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Rapid detection of microbiota cell type diversity
using machine-learned classification of flow
cytometry data
Birge D. Özel Duygan1✉, Noushin Hadadi 1,3, Ambrin Farizah Babu1, Markus Seyfried2 &

Jan R. van der Meer 1✉

The study of complex microbial communities typically entails high-throughput sequencing

and downstream bioinformatics analyses. Here we expand and accelerate microbiota analysis

by enabling cell type diversity quantification from multidimensional flow cytometry data using

a supervised machine learning algorithm of standard cell type recognition (CellCognize). As a

proof-of-concept, we trained neural networks with 32 microbial cell and bead standards. The

resulting classifiers were extensively validated in silico on known microbiota, showing on

average 80% prediction accuracy. Furthermore, the classifiers could detect shifts in microbial

communities of unknown composition upon chemical amendment, comparable to results

from 16S-rRNA-amplicon analysis. CellCognize was also able to quantify population growth

and estimate total community biomass productivity, providing estimates similar to those

from 14C-substrate incorporation. CellCognize complements current sequencing-based

methods by enabling rapid routine cell diversity analysis. The pipeline is suitable to opti-

mize cell recognition for recurring microbiota types, such as in human health or engineered

systems.
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W ith the increasing realization of the crucial roles played
by microbial communities for human1, animal2 and
plant health3, and for biogeochemical processes in the

environment4, high-throughput methods of microbiota analysis
are gaining ever greater importance. Current methods are largely
“omics”-based and emphasize taxonomic5,6 or functional gene
diversity7. Despite their great reliability and sensitivity, omics-
based approaches are still relatively slow and laborious, which is a
disadvantage in fields requiring rapid expert decisions, such as for
clinical interventions. In addition, they frequently or inherently
underestimate absolute population densities8,9 and neglect var-
iation in microbial cell physiologies within the microbiota10.
Stable isotope-labeled substrate incorporation, coupled with
metagenomic tools11,12, can inform about specific substrate use
by species within a community, but stable isotopes are too
expensive to be deployed for routine microbiota analyses. Growth
of individual species within microbiota may be further inferred
from individual cell mass measurements13 or indirectly, from
binned metagenomic sequence read coverage differences14, but
neither is simple for rapid routine microbiota analysis.

There is thus a clear need for methods to complement and
expand current omics-dominated microbiota analyses, which we
propose might be accomplished by high-throughput single-cell
analyses based on flow cytometry (FCM). The main advantages of
FCM are its simplicity and sensitivity, and by providing absolute
counts of suspended cells, it enables real-time sample analysis and
interpretation15. Cells are detected in FCM on the basis of optical
properties (light scatter from cell shape and structures)16, and can
further be stained with a plethora of fluorescent dyes that target
specific biomolecules (e.g., nucleic acids)17 or physiological
activity (e.g., membrane permeability to distinguish viable from
compromised cells)18–20. However, despite the ease with which a
wide variety of FCM parameters can be recorded on large
numbers of individual cells, there is no straightforward relation
between the multidimensional FCM data and the identity of
bacterial strains or cell properties, particularly within diverse
microbiota. Some success has been achieved in inferring micro-
biota compositional changes from FCM data using unsupervised
clustering or cytometric fingerprinting21–23, but without species
recognition24,25. However, species recognition from FCM data
has proved possible for freshwater and marine unicellular
eukaryotes, likely because of their larger size26, and recent mul-
tiparametric statistical studies suggest that, in principle, even
closely related bacterial strains can be differentiated from FCM
data27. Machine learning provides an efficient and versatile
approach to extract a classification from complex data, but has so
far not been applied to microbiota classification, except for syn-
thetic mixtures of bacterial species16,28, or as a support for
diversity analysis by high-throughput amplicon sequencing29,30.

Here we present a new pipeline to facilitate microbiota diver-
sity analysis by providing rapid absolute quantification of cells
and recognition of cell type diversity and physiology based on
flow cytometry data. We named this pipeline CellCognize. In
contrast to recent FCM fingerprinting and single-cell classifica-
tion approaches16,27,28,30, CellCognize analyzes multiparametric
FCM data by comparison to a set of predefined microbial and
bead size standards, which the program is trained to recognize
using a supervised artificial neural network (ANN) (Fig. 1). We
provide proof of concept of the CellCognize pipeline by first
quantifying species composition in synthetic mixtures of known
bacterial strains and in mixtures of known bacterial strains within
a diverse background of unknown microorganisms. We then test
to what extent CellCognize can analyze microbial cell diversity of
unknown communities and changes thereof, imposed by addition
of low concentrations of phenol or 1-octanol, which we compare
with data from 16S rRNA gene amplicon diversity analysis and

further interpret based on the probability of class assignment.
Finally, we estimate community growth from CellCognize data of
substrate-amended unknown microbiota, and compare this to
biomass productivity from 14C-labeled substrate incorporation.
Our results demonstrate the ability to recognize and quantify
known microbial cell types, their physiology and growth, amidst a
known or unknown community background, and even infer
community diversity changes in unknown microbial commu-
nities. This suggests that with appropriate standards and opti-
mization, CellCognize can reliably analyze recurring microbiota
cell types in environmental, animal or clinical settings, thereby
considerably accelerating and simplifying microbiota studies.

Results
Development of an artificial neural network categorizing
microbial cell types from multiparametric flow cytometry data.
We developed a pipeline (CellCognize) using a supervised arti-
ficial neural network (ANN), which classifies cell types in
microbial community samples based on FCM multiparametric
signature similarities with a predefined set of standards (Fig. 1).
FCM signatures of the standards are first captured individually
(Fig. 1a,b), then combined in silico to build the training, valida-
tion and testing sets, which the network learns to differentiate in a
feed-forward back-propagation algorithm (Fig. 1c, “Methods”,
Supplementary Methods). The output of the trained, validated
and tested ANN model is a set of learned linear equations
(classifier, for this and other used terminology, see Supplementary
Notes). The classifier can then be used to assign each cell within
untrained samples (Fig. 1d) on the basis of its FCM signature into
its most similar output class (Fig. 1e), and calculate relative
abundances or biomass of that standard in the community
(Fig. 1f). Predicted classifications come with a corresponding
probability score, which we envisioned may be interpreted as a
measure of similarity to the standard. This might be useful when
analyzing the cell diversity of samples from unknown microbiota
in which the standard strains used to build the classifiers are
absent (Fig. 1d).

