appenzellerland). This indicates that the sole
canton information commonly used today can be significantly enriched by integrating
more detailed spatial information.

We cannot apply a linear model on these variables, as we observe nonlinear effects for
the continuous variables AG, HP, and AC, as well as for the spatial information (LO, LA).
From the continuous factors, only the effect of WC is suitable for linear modeling. To build
an optimal GLM model, we use a data-driven method to classify the continuous variables
AG, HP, and AC into categories. In fact, evolutionary trees can help to bin consecutive
values and such a method is, e.g., available in the package evtree in R. We optimize the
evolutionary trees through a tuning parameter α in the following penalty function,

n · log(MSE) + 4 · α · (l + 1) · log(n), (2)

where n relates to the size of the dataset and l is the number of classes. The number of
classes l is decreasing with increasing α (Grubinger et al. 2014). This performance function
is used to compare the models between each other. The model with the lowest value
is considered the best one. However, the penalty (2) decreases with increasing α and it
relates to simpler trees. The penalty measure will always choose the simplest model, which,
following actuarial experience, is not necessarily the best model (Henckaerts et al. 2018).
Thus, we cannot determine the optimal number of classes while exclusively using the
penalty function (2) and we propose considering another way to determine the number of
classes. At each step, for a given α, we replace one smoothing function fi in Equation (1) by
the obtained classes and hold the other variables fixed while determining the performance
of the model using the BIC. This allows for us to assess the tradeoff between accuracy
and complexity along the classes used. We choose the tuning parameter α out of the set
{1, 1.5, 2, . . . , 9.5, 10, 15, 20, . . . , 95, 100, 150, 200, . . . , 950}. Figure 4 presents the values of the
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BIC for each α. From graph (a), we read that, for AG, the BIC decreases until α takes the
value of 350 and is increasing for higher values of α. Thus, we use α = 350 for deriving the
classes for AG. In the case of HP and AC, the BIC decreases with α (see graphs b and c). In
both cases, we remain with α = 950, leading to the simplest model.2 The classes that were
obtained for AG, HP, and AC are illustrated in the graphs (a) to (c) in Figure 2 with vertical
lines indicating the boundaries of the bins. The dashed-pointed horizontal lines in the
graphs indicate the predicted mean effects for each class. Following the above optimization
of the penalization parameter, we find that the age of the policyholder is binned into seven
classes AGc, the horsepower of the car into two classes HPc, and the age of the car into six
classes ACc.
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(a) Effect of the age of the policyholder AG.
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0 5 10 15 20 25

−
0.

5
0.

0
0.

5
1.

0
1.

5

AC

f̂ 3
(A

C
)

GAM prediction
95% Confidence interval
Bins predicted by trees
Tree prediction by bin
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Figure 2. Illustration of the generalized additive models (GAM) effects ( f̂1, f̂2, f̂3 and f̂4) in Equation (1) and the bins
obtained from evolutionary trees for the age of the policyholder AG, the horsepower HP, the age AC and the weight WC of
the car.

2 These results reach the boundary of our tuning grid and an ad hoc analysis beyond this point was conducted. The analysis does not bring new
insights that would differ from the one obtained at the boundary. Thus, we keep the graphics with the same α-axis, which allows for simple
comparisons among the cases.
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Figure 3. Illustration of the spatial GAM effect f̂5(LO, LA) along longitude and latitude.

From Figure 3, we observe that there are regions with similar effects on the claim
severity. We do not only bin consecutive municipalities but aim to group regions with
similar effects’ levels. The evolutionary tree method cannot be applied in this setup and
we follow Henckaerts et al. (2018) who propose Fisher’s natural breaks algorithm. This
algorithm maximizes the homogeneity within bins by classifying the variables that are
close to their calculated average (Slocum et al. 2005). The method is readily available, e.g.,
in the classInt package in R. The measures evaluating the performance of the created
bins suffer from the same problem as the complexity measure shown in Equation (2). Thus,
the best number of bins n is chosen by consistently measuring the final BIC performance.
We let the parameter n take values between 2 and 15. The best classification (lowest BIC)
is obtained while using seven spatial groups (LO, LA)c, as can be seen from Figure 4d.
Figure 5 presents the regional categories obtained.

While applying the above categories for the continuous variables, we derive the
following GLM:

E(log(S)) = β0 + β1 · BS + β2 · CS + β3 · CBg + β4 · ID
+β5 · AGc + β6 · HPc + β7 · ACc + β8 ·WC + β9 · (LO, LA)c

(3)

The second column in Table A1 reports the regression results.
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Figure 4. Illustration of the BIC as a function of the penalization parameter α for the evolutionary trees in the case of AG,
HP and AC and as a function of the number of bins n for Fisher’s natural breaks in the case of (LO, LA).

3.2. Random Forests Models

In the following, we optimally calibrate a RF model on the training sample. Tradi-
tionally, the RMSE optimization function is used (Hastie et al. 2009; Kuhn and Johnson
2013). However, this optimization function relies on the assumption that the claim severity
S is normally distributed (Chai and Draxler 2014; Willmott et al. 2009). Because, from the
GOF statistics in Table 2, we have concluded that S is best described through a log-normal
distribution. Considering the log-transform of S, then log S is normally distributed and
the RMSE can be applied. In this section, we propose tuning two RF models, one taking
log S (denoted by RFlog S) and one taking S as the dependent variable (denoted RFS). In
the numerical implementation, we use the available packages ranger and caret in R.
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Figure 5. Illustration of the optimal classification of the spatial information along Fisher’s natural breaks.

A RF model is an aggregation of B regression trees, where each tree is built on a
bootstrapped sample. While, for each feature/split, a sub-sample of m risk factors is chosen
(Hastie et al. 2009; James et al. 2013). Each tree in the optimization is influenced by the
node size. To balance the model between accuracy and complexity, we test five different
minimum node sizes. Hence, three tuning parameters B, m, and the minimum node size
need to be determined.

In a first step, we fix B = 1000 and proceed with the choice of the optimal values
for m and the minimum node size. We choose m within the set {1, 5, 10, 12, 15, 18, 20, 22,
25, 30, 35, 40, 45, 50} and the minimum node size is fixed to either 50, 100, 200, 500, or
1000 data points in each end node. We use a fivefold cross-validation to determine the
best tuning parameters. This can be automatized with the train function in the caret

package in R (Kuhn 2008). In a fivefold cross-validation, the training sample is divided
into five equally sized random sub-samples (without replacement). Four sub-samples of
the five are used for training the model and the last one is used for validating the model
(the validation sample, James et al. 2013; Kuhn and Johnson 2013). The performance of
the model on the validation sample is measured with the help of the RMSE. The results
that are illustrated in Figure 6 report the average value of the fivefold cross-validation
samples’ RMSE, denoted by RMSE, with the related standard errors se for different values
of m. The 95%-confidence intervals are calculated as RMSE± 1.96 · se (Nicholls 2014). In
order to choose the best model, we remain with the simplest model having the lowest
RMSE within the 95%-confidence interval of the best model. In the case of RFlog S, the best
results are obtained using m = 25 and a minimum node size of 50. We retain the parameter
value of m = 10 and a minimum node size of 50, yielding a simpler model within the
95% confidence interval of the best model (solid horizontal lines in Figure 6). Figure 6b
illustrates the results for RFS. We observe a minimum error for m = 10 when the minimum
node size equals 50, and we retain the values of m = 5 and a minimum node size of 50 for
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further modeling. We note that a model with m = 1 (one risk factor per regression) is still
within the confidence interval of the RFS model, but we exclude such a simple model. We
are aware of the limitations of the tuning grid and the related results. We limited the tuning
grid due to the available computational resources of the authors at the time of writing.
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Figure 6. Illustration of the RMSE model error and 95%-confidence intervals for different values of the number of risk
factors m and the minimum node size for both RFlog S and RFS models.