Differentiating and categorizing microbiota of known com-
position. To test the conceptual idea, we first assembled and
classified a synthetic community consisting of the three bacterial
species Escherichia coli, Pseudomonas veronii, and Acinetobacter
johnsonii. FCM signatures of individual cultures stained with
SYBR Green I were captured in seven channels, filtered and gated
to five classes (both E. coli and P. veronii yielded two visible
subpopulations in FCM, see “Methods”, Supplementary Fig. 1,
Supplementary Methods, Section 3.1). Next, in silico merged
FCM data sets were used to train the ANN. The network dif-
ferentiated the five classes with a mean precision and recall of
81% (Supplementary Fig. 2). The ANN-5 classifier assigned
76–88% of cells in experimentally regrown pure cultures to the
correct species (i.e., correct predicted classification, see Supple-
mentary Notes for definition of terms). In addition, the correct
predicted classification of cells in defined three-species mixtures
was between 96% and 132% (Fig. 2a, Supplementary Methods,
Section 3.2–3.3).

To test the approach for more complex communities of known
composition, we expanded to a set of 32 standards consisting of
eight polystyrene bead standards of different diameter, one yeast
culture, and fourteen bacterial strains (Supplementary Table 1), of
which six had two distinguishable subpopulations in FCM data
and one had three (Table 1, Supplementary Fig. 1). The choice of
standards was arbitrary but initially motivated by (i) a priori cell
type and size (e.g., rod, coccus) or bead size differences
(Supplementary Fig. 3), (ii) the potential presence of similar
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strains in our target freshwater microbial community, and (iii)
the inclusion of multiple representatives from the same genus
(e.g., Pseudomonas, Sphingomonas) or species (e.g., E. coli
MG1655 and DH5α-λpir). FCM signatures of the 32 standards
were distinct in principal component analysis (PCA, based on n
= 20,000 cells per standard), with two PCA components
explaining >90% of the covariation (Fig. 2b, Supplementary
Methods, Section 3.4).

ANNs were trained with in silico merged multiparametric
FCM data sets consisting of each of the 32 standards (randomly
subsampled to the same size, n= 10,000 before merging;
Supplementary Methods, Section 2.2–2.3). This process was
repeated five times independently, resulting in five slightly
different ANN-32 classifiers. When used to classify additional
in silico merged FCM datasets of the standards (not those used
for training), these classifiers achieved a mean accuracy of 79.2%
(range 27.3–99.8% across the 32 standards, Fig. 2c, Supplemen-
tary Fig. 2, Table 1), and with 80–99% true positive identification
at <20% false positives (Supplementary Fig. 2, Supplementary
Methods, Section 2.1–2.3). The precision and recall rates varied
among the standards, with beads on average classified more
accurately than strain standards, in accordance with their greater
separation in the PCA (Fig. 2c, Table 1). Beads and strains were
rarely misclassified with each other, but some strain standards
were reciprocally confused, whereas others were very consistently
differentiable based on their FCM signatures (Table 1, Supple-
mentary Fig. 2, Supplementary Dataset 1). Although this was not

tested extensively, confusion was not dependent on standards
being taxonomically closely related. For example, several
Pseudomonas strains were well distinguished (Supplementary
Fig. 2). Neither were intuitive cell shape differences an obvious
differentiation criterion. For example, although the larger Bacillus
subtilis rods (BST1) were well differentiated from all other rod-
shaped bacteria (mostly Pseudomonas standards, Table 1), the
curved cells of Caulobacter crescentus (Supplementary Fig. 2,
CCR1) were confused to some extent with the small rod-shaped
Pseudomonas putida (PPT) and with the irregularly shaped cells
of Arthrobacter chlorophenolicus (ACH, Supplementary Fig. 2).
These tests indicated that CellCognize is able to differentiate a set
of 32 standards from each other based on their multiparametric
FCM signatures, albeit with precision and recall that varied
among the standards. Some of the weaker differentiation might be
due to cell heterogeneity within single standards, or unresolved
similarities in cell morphology and optical characteristics between
standards based on the employed FCM parameters and staining.

Differentiation of cell physiology among E. coli strains. To
determine the potential of CellCognize to differentiate among
closely related strains and different growth phases, we included
among our standards two E. coli strains (MG1655 and DH5α-
λpir). The two E. coli strains were grown to stationary phase on
LB medium (MG_STAT_LB or DH5_STAT_LB), while MG1655
was further sampled in exponential (MG_EXP) and stationary
phase on M9-CAA medium (MG_STAT_MM). Strikingly, the

Fig. 1 CellCognize: a flow cytometry (FCM)— supervised artificial neural network (ANN) pipeline for classification of microbial cell diversity and
physiology. Representative stained cell and bead standards with known volume and mass (a) are analyzed by FCM to capture multidimensional optical and
shape characteristics (b). Note that FITC here represents the channel to capture the SYBR Green I fluorescence of cell staining. Multiparametric data of
each of the strain and bead standards, separated where they consist of recognizable subpopulations, are used as input for training, testing and validating
the ANN, producing the classifiers (c). FCM data from stained target untrained known or unknown microbial communities (d) are assigned to the strain
and bead output classes using the ANN classifiers (e). The diversity attribution can subsequently be used to estimate individual population densities and
their biomass, and, in the case of unknown communities, to calculate similarities to the used standards (f).
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32-standard ANN classifiers correctly predicted classification of
58–78% of cells in the experimental datasets of each of the four
E. coli cultures individually, and 70–90% of an in silico mixed
FCM dataset (Fig. 2d, Supplementary Methods, Section 3.5–3.6).
Among these four standards, it was possible to clearly differ-
entiate cells according to growth phase (strain MG1655 at
exponential phase on M9-CAA medium, MG_EXP vs. stationary
phase on M9-CAA medium, MG_STAT_MM) and culture
medium (strain MG1655 at stationary phase on LB medium,
MG_STAT_LB vs. stationary phase on M9-CAA medium,
MG_STAT_MM), and to distinguish between closely related
strains even when sharing the same growth phase and culture
medium (strain MG1655 at stationary phase on LB medium,
MG_STAT_LB vs. strain DH5α-λpir at stationary phase on LB

medium, DH5_STAT_LB, Fig. 2c). There is thus a great potential
to determine cell physiological status and differentiate among
closely related strains on the basis of FCM signatures using
machine learning algorithms for recognition.