In a second step, we adjust for the optimal number of trees B with the above values
for m and minimum node size. Using again fivefold cross-validation, we test the values of
B = 500, 1000, 1500, and 2000. While no important influence can be observed in both RF
models (see Figure 7), we remain with B = 1000. Thus, the RFlog S model is parameterized
with B = 1000, m = 10 and a minimum node size of 50 and RFS uses the parameters
B = 1000, m = 5 and minimum node size of 50.
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Figure 7. Illustration of the RMSE model error and 95%-confidence intervals along the number of trees B for both RFlog S
and RFS models.
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4. Comparison and Discussion of the Models

In this section, we compare the performance of the GAM (Equation (1)), GLM (Equa-
tion (3)), and both RF models. Because three of the models are based on log S, we consider
the back-transformation to Ŝ for the prediction of S. First, we make an overall comparison
of the models while using different statistical measures. Second, for selected individual
profiles, we focus on the smoothness of the predictions through contiguous values of the
continuous risk factors.

4.1. Overall Model Comparison

For comparing the models, we take different perspectives and consider measures
from the GOF (Willmott et al. 2009) and GOL (Denuit et al. 2019) statistics on the training
and test samples. From the GOF statistics, we use the root mean squared error (RMSE),
the mean absolute error (MAE), and the total relative error (RE). The total relative error
evaluates the deviance of the prediction from the total claims amount, as follows:

RE =
∑i(Si − Ŝi)

∑i Si
. (4)

Two GOL statistics are applied, namely the area between the concentration and
Lorentz curve (ABC) and the integrated concentration curve (ICC). The concentration curve
measures the share of true premiums that should have been collected for the portfolio,
whereas the Lorentz curve measures the share of premiums that were collected for the
portfolio. The smaller the area between both curves, the better the model in terms of
premium income needs. The same interpretation holds for the ICC. Denuit et al. (2019)
choose the optimal model by considering the combination of the lowest ABC and ICC.
Further, we consider violin plots and the effective model predictions to waluate the models.

As we have log-transformed the claim severity S in the GAM, GLM, and RFlog S

model, we transform the predictions from the log (l̂og S) to the claim severity level (Ŝ). By
exponentiating the predictions exp(l̂og S), we lose some properties of the data (Longford
2009). Indeed, the sampling variance σ needs to be included. Because traditional back-
transformation methods can result in poor predictions, we use the non-parametric method
described in the paper of Duan (1983),

Ŝi = exp
(

l̂og Si

)
· 1

n

n

∑
j=1

exp
(
ε̂j
)
, (5)

where n denotes the size of the dataset and ε̂j the residuals linked to the observation j.
Duan’s smearing estimator demands that the error is homoscedastic (Ai and Norton 2000;
Manning 1998; Manning and Mullahy 2001). The homogeneity in variance is tradition-
ally controlled by representing the standardized residuals against the predictions. The
homoscedasticity is given when the predictions are independent from the residuals, which
means whether the points are randomly distributed along the standardized residuals and
the predictions. We add a cubic spline estimator to the error visualizations of GAM, GLM,
and RFlog S (see Figure 8) to test whether the distribution of the errors is homoscedastic.
GAM and GLM residuals are homoscedastic, as the cubic spline is a line, which indicates
that the homogeneity of the variance is given. However, RFlog S standardized residuals
against the predictions show a positive trend that we relate to heteroscedastic errors. Here,
the smearing estimator from Duan (1983) is biased. Following Ai and Norton (2000), we
replace the residuals by the standardized residuals in Equation (5), i.e.,
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Ŝi = exp
(

l̂og Si

)
· 1

n

n

∑
j=1

exp

(
rj

1
n−1 ∑n

j=1(rj − r)
· r
)

, (6)

where ri is the residual of the ith observation and r is the residual average. In conclusion, we
use Equation (5) to transform the predictions from the GAM and GLM, while Equation (6)
is used in the case of RFlog S.

We report the GOL and GOF results for the training sample in Table 3, and for
the test sample shown in Table 4. We observe that no model outperforms all others
throughout the different. We observe that the RFS has the smallest RE and RMSE value
on the training sample. The RFS model leading to the lowest RMSE was expected, as the
model is optimized along this specific optimization function. For the other models, no
important differences are found in the RMSE. Further, RFlog S has the lowest MAE, but, at
the same time, the largest deviation from the total sum of claims (RE of 41.4%). Both of the
RF models have high ABC values. A large ABC means that the RF models do not cover the
individual claims. At the same time, these models have the smallest ICC, which means
that the models cover the expected share of true premiums in the portfolio. By taking the
combination of ABC and ICC, as described by Denuit et al. (2019), see Figure 9a, GAM
is the best model. The violin plots in Figure 10a represent similar density plots for GAM
and GLM. The violin plot of RFS has a wider body and a similar median value than GAM
and GLM. However, the one for RFS has much more extreme predictions, better matching
the larger claims. The RFlog S has a similar density plot than RFS, but with much lower
values and not as high predictions as the other models. This explains why RFlog S has such
a high RE, which indicates that this model is not well overlapping the total exposure of
the portfolio. This is in accordance with the ABC, which tells us that the predictions do
not cover the claim severity of the portfolio. The low MAE and ICC confirm that RFlog S is
especially well performing on the lower part of the claims, which is due to the right-skewed
data. The RFS model has a much better coverage for the total exposure. Overall, the GAM
performs well throughout all measures, with no extremely bad outcomes, and one can
consider GAM to be the preferred model on the training sample.

Table 3. Comparison of the total predicted severity ∑i Ŝi, goodness-of-fit statistics (GOF) and
goodness-of-lift statistics (GOL) across the generalized additive models (GAM), generalized linear
models (GLM), and random forests (RF) models in the training sample.

Data GAM GLM RFlog S RFS

Training sample (data from 2011–2014)
∑i Ŝi (in CHF) 149.3 mio 149.5 mio 148.4 mio 87.2 mio 149.0 mio
RE 0.29% 0.37% 41.4% 0.04%
RMSE 3047 3049 3053 2860
MAE 1730 1732 1416 1650
ABC (·10−3) 4.4 5.1 112.9 96.7
ICC 0.456 0.456 0.324 0.364
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Figure 8. Illustration of the residuals and the predictions for the models using log S.
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Figure 9. Illustration of the ABC and ICC GOL statistics in the training and test samples.
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Ŝ

(a) Training sample.

0

1000

2000

3000

4000

5000

6000

7000

GLMGAM RFlog S RFS

Model

Ŝ
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Figure 10. Comparison of the violin plots across the GAM, GLM and RF models in the training and test samples.

Because such models are used in practice to evaluate the premiums for the following
year, we focus now our study to see how the four models perform on unseen data. On
the test sample, see Table 4, GLM covers the total sum of claims best. The deviation of
the RFlog S model in terms of total claims is very high. The RFS model remains with the
lowest RMSE, closely followed by the GAM and GLM. The RFlog S model conforms best
with the lowest MAE, i.e., it has on average the best cover of the claims. By considering
the combination of ABC and ICC, see Figure 9b, GAM and RFlog S are similarly positioned.
This means that GAM and RFlog S are best covering the portfolio expenses and the expected
true premium. The violin plots, Figure 10b shows that RFlog S has much lower predictions
when compared to the alternatives. The MAE and ABC measures confirm that the RFlog S
model is well covering the right-skewed data, but it comes with issues in the higher claims.
For the other models, we observe similar behaviors when considering the median. We
note that the RFS model yields higher predictions. When considering ABC, RFS is less well
covering the portfolio needs. Considering the test sample GAM and RFlogS seems to be
the best alternatives. By combining the discussion from both training and test samples, an
actuary would probably remain with the GAM model.

Table 4. Comparison of the total predicted claim severity ∑i Ŝi, GOF and GOL across the GAM, GLM,
and RF models in the test sample.