Recognition of known standards within a diverse unknown
aqueous microbial community. To test the performance of
CellCognize to recognize known strains within a complex
microbiota, we assessed its ability to correctly predict classifica-
tion of the 32 standards within a background of unknown
microbes. We first assessed performance in silico by merging a
randomly subsampled FCM dataset with 5000 events (not those
used for ANN training) from each of the individual strain and
bead standards separately with the same number of unknown
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cells from a freshwater microbial community (Supplementary
Fig. 4, Supplementary Methods, Section 3.9–3.10). These merged
datasets were classified independently using the five ANN-32
classifiers and the percentage of correctly classified cells was
calculated. The correct predicted classification for each of the in
silico merged standards in the presence of the unknown fresh-
water microbial community (Supplementary Fig. 4) was similar to

that of the standards alone, showing that the presence of cells
from unknown species does not interfere with recognition of the
standards (Supplementary Fig. 2, Table 1). We then merged in
silico FCM datasets of three standards (each subsampled to n=
5000 cells) simultaneously with the lake water microbiota back-
ground (n= 5039 cells) and classified the mixture using the five
ANN-32 classifiers. The classifications of three standard strains

Fig. 2 CellCognize performance and analysis of microbiota with known members. a Classification of a three-membered bacterial community composed
of Acinetobacter johnsonii (AJH), Escherichia coli MG1655 (ECL), and Pseudomonas veronii (PVR), using a five-class ANN classifier. Bars show the means of
CellCognize-inferred strain abundance for in vivo grown pure cultures and mixtures compared to their true abundance, with correct predicted classification
per strain indicated above. b Principal component analysis of multiparametric variation among the 24 defined cell and 8 bead standards (7 FCM
parameters; 20,000 events for each), and the confusion matrix (c) for the 32-standard ANN classifiers showing the mean precision (rows) versus recall
(columns), represented as gray-level, according to the scale bar on the right. d Correct prediction classification of E. coli MG1655 or DH5α-λpir cultures
grown to exponential (EXPO) or stationary phase (STAT) in M9-CAA (MM) medium or in Luria broth (LB), individually (left, n= 20,000 cells) or as an in
silico mixture (right, n= 5000 cells each, randomly subsampled). Bar plots show the mean class attribution ± one SD and together with the correct
predicted classification of E. coli, from five independent ANN-32 classifiers. e Predicted classification (absolute cell counts ± one SD) from the five 32-
standard ANN classifiers for cells from a Lake Geneva microbial community (blue bars, n = 5039) or for the same community in silico mixed with n=
5000 cells each of the standards AJH1, MG_STAT_MM and PVR1 (dark orange bars). Correct predicted classifications (CPC) were calculated as the mean
percentage of each standard attributed to its own class. f Predicted classification (mean of absolute cell counts ± one SD, five 32-standard ANN classifiers)
of triplicate FCM data of in vivo filtered (0.2–40 µm) Lake Geneva microbiota mixed with 1.0 × 104 or 1.0 × 105 cells ml−1 of E. coli strain MG1655 grown on
LB or M9-CAA medium (MM) to stationary phase. Correct predicted classifications (CPC) were calculated as the mean number (±one SD) of cells
assigned to the four E. coli classes as a percentage of the expected added number.

Table 1 Figures of merit for the standard cell classification.

Standard Percentage (Mean ± st dev)a

abbreviation Full name remark Recallb Precisionb Correct predicted classification in
LWc

B02 Beads 0.2 µm 98.3 ± 0.1 99.0 ± 0.1 98.5 ± 0.5
B05 Beads 0.5 µm 99.4 ± 0.1 98.7 ± 0.1 99.3 ± 0.5
B1 Beads 1 µm 99.8 ± 0.1 99.6 ± 0.1 99.8 ± 0.3
B2 Beads 2 µm 99.4 ± 0.2 99.6 ± 0.2 99.3 ± 0.3
B4 Beads 4 µm 96.3 ± 0.3 97.8 ± 0.5 96.3 ± 0.5
B6 Beads 6 µm 98.1 ± 0.4 96.5 ± 0.3 97.6 ± 0.6
B10 Beads 10 µm 98.8 ± 0.3 99.8 ± 0.1 99.1 ± 0.3
B15 Beads 15 µm 99.8 ± 0.0 98.9 ± 0.3 99.7 ± 0.2
AJH1 Acinetobacter johnsonii subpop 1 88.7 ± 0.6 79.2 ± 0.5 88.5 ± 1.7
AJH2 subpop 2 90.9 ± 1.0 77.9 ± 0.8 90.7 ± 2.0
ATJ1 Acinetobacter tjernbergiae subpop 1 56.2 ± 2.1 47.0 ± 1.0 57.9 ± 0.9
ATJ2 subpop 2 58.8 ± 3.8 59.5 ± 2.7 59.1 ± 0.5
ACH1 Arthrobacter chlorophenolicus subpop 1 72.7 ± 1.1 56.8 ± 0.8 74.8 ± 0.7
ACH2 subpop 2 63.4 ± 1.3 66.1 ± 1.9 63.5 ± 2.4
ACH3 subpop 3 78.2 ± 0.9 70.6 ± 2.4 74.1 ± 3.2
BST1 Bacillus subtilis subpop 1 97.8 ± 0.3 95.7 ± 4.3 92.9 ± 0.2
BST2 subpop 2 80.8 ± 0.9 76.6 ± 1.1 81.2 ± 1.4
CCR1 Caulobacter crescentus subpop 1 54.0 ± 2.0 62.0 ± 1.9 53.2 ± 0.1
CCR2 subpop 2 79.5 ± 1.9 83.1 ± 1.2 78.3 ± 4.7
CAL Cryptococcus albidus 99.9 ± 0.0 99.8 ± 0.1 99.8 ± 2.0
MG_EXP3 Escherichia coli MG1655 exponential phase 88.2 ± 0.6 87.5 ± 1.1 87.8 ± 0.5
MG_STAT_LB stationary phase LB 89.3 ± 1.0 90.0 ± 0.7 88.7 ± 1.3
MG_STAT_MM stat phase M9-CAA 97.4 ± 0.8 96.7 ± 0.8 97.7 ± 1.8
DH_STAT_LB Escherichia coli DH5α-λpir 73.0 ± 0.9 83.5 ± 1.1 72.6 ± 0.6
LLC Lactococcus lactis 34.0 ± 3.3 49.9 ± 3.0 34.8 ± 1.8
PKM1 Pseudomonas knackmussii 94.0 ± 0.8 87.7 ± 0.7 93.6 ± 1.1
PMG Pseudomonas migulae 32.9 ± 2.8 39.5 ± 3.9 32.6 ± 3.1
PPT Pseudomonas putida 27.3 ± 4.0 38.2 ± 3.4 27.5 ± 3.5
PVR1 Pseudomonas veronii subpop 1 73.9 ± 0.7 77.2 ± 1.9 74.3 ± 4.9
PVR2 subpop 2 96.7 ± 0.7 96.7 ± 0.7 96.8 ± 0.7
SWT Sphingomonas wittichii 44.1 ± 1.5 52.7 ± 3.4 44.4 ± 1.5
SYN Sphingomonas yanoikuyae 66.6 ± 1.2 55.6 ± 1.0 65.0 ± 2.2

aCalculated from the five independently built ANN classifiers.
bSee Supplementary Notes for terminology.
cMean percentage ± one SD of each individual standard (n= 5000 subsampled cells) in silico mixed to a background of a lake water microbial community (n= 5039), attributed to its own class.
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were correctly predicted at between 75.2% and 97.3%, demon-
strating good recognition and differentiation (Fig. 2e, Supple-
mentary Methods, Section 3.8–3.9).