Data GAM GLM RFlog S RFS

Test sample (data from 2015)
∑i Ŝi (in CHF) 34.9 mio 34.8 mio 34.9 mio 20.3 mio 34.8 mio
RE 0.24% 0.08% 41.9% 0.16%
RMSE 2964 2965 3114 2957
MAE 1689 1692 1521 1701
ABC (·10−3) 5.643 7.252 5.396 9.915
ICC 0.458 0.459 0.458 0.454
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We analyze, in Table 5, if these differences remain on the log scale, as we observe
high discrepancies for large claims in the RFlog S model. Therefore, we report the RMSE,
MAE, ABC, and ICC measures. We observe no relevant differences in the RMSE, MAE, and
ICC for the training sample. The only difference is observed in ABC, where the GLM is
performing better and RF the worst. By considering the combination of ABC and ICC, see
Figure 11a, the GLM is the best model in the training setup. When considering the results
of the test sample, we do not measure the differences in the RMSE, MAE, and ICC. In the
case of the ABC, GLM is worse than the alternatives. When considering Figure 11b GAM
and RFlog S have similar results for ABC and ICC. This hints that the RF model and GAM
can better generalize predictions when compared to the GLM.

Table 5. Comparison of the total predicted claim severity GOF and GOL across the GAM, GLM, and
RF models in the training and samples for log S.

GAM GLM RFlog S

Training sample (data from 2011–2014)
RMSE 1.111 1.111 1.113
MAE 0.837 0.837 0.839
ABC (·10−3) 0.250 0.107 2.150
ICC 0.497 0.498 0.498

Test sample (data from 2015)
RMSE 1.063 1.064 1.062
MAE 0.805 0.805 0.803
ABC (·10−3) 0.255 0.414 0.2314
ICC 0.498 0.498 0.498

4.2. Comparison on Individual Profiles

In the following, we compare the prediction performance of the models on the continu-
ous variables age of the policyholder AG and horsepower of the car HP by fixing the other
explanatory variables. Given the above performance statistics and because predictions
are for log S, we do not consider the RFlog S model in the sequel. Nevertheless, one of
our objectives is to understand why the RFS model shows a lower performance on our
data. In the following, we simplify the notation and write RF for RFS. For this analysis,
we perform predictions for four profiles along the age AG (see Figure 12a–d) and for one
profile along the horsepower HP (see Figure 12e). For the profiles, we consider a baseline
contract of a male policyholder having Swiss nationality, a bonus-malus level protection
with a bonus-malus level of 30%, and using the car privately with regular commuter routes.
We consider a customer driving a three-year-old limousine with a value of CHF 33 900, no
accessories and a policy deductible of CHF 300. The other variables age of the policyholder
AG, horsepower HP, age AC, and weight WC of the car and the residence regions are
varied along the values outlined in exhibit (f) of Figure 12. For profiles 1 to 4, the variations
along ages are illustrated in graphs (a) to (d), while, for profile 5, the effect of horsepower is
given in the graph (e). For all predictions, we provide 95%-confidence intervals: since these
are point predictions, the confidence intervals are created with the help of the bootstrap
ensemble technique, i.e., the variance of the predictions is obtained by creating 100 random
training samples with replacements (Carney et al. 2003; Veaux et al. 2014).
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Figure 11. Illustration of the ABC and ICC GOL statistics for log S in the training and test samples.

Expectedly, we observe that the results from GAM exhibit smooth variations stemming
from the smoothing splines used. The optimized bins that are created by the evolution-
ary trees and used in GLM are well visible along the age and horsepower variables (cf.
Figure 2a,b). The predictions of the GAM and GLM conform with each other. RF presents
partially significantly different predictions. For example, for ages below 30 years, the
predicted claim severity Ŝ from RF is decreasing with the age of the policyholder (see
Figure 12a–d) comparably to GAM and GLM, but stays almost constant for ages from 30
to 80 years. The confidence intervals of the RF model often overlap the ones of the GAM
and GLM, especially for younger ages from 18 to 30 years. While an overall agreement
through the models exists along the age, we only find, in profile 1, that the RF confidence
intervals do not overlap at higher ages. The predictions along the horsepower that are
reported in Figure 11e are in agreement from 50 to 150. However, afterwards, RF results in
higher predictions and the confidence intervals of the different models are distinct. The
results of RF present many places where contiguous values of the risk factor lead to very
different predictions. These findings may explain part of why the RF model yields high
ABC and ICC values. In particular, we have observed that the results from the RF model
do not vary along the ages from 30 to 80, which is leading to the RF model not covering the
claims and the expected true premium of the portfolio.

For the same baseline profile underlying Figure 12, we illustrate the spatial claim
severity predictions for GAM, respectively RFS in Figures 13 and 14. Thereby, we fix the
age of the policyholder to 50 years, the horsepower of the car to 135, and the age and
weight of the car to 3 years and 1 421 kg, respectively. We observe that the predictions that
are illustrated in Figure 13 agree with the effects shown in Figure 3. As observed earlier
while fitting the model, GAM predicts the highest claim severity for the Italian-speaking
region and the lowest one for policyholders from the areas of Bern and St. Gallen. When
considering Figure 14, we find that RF is not completely in line with the GAM results. In
fact, certain policyholders from the Valais and Graubünden have a very high claim severity;
higher variations are observed in the RF results. RF models seem to “react” much more
importantly when there are differences between regions. Overall, we observe that the GAM
is differentiating better along the longitude and latitude when compared to the RF model.
This is in accordance with the results that were obtained in the figures above.
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Ŝ

Model

GLM

GAM

RF

(e) Profile 5 (f) Summary of the profiles

Figure 12. Comparison of the predicted claim severity Ŝ with 95%-confidence intervals along different ages (in graphs a to
d for profiles 1 to 4) and horsepower values (in graph e for profile 5) across the GAM, GLM, and RF models.
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Figure 13. Illustration of the spatial claim severity predictions for the GAM in Equation (1).
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Figure 14. Illustration of the spatial claim severity predictions for the RFS model.

5. Conclusions

This paper compares the claim severity modeling and the predictions of GAM, GLM,
and RF models when applied on the same car collision dataset from a Swiss insurer. In
our application, based on a training sample, we build a forward and backward stepwise
optimal GAM under the BIC for the severity S and derive from this model an optimized
GLM with the help of evolutionary trees following the work of Henckaerts et al. (2018). The
traditional regression models rely on a log-normal distribution implying an exponential
back-transformation of the predictions. We also build two RF models using S and log(S)
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with the root mean squared error (RMSE) as an optimization function. We compare the
performance of GAM, GLM, and RF models on a test sample by taking several perspectives
considering individual and total errors, violin plots, and comparing the model predictions
along selected profiles.

We observe that the log-normal assumption for the claim severity implies a non-trivial
back-transformation of the predictions when aiming to measure the model performance
(Ai and Norton 2000; Duan 1983). We use the GOF and GOL measures to evaluate the
performance of the models (Denuit et al. 2019). The GOF and GOL are not simultaneously
improved in a given model, so that they provide valuable insights together with the violin
plots and the selected profile representations. No model is outperforming the other ones
throughout all the criteria, in accordance with the results of Denuit et al. (2019) and
Henckaerts et al. (2020). Nevertheless, the GAM seems to be the one with the best overall
performance (and no extremely bad results in any dimension) on both training and test
samples. The GLM built along Henckaerts et al. (2018) is also a valid model. However,
this model leads to bad predictions on unseen data. GAM and RF have a much better
performance on the test sample. The RFlog S model does not cover the overall expenses, but
it has a good coverage for the right-skewed part of the data. The weakness of the RFlog S
model are the large claims. Instead, the RFS model is well covering the overall expenses,
but it iis not covering the premium needs for the claims and the true premium along the
portfolio. For the application on profiles, we observe that the RFS model leads to the results
with the lowest variations, whereas the GAM and GLM show much more variations along
the age, the horse power, and the location. The final choice of the model will depend on the
particular preferences and requirements on the model, e.g., for usage in claims predictions
or ratemaking.