We further experimentally tested the performance of CellCog-
nize to distinguish known strains within a background of
unknown freshwater microbes. For this, we chose E. coli, whose
classification was correctly predicted with 73–97% within the in
silico merged data (Table 1). E. coli MG1655 was grown to
stationary phase on either M9-CAA or LB medium and mixed
with the freshwater microbial community at 1.0 × 104 or 1.0 × 105

cells ml−1, which was analyzed by FCM after 1–2 h (Fig. 2f,
Supplementary Methods, Section 3.10). The lake water commu-
nity itself had few cells attributed to the E. coli classes (Fig. 2e,
blue bars), and the E. coli classes increased as expected upon
experimentally adding E. coli MG1655 cells (Fig. 2f, grey shaded
zones). Added E. coli cells were to a large extent classified to the
category of their pre-culture signature (e.g., cells grown on M9-
CAA classified to MG_EXP and MG_STAT_MM, Fig. 2f, orange
bars), although a small proportion may have shown a
physiological reaction to the change from the preculture medium
to artificial lake water (e.g., added cells in stationary phase being
classified as EXP, Fig. 2f). Based upon the expected numbers of
E. coli cells, their correct predicted classification was 79.6–120%
for M9-CAA, but 44.2–55.9% for LB-grown cells (Fig. 2f,
Supplementary Methods, Section 3.10). These results indicated
that CellCognize can identify and quantify specific focal strains
and their physiological signature within complex microbiota
mixtures.

Analysis of unknown microbiota. We envisioned that CellCog-
nize could also potentially be applied to differentiate cell type
diversity of unknown microbial communities in which none of
the learned standards are necessarily present. This application
may be useful as a rapid estimate of diversity to compare habitats,
or changes in a microbiota between individuals or upon treat-
ment. As diversity measure one could rely on assigned class
abundances with respect to the set of predefined standards, while
realizing that this is different from directly measuring microbial
taxa diversity. To test the relevance of such an approach, we
analyzed community changes after exposure to selective chemical
compounds, which we quantified by CellCognize classification
and 16S rRNA-gene amplicon sequencing diversity analysis. We
further measured specific biomass production using 14C-labeled
substrate and compared this to estimates based on the summed
biomass from predicted classifications, as conceptually outlined in
Fig. 1e, f.

In order to induce changes in the freshwater microbial
community composition, we cultured the lake water samples in
solutions amended with low concentrations of 1-octanol or
phenol (0.1, 1, and 10 mg C l−1). As expected, exposure to phenol
or 1-octanol caused a rapid and profound change in the total
community cell count, to an extent dependent on the added
substrate and its concentration (Fig. 3a, abs. counts, Supplemen-
tary Fig. 5). Classification using CellCognize revealed an obvious
shift in the community composition after only one day following
amendment with 10 mg C l−1 phenol (Fig. 3b rel. counts,
Supplementary Methods, Section 4.1), culminating in growth
and domination of cell types similar to the Acinetobacter
standards (AJH1, AJH2, ATJ1, ATJ2) as well as Pseudomonas
migulae (PMG) after two and three days, contributing 70% of the
cells in the community (Fig. 3b, Supplementary Fig. 5). This was
noticeably different from the detected change over time in the un-
amended controls, whereas similar enrichments to the Acineto-
bacter classes were seen after amendment with 0.1 and 1 mg C l−1

phenol at day 3 (Fig. 3b, rel. counts). Independent replicates of

phenol amendment to the Lake Geneva water microbial
community in different months showed similar cell types
becoming enriched (Supplementary Fig. 6). Similarly, amend-
ment with 10 mg C l−1 1-octanol also caused a rapid increase in
total community cell count in comparison to the un-amended
controls (Fig. 3a, abs. counts, Supplementary Fig. 5). In this case,
however, enriched cell types were more diverse and comprised
various classes, none of which exceeded 15% of the total
community (Fig. 3a, 1-octanol).

To qualify the performance of CellCognize in tracking
community shifts, we compared in a separate experiment both
CellCognize and molecular diversity analysis using 16S rRNA
gene amplicon sequencing for 10 mg C l−1 phenol and 1-octanol
amendments (Fig. 3c). Both methods showed obvious strong
enrichments in the substrate-amended lake water samples after
three days, in a consistent manner across biological replicates
(Fig. 3c, bracketed zones in stackplots). 16S rRNA gene amplicon
analysis showed a strong decrease in richness in day 3 samples,
which was not seen in CellCognize. Shannon diversity was
moderately correlated between both methods (r2= 0.5767), but
both methods grouped replicates, treatments and time effect
equally well (Fig. 3c, MDS plots, ADONIS, p < 0.001).
Bray–Curtis distances of the data sets from CellCognize or 16S
rRNA gene amplicon analysis were similar (procrustes goodness-
of-fit= 0.2144, Pearson-ranked correlation coefficient= 0.8981,
p= 0.0000). This showed that although the underlying diversity
measures differ between CellCognize and 16S rRNA gene
amplicon sequencing, broad changes in communities can be
captured equally well.

To further assess the value of CellCognize quantification of cell
type diversity in unknown communities, we calculated biomass
yields of the lake water microbial community upon phenol or 1-
octanol amendment (Fig. 3a, abs. counts, Supplementary Fig. 5),
using estimated respective standard per particle biomasses
(Supplementary Table 2). These estimates were compared to
independently measured biomass yields from triplicate assays for
14C-labeled substrate incorporation (Supplementary Fig. 7).
Biomass yields were largely comparable (Table 2), although
CellCognize estimates were in general lower, except at the lowest
substrate concentration. This showed that the class enrichments
deduced by CellCognize translate into reasonable biomass
predictions even in unknown communities, which is support
for the conclusion that enriched bacterial cell types are similar to
the attributed standard classes.

Similarity assessment of unknown microbiota and predefined
CellCognize classes. Given the large observed taxonomic diver-
sity in the freshwater communities (Fig. 3c, 16S rRNA amplicon),
a rightful question is what the assignment of unknown microbiota
into the predefined standard classes in CellCognize actually
means. In order to address this question we analyzed in greater
depth the probabilities of class assignments for the standards
themselves and for the unknown classified microbiota. Further-
more, we purified one isolate from the lake water substrate
enrichments and compared its class assignments with the ANN-
32 classifier and with a newly trained classifier that included that
isolate.

In all CellCognize results so far (e.g, Figs. 2e and 3a), we were
adopting a simple assignment criterion, assigning each cell to the
class that yielded the highest probability of cell assignment (see,
e.g., Supplementary Dataset 2, Supplementary Methods, Section
5.1). Although this procedure assigns cells to their most likely
class, their probability score could still be lower than the mean
score for cells from the standard itself. To illustrate this, we
calculated the mean probabilities per assigned class for the
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Fig. 3 Diversity analysis of an unknown microbial community using CellCognize. a Inferred mean class cell densities from the five 32-standard classifiers
(absolute counts, ABS.) of a size-filtered (0.2–40 µm), resuspended Lake Geneva water microbial community over the course of three days amended with
0.1, 1 or 10mg C l−1 phenol or 1-octanol, compared to a zero added carbon control. Bars show individual biological replicates, with data merged from two
technical replicates. b Proportional cell counts (REL.) for the phenol-amended communities shown in a. c Comparison of community diversity inferred using
CellCognize and taxonomic diversity estimated from 16 S rRNA gene amplicon data (shown as proportions of 20,000 normalized cleaned sequence reads,
given without color scale) for communities amended with 10 mg C l–1 phenol or 1-octanol. d Diversity measures of communities shown in c: richness (16S:
class level; CellCognize: assigned classes >0.05%) initially (T0) and after three days incubation (T3), Shannon index and Multidimensional scaling plot
(MDS), based on calculated Bray–Curtis similarities. Symbols represent individual replicate diversities, circumscribed by ellipses to indicate similar
treatments.
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attributed cells from the lake water community (Fig. 4a, light gray
bars, Supplementary Methods, Section 5.1–5.2). For most of the
32 classes, these mean probabilities were lower than those of the
pure standards themselves (Fig. 4a, orange bars). For four

relatively abundant attributed classes in the lake water commu-
nity (B02, ACH2, CCR1, and PVR1) we computed the probability
distributions, which in all cases showed probabilities shifted to
lower values compared to those of the pure standards (Fig. 4b,

Table 2 Comparative biomass yield estimates from 14C-labeled substrate incorporation and from CellCognize for the Lake
Geneva microbial community after 3 days incubation with phenol or 1-octanol as sole carbon sources at varying concentrations.

Substrate Concentration (mg C l–1) 14C biomass yield (g/g)a CellCognize biomass yield (g/g)a,b t-test

Phenolc 0.1 0.135 ± 0.027 0.350 ± 0.15 p= 0.0709
1.0 0.151 ± 0.052 0.057 ± 0.010 p= 0.0370
10 0.166 ± 0.042 0.118 ± 0.017 p= 0.1393

1-octanold 0.1 0.469 ± 0.168 0.367 ± 0.117 p= 0.4341
1.0 0.396 ± 0.024 0.148 ± 0.038 p= 0.0007
10 0.233 ± 0.028 0.100 ± 0.024 p= 0.0033

aMean ± one SD
bCalculated using mean per cell biomass for each standard as of Supplementary Table 2.
cThree independent experiments using lake water sampled on different occasions, with three biological replicates each.
dSingle experiment with biological triplicates.

Fig. 4 Similarity measures of cells attributed to CellCognize classes. a Class attribution (absolute cell counts) from a single 32-standard ANN classifier
for in vivo filtered (0.2–40 µm) n= 5036 cells from a Lake Geneva microbial community (black bars), with their corresponding mean probability of
assignment (gray bars, LW attributed). In background (orange bars), mean probabilities of assignment (±one SD) of each of the standards within an in
silico mixture of all FCM standard datasets (subsampled to n= 5000 cells each, five 32-standard ANN classifiers). b Distributions of classification
probabilities for four classes that were attributed in high numbers within the lake water community in the classifier results of a (i.e., B02, ACH2, CCR1 and
PVR1) for each standard individually, for lake water (LW), or, in one case, of LW in silico mixed with n= 5000 cells of the PVR1 standard. Values within
panels indicate the mean probability of the shown distribution, and correspond to the value plotted in a. cMean class attribution (absolute cell numbers) of
the lake water enriched community on 1-octanol (n = 536,783 cells), and of the pure culture isolate (OCT, n= 63,824 cells) derived from this enrichment
grown on 1-octanol, both after three days of incubation, for one of the ANN-32 classifiers and for a new classifier that was trained using a dataset that in
addition included FCM data from the OCT isolate itself (ANN-33). Numbers on the bars indicate the mean probability of class attribution. Image display
calculations are detailed in “Supplementary Methods”.
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Supplementary Methods, Section 5.3). The probability distribu-
tions may be used to calculate a classification similarity score. For
example, the mean probability of predicted classification of cells
in lake water to class B02 was 0.806, but that of the true standard
B02 was 0.994, giving an average classification similarity of 81%.
As discussed below, a ratio of this sort could form the basis of a
similarity score between cells in an unknown microbiota and
members of the standard set. Given that, except for the bead
standards (e.g., B02), most strain standards have wider prob-
ability distributions (e.g., Fig. 4b), one could also consider a
further form of thresholding or binning on the probability
distributions to describe similarities of unknown cells to the
standard categories. Importantly, this showed that the approach is
versatile, so that cells in unknown microbiota can be attributed to
standard classes, but their similarity to those classes can also be
further analyzed.

To illustrate this effect of similarities further, we analyzed the
probability distributions and classification similarity scores in the
freshwater community enrichments and compared those to a
strain that we isolated from the enrichment on 1-octanol (Fig. 4c,
Supplementary Methods, Section 5.4). 16 S rRNA gene sequen-
cing confirmed the isolate as a Pseudomonas sp.. The FCM
signature of this pure culture was predominantly assigned by the
32-standard ANN classifiers to ATJ2 (0.891 mean probability of
predicted classification, Fig. 4c, OCT isolate). With a new ANN
classifier that was trained with a standard set that included the
isolate itself in addition to the previous 32 (ANN-33 classifier),
however, the cells were exclusively attributed to their own class
(0.953 mean probability of predicted classification, Fig. 4c,
Supplementary Methods, Section 5.5). The classification similar-
ity score of the isolate to the attributed class in the ANN-32
classifier (ATJ2, Fig. 4c) was thus 0.891/0.953= 93%. The new
33-standard ANN classifier confirmed this isolate to account for
15.8% of cells in the enrichment, which corresponds to the 19.5%
of 16S rRNA amplicon sequences attributed to Pseudomonas
(Fig. 3c).

Collectively, these experiments thus demonstrate that CellCog-
nize can discriminate compositional shifts in an unknown
microbial community, despite the relatively low number of
(arbitrary) classes used here for the CellCognize pipeline (32
classes), and that mean probabilities of predicted classification or
probability distributions can be further used to quantify
similarities of cell attribution to the used classes.