Further, based on our data covering the whole Switzerland, to the best of our knowl-
edge, we are the first to provide evidence for the importance of detailed spatial information
along longitude and latitude in Switzerland. The traditional cantonal segmentation can
be largely improved by integrating local aspects that are related to urbanicity (urban and
rural regions) and specific characteristics of the terrain (cities, mountains). Indeed, Figure 4
highlights relevant differences in the claim severity that are not linked to the boundaries
of the Swiss cantons. For practitioners and actuaries, this finding can serve to have a
better understanding to define relevant risk factors and categories and to choose a model.
A more fine-grained classification of customers for their expected severity levels along
regions helps to make models more precise and, e.g., to offer more adequate premiums,
thus making a company’s ratemaking more competitive, as shown in the papers of Denuit
and Lang (2004) and Klein et al. (2014).

Finally, when considering the observations that were made in the present case study,
several open research questions remain. While, in this paper, we focus on the log-normal
distribution assumption for our data and analyze the available back-transformation, addi-
tional insights could be generated by choosing other distributions for the claims, like, for
example, a Gamma or inverse Gaussian distribution (see e.g., Henckaerts et al. 2020; Staudt
et al. 2001), and to compare these results with the prediction performance obtained here.
The back-transformation is leading to high discrepancies on the severity, which are not
observed on the log scale. These differences could be analyzed with more details (see also
Henckaerts 2020). The deviance measure could be applied to evaluate the model and be
compared to the ones that were used here. A thorough analysis of the impact of the tuning
parameters on the prediction performance and on the size of the confidence intervals
should be performed. Partitioning-out analysis (Belloni et al. 2014; Chernozhukov et al.
2015) could be used to analyze the impact of the different variables in combination with the
representations of the selected profiles. While our research compares two families of model,
further research could investigate other models, as, for example, penalized regressions and
evolutionary trees.
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Appendix A

The following figures and tables provide additional information on the data and the
regressions.
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Figure A1. Cont.
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Figure A1. Cont.
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Figure A1. Illustration of the relative frequencies of the claim severity S along risk factors in the training sample.

Table A1. Regression results of the GAM (Equation (1)) and GLM (Equation (3)) calibrated on the
training sample.

GAM (1) GLM (3)

Intercept 7.161 *** 6.761 ***
BS (baseline: Yes)

No −0.072 *** −0.072 ***
CS (baseline: CL)

CH 0.024 * 0.024 *
CC −0.121 *** −0.126 ***
CO −0.195 *** −0.198 ***

CBg (baseline: VW)
BMW −0.105 *** −0.116 ***
Daimler 0.106 *** 0.099 ***
Fiat 0.062 ** 0.067 **
Ford −0.007 −0.007
GM 0.096 * 0.113 *
Greely 0.007 −0.004
Honda −0.024 −0.019
Hyundai −0.035 −0.026
Independent 0.082 0.086
Mazda 0.051 * 0.054 *
PSA 0.132 *** 0.134 ***
Renault 0.149 *** 0.155 ***
Subaru 0.038 0.037
Suzuki 0.207 *** 0.212 ***
Tata 0.088 . 0.102 *
Toyota 0.019 0.028

ID (baseline: 300)
500 0.053 *** 0.052 ***
1000 0.218 *** 0.221 ***
≥2000 0.487 *** 0.525 ***

f̂1(AG) 7.009 *** AGc (baseline: 29–57)
18–21 0.293 ***
22–24 0.229 ***
25–28 0.057 **
58–75 −0.033 **
76–81 0.011
>81 0.196 ***

f̂2(HP) 3.927 *** HPc (baseline: >126)
41–125 0.070 ***

f̂3(AC) 5.230 *** ACc (baseline: 0–3)
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Table A1. Cont.

GAM (1) GLM (3)

4 0.069 ***
5 0.097 ***
6 0.158 ***
7 0.178 ***
>8 0.269 ***

f̂4(WC) 1.002 *** WC 0.0002 ***
f̂5(LO, LA) 24.740 *** (LO, LA)c (baseline: 3)

1 −0.132 ***
2 −0.080 ***
4 0.068 ***
5 0.128 ***
6 0.254 ***
7 0.477 ***

BIC 201,748 201,516
N 65,950 65,950

Significance levels for p-values: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, . p ≤ 0.1.
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