Discussion
We developed a supervised machine-learning ANN pipeline for
FCM data, named CellCognize, to infer microbial “cell type”
diversity in community samples from multiparametric FCM
signatures of individual cells, by comparison to signatures of
predefined strain and bead standards. ANNs were trained to
differentiate multiparametric FCM data sets of five or 32 stan-
dards, resulting in classifiers that were subsequently used to
predict class attribution of cell types of untrained microbial
samples of known or unknown composition from their FCM
data. For the learned standards, the pipeline was capable of dif-
ferentiating among closely related strains, and even differentiating
among cells within the same strain according to cell physiology,
with respect to growth phase and prior culture medium. Our
experiments with lake water microbial communities further
attested to the ability of CellCognize to track compositional
changes, for example during enrichment following chemical
amendment, and to provide direct estimates of population growth
and biomass yield. Finally, we show how mean probabilities of
class assignment can be used to infer similarities to the used
standards.

Our results were mainly obtained with a set of 32 standards,
which were to some extent arbitrarily chosen. In a given appli-
cation, the standard set should be targeted according to specific
constraints or requirements of the intended microbiota samples
in order to produce the highest class assignment probabilities.
Our standards included eight types of beads, to cover a wide
range of sizes (from 0.2 to 15 µm diameter), and 24 strains, to
cover a range of microbial cell types and growth phases. Including
beads has the advantage of capturing similarities to cell types in
untrained samples for which no cultured standards are available
(e.g., the attribution to B02 in lake water), and their large
homogeneity. Although the overall precision and recall of the 32-
standard ANN classifiers was high (79.2%), which is much larger
than expected by chance (3% for a 32-standard classifier), there
was substantial variation in the precision and recall rates, and the
mean probability scores of class assignment. Indeed, whereas
beads were differentiated with almost 99% accuracy, strain
standards were more likely to be misclassified. The reasons that
some strain standards were confused more than others was not
due to cells belonging to the same taxonomic family, nor
dependent on morphology (e.g., coccoid, rod), but more likely
because of heterogeneity within the population of cells compris-
ing the standard during ANN learning, and overall similarities in
optical properties in the FCM channels employed. Previous stu-
dies have shown that closely related strains can be differentiated
by their global multiparametric signature27, as our initial PCA
indicated. As another recent study has shown, global recognition
may be optimized to differentiate individual cells in strain pairs,
but projection to higher order mixtures lowers prediction accu-
racy substantially28. However, global differentiation involves
attempting to cluster thousands of cells of a pure culture grown
under standardized conditions, whereas CellCognize calculates
the probability that an individual cell belongs to a predefined
class. The recall of the ANN classifiers depends on the level of
variation within a standard. Defining coherent standard (sub)
populations from FCM data may thus require more optimized
automated multidimensional algorithms31. In this respect, our
ANN model, with only seven FCM input parameters (and only a
single DNA staining using SYBR Green I) yielded classifiers with
a mean accuracy of 80%, albeit with some misclassification
among certain strain standards (e.g., LLC, PPT, PMG, SWT). We
would expect that classification could be further improved by
employing specific fluorescent dyes that yield additional inde-
pendent cell characteristics32.

The greatest advantage of CellCognize may lie in quantification
of targeted microbial strains and their physiologies within
recurring “known” microbiota, for instance, in clinical settings,
animal husbandry or engineered applications. Importantly, the
CellCognize pipeline is not limited to the set of 32 standards,
which we deployed here as a general broad platform and proof of
principle. Previous studies with marine algae that are easier to
differentiate because of their larger size and autofluorescence,
have targeted up to 70 species26. Strain standards can be opti-
mized for any new target microbial community or subset of
strains. As an example, by including enrichment isolates we
showed how initial ANN classifiers can be further optimized for
their target community. Staining procedures and selected stan-
dard strains can be optimized, and be well characterized before-
hand to give greater confidence in the resulting assignments.
Imaging cytometry may provide further advantages for cell
resolution and differentiation33. Evidently, we observed some
interexperiment variation on independently regrown and ana-
lyzed cultures of E. coli, A. johnsonii and P. veronii (Fig. 2) while
still capturing the majority of target classes correctly. This may
have resulted from small differences in growth conditions or
handling and may be better controlled by using fixed samples and
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standards. Instrument variation may be further controlled by
including standard beads, whose FCM multidimensional sig-
nature can be used to ‘reposition’ and normalize the other data.
As more experience is gained, additional isolates can be included
in the set of standards and classifiers re-trained. Given the very
rapid analysis time of FCM (ca. 5 min per sample), and almost
instant classification once the ANN algorithm is developed, a
quantitative cell type diversity or focal strain analysis becomes
very simple and fast, with low reagent costs.

There remains the question to what extent CellCognize can
estimate diversity changes in unknown samples. Clearly, with the
mean probability scores of class assignment that we obtained
here, even perfect recognition of strain standards is challenging.
Furthermore, cell type diversity is not a priori the same as
taxonomic diversity, although they may overlap when using
appropriate reference standards. On the other hand, the ANN
classifiers correctly captured broad shifts in the composition of a
lake water microbial community upon amendment with phenol
or 1-octanol. Furthermore, the cell type diversity inferred using
CellCognize was largely comparable with class-level molecular
diversity analyses from amplicon sequencing, and went sig-
nificantly beyond the number of clusters identified by unsu-
pervised clustering methods on similar data sets22. However, the
current difficulty is to interpret probability scores from classifi-
cation and to translate them into similarities between unknown
cells and the predefined standards, given the different precision
and recall of the various standards themselves. Classification of
unknown microbiota based on their highest probability among
the standard classes will result in cell types being attributed to the
most likely class among the predefined standards. Alternatively,
one could take the mean probability assignment to a class and
score the difference or ratio with respect to that of the true
standard, to derive a similarity score. Other authors have intro-
duced cell distance measures as a way to indicate similarities in
machine learning classification algorithms34. It will be important
to better understand how cell type dissimilarities can be described
by an appropriate scoring metric and relate to, for example,
different physiological conditions or between strains.

Several recent studies have emphasized the importance to
include population or community density measurements of
microbiota in addition to relative abundances from molecular
taxonomic assessments, as this determines to a large extent the
functional response of microbiota8–10. FCM quantifies total cell
numbers in a microbiota sample10, and, thus, the ability to further
differentiate these counts into individual populations28,30 or
growth phases35 within the microbiota would be extremely
valuable. The CellCognize pipeline represents a promising tool to
achieve this, as it provides the ability to detect and quantify focal
strains, can detect different growth phases of focal strains even
within a diverse microbiota background, can track the growth
and enrichment of populations within a community, and can be
deployed to estimate biomass. We acknowledge that biomass
calculations should be further improved: they are very sensitive to
the existing estimates of the mass of individual standards, which
could be improved using recent techniques36,37. Nevertheless, the
alternative 14C-methods carry their own disadvantages, tending
to overestimate substrate usage as a result of unspecific sorption
to cells.

In conclusion, we have presented CellCognize, a supervised
machine-learning ANN-based pipeline to classify microbial cells
and estimate output class population densities in microbiota from
multidimensional FCM data. Detection and differentiation of cell
types and specific strains in microbial samples could be further
improved by exploiting the wide spectrum of general and specific
fluorescent dyes20. The method can be tuned to the target
microbiota by including strain standards derived from the target

itself, or can be used as a general cell type diversity method based
on similarity scoring derived from assignment probabilities to a
more general set of standards. Clearly, however, more data from
different communities would have to be analyzed to qualify the
potential and value of CellCognize and similar pipelines for more
general diversity analysis. The low-cost, rapidity and ease of FCM
quantitative single-cell analysis and fast downstream classification
of cell populations makes this a powerful tool to expand and
complement routine analysis of microbiota samples in a wide
variety of areas including clinical settings.

Methods
Strain and bead standards. The yeast and 14 bacterial pure cultures that were
used as standards in building ANN classifiers are listed in Table 1. The strains were
initially selected on the basis of their occurrence in aquatic systems, and with the
aim of including variation in size and morphology (e.g., rod, coccus), as well as
groups of strains with similar taxonomy (e.g., Pseudomonas, Arthrobacter, Sphin-
gomonas). Strains were grown aseptically and individually in liquid media in
biological triplicates until reaching stationary phase (conditions provided in Sup-
plementary Table 1). For E. coli, we further included samples from exponential
growth (OD600= 0.5) and from stationary phase (OD600= 2) on two different
culture media (Supplementary Table 1). Culture samples were diluted in
phosphate-buffered saline (PBS) to 105 or 106 cells ml–1 and stained in 200 µl
aliquots with 2 µl of diluted SYBR Green I solution (1:100 in dimethylsulfoxide;
Molecular Probes) in the dark for 15–30 min at 20 °C for FCM analysis.

Bead standards consisted of polystyrene size calibration beads with diameters of
0.2, 0.5, 1, 2, 4, 6, 10, and 15 µm (Invitrogen), used in solution at concentrations of
1 × 106 (0.2 and 0.5 µm), 6 × 107 (1 µm), 3 × 107 (2 and 4 µm) and 2 × 107 (6, 10,
and 15 µm) beads ml–1. Beads were stored and prepared for FCM analysis
according to the manufacturer’s guidelines.

Flow cytometric analysis. For FCM analysis using a NovoCyte flow cytometer
(ACEA Biosciences, Inc.), a total volume of 20 µl of stained sample was aspired at
14 µl min–1 at a sample acquisition rate of (maximally) 35,000 events s−1. Samples
were analyzed in two technical replicates. The NovoCyte cytometer has accurate
volumetric-based cell counting hardware so that no calibration through addition of
counting beads is necessary. The sheath flow rate was fixed at 6.5 ml min−1, which
corresponds to a core diameter of ~7.7 µm. The instrument threshold was set to
600 in the FITC-H channel (497 nm excitation and 520 ± 30 nm acquisition, to
capture SYBR Green I fluorescence) and to 20 in the FSC-H channel for all samples
in all experiments. Seven FCM parameters were recorded for each particle (FITC-
A, FITC-H, FSC-A, FSC-H, SSC-A, SSC-H and Width). Data sets were exported as.
csv files and imported for filtering and artificial neural network analysis in MatLab
(vs. 2017a, details are provided in Supplementary Methods).

Data pretreatment. FCM data were filtered for each of the seven parameters
between a fixed lower (generally a value of 100) and an upper boundary (105–107),
and then log10-transformed (Supplementary Methods, Section 2). Filtered and
log10-transformed data for each of the standards were plotted in 2D-combinations
of FITC-H, SSC-H and FSC-H to identify potential subpopulations (see, e.g.,
Supplementary Fig. 1). Subpopulations containing at least 5% of all data were gated
and separated within the filtered data sets by setting lower and upper log-
transformed boundaries in each of the three-parameter dimensions (i.e., FITC-H,
SSC-H and FSC-H). This process resulted in a total of 32 standards: 8 bead and
24 strain data sets (see Table 1). For the preliminary experiment with three strains
(see below), we used five standards (three strains, two of which had two
subpopulations).

Artificial neural network reconstruction. The filtered and gated data sets of the
standards (n ~ 3 × 105 to 1.5 × 106 events per standard) were used as input for the
development of ANN models (Supplementary Methods, Section 2.2). The datasets
were randomly subsampled to 10,000 events per standard using the datasample
function (Matlab v. R2017a). Crucially, the lower and upper boundary values
imposed during the filtering process for each of the seven FCM parameters were
added as two data points (“anchors”) per parameter to the first subsampled
standard. This process of “anchoring” was sufficient to fix the multidimensional
position of the data series for the subsequent machine-learning algorithm. Sub-
sampled anchored datasets were concatenated and used as input into the ANN
model, during which they were further scaled (between −1 and 1, hence the
necessity to add the anchors) and randomly divided using Dividerand (Matlab v.
R2017a) into three blocks: a training set (50% of the data), a validation set (25%)
and a testing set (25%).

The ANN architecture consisted of a feed-forward back-propagation algorithm
with one input, one hidden and one output layer. The input layer contained 7
nodes (corresponding to the 7 FCM parameters), whereas the output layer
contained 5 (for the preliminary three-strain experiment) or 32 nodes (one for each
of the standards in the full set). Input nodes were connected to the hidden layer by
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the sigmoid function (Matlab v. 2017a), whereas the hidden layer nodes (20) were
connected to the output by the softmax transfer function (Matlab v. 2017a). The
input matrix was trained using the trainscg function (Matlab v. 2017a) in a 1000-
cycle of training, validation and testing (performance goal= 0 | time= Inf | min
grad= 10−6 | max fail= 6). Performance of the ANN was evaluated by
crossentropy. The outcome of the ANN model is a classifier function, termed the
ANN classifier, describing the correlations between input parameters and the five
(proof-of-concept experiment, ANN-5) or 32 classes of the standard dataset
(ANN-32). The process of subsampling, anchoring, concatenation and training was
repeated five times independently on the full datasets, generating five slightly
different ANN classifiers. The performance of the ANN classifiers was assessed on
the basis of confusion matrices (Matlab v. 2017a), representing precision and recall
rates for the complete in silico mixed set of standards, and the false prediction rate
(as shown in Supplementary Fig. 2, Supplementary Dataset 1).

CellCognize testing of unknown and standard-mixed communities. In a first
proof-of-concept experiment, we cultured E. coli MG1655, P. veronii and A.
johnsonii individually in fivefold biological replicates to stationary phase, diluted
cultures 1:1000 in PBS, and measured cells by FCM after staining with SYBR Green
I either individually, or in different mixtures of all three strains combined. Indi-
vidual and mixture data sets were analyzed with CellCognize using a set of five
replicate ANN-5 classifiers, comparing expected added cell numbers of each of the
three strains with their assigned class attributions from the ANN-5 classifiers
(Supplementary Methods, Section 3.1–3.3).

An aquatic microbial community from Lake Geneva was recovered from 2 L of
lake water, sampled at 1 m depth at a site close to the shore in Saint-Sulpice
(46.517°N, 6.579°E), and used as an unknown background microbial community.
Debris was removed by filtering the lake water through a nylon cell strainer with
40-μm pore size (Falcon, USA). Bacterial cells were then collected from the filtrate
using a 0.2-μm pore size polyethersulfone membrane filter (Sartorius, Switzerland).
The filter with the cells was resuspended during 2 h in artificial lake water mineral
medium (ALW; containing, per L, 36.4 mg CaCl2·2H2O, 0.25 mg FeCl3·6H2O,
112.5 mg MgSO4·7H2O, 43.5 mg K2HPO4, 17 mg KH2PO4, 33.4 mg
Na2HPO4·2H2O, and 25 mg NH4NO3). Cell density in the ALW microbial
suspension was then quantified and diluted to 105 cells per ml. The diluted samples
were stained with SYBR Green I for 30 min in the dark, and then measured in
FCM, in three biological replicates, each with two technical replicates. FCM data
were exported as .csv format, merged, filtered between lower and upper boundaries,
and log-transformed for each of the seven FCM parameters as described above. The
same two (low and high) anchor values per FCM parameter were then added to the
dataset to ensure its proper ‘positioning’ during the ANN classifier computation.
The lake water microbial community data were analyzed alone (n= 5039 cells),
and also after being merged in silico with each of the 32 standards individually,
randomly subsampled (n= 5000) for that purpose (Supplementary Methods,
Section 3.6–3.9). Datasets were then classified using each of the five ANN-32
classifiers, in order to attribute all events to the predefined standard classes. In a
further test, randomly subsampled FCM datasets (n= 5000) of three standards
each (AJH1, MG_STAT_MM and PVR1) were merged in silico with the lake water
community (n= 5039 cells) and reclassified using the ANN-32 classifiers. The
recovery rate was calculated as the ratio of the number of cells from the standard
attributed to its own class and the in silico added number. The mean probability
and probability distribution of attribution were calculated for those particles
assigned to each class (for example, in Fig. 4b, Supplementary Methods, Section
5.1–5.3).

In order to evaluate whether CellCognize could distinguish different cell
physiologies, we classified FCM datasets of all four E. coli standards (representing
different strains, culture media, and cell growth phases) individually (randomly
subsampled to n= 20,000 cells) or as an in silico mixture with n= 5000 cells of
each, using the five ANN-32 classifiers (Supplementary Methods, Section 3.5–3.7).

The performance of ANN-32 classifiers was further evaluated by mixing
stationary phase-grown E. coli into the filtered lake water microbial community
samples. E. coli MG1655 was cultured either on LB or on M9-CAA in biological
triplicates. Cells were counted in stationary phase samples, diluted in artificial lake
water, and added as 1.0 × 104 or 1.0 × 105 cells ml–1 to the lake water community.
Mixtures were stained and measured on FCM for comparison with lake water
microbial community samples alone. Data were extracted, filtered, log-transformed
and anchored as described above, and analyzed with the five ANN-32 classifiers for
standard class attributions (Supplementary Methods, Section 3.10).

Lake water microbial community enrichment. In order to evaluate the ANN
classification of an unknown community, we incubated the Lake Geneva water
microbial community with either phenol or 1-octanol, or without any further
amendment, for three days. Microorganisms were collected from 10 L Lake Geneva
water by filtration (0.2–40 µm pore size) taken in November 2018, and re-
suspended in 100 ml ALW in acid-treated closed 500-ml glass Schott flasks to
obtain starting cell concentrations of 105 cells ml−1. Uniformly 14C-labeled phenol
or 1-C 14C-labeled 1-octanol (ANAVA Trading SA) were dosed at 1000–5000 dpm
ml−1 in a mixture with unlabeled compound of the same type, to obtain total
carbon concentrations of 0.1, 1 or 10 mg C l–1. Incubations with unlabeled phenol
were further repeated three times independently with Lake Geneva microbial

communities sampled in October and November 2017, and January 2019. Una-
mended inoculated ALW served as control for background growth, whereas
amended but non-inoculated ALW served as abiotic controls. Triplicate flasks were
prepared per assay, and incubated at 21 °C in the dark with 150 rpm rotary
shaking. Aliquots of 1 ml were taken immediately after dosing the substrate, and
then daily by syringes with needles without opening the caps, for cell staining with
SYBR Green I and FCM analysis. FCM data were exported, filtered and anchored
as described above, and used as input for ANN classification using the five ANN-32
classifiers (Supplementary Methods, Section 4.1–4.3).

A further 12 ml were sampled from each flask for 14C-analysis by needle and
syringe without opening the caps. A subsample of 0.1 ml was taken to measure the
radioactivity in aqueous solution. A 5-ml aliquot was filtered through 0.2-µm-pore
size membrane filter to collect cell biomass, and a comparison subsample (0.1 ml)
was taken from the filtrate. At day 3, the remaining solution after sampling (85 ml)
was acidified to pH 3, CO2 was purged from the liquid by air stripping during 1 h,
and the solution was collected into three vials each containing 5 ml of 1M NaOH.
Vials were pooled and 0.5 ml was sampled. Aqueous samples or filtered cells were
mixed in 5 ml liquid scintillation cocktail (Perkin Elmer) to measure the amount of
14C-CPM (counts per min), which was converted to DPM (disintegrations per
min) by multiplying by a factor of 1/0.94 to correct for the instrument’s efficiency.
Mass balance values are reported in Supplementary Fig. 7.

Community diversity analysis by 16S rRNA gene amplicon sequencing. Lake
Geneva water prokaryotic species diversity was determined by 16S rRNA gene
amplicon sequencing. Triplicate samples from the enrichment experiment carried
out with phenol and 1-octanol at 10 mg C l–1 in January 2019 as described above
were collected immediately after dosing substrate and after three days incubation at
room temperature in the dark. Sample volumes were adjusted to have similar cell
densities at both time points. Cells were collected on 0.2-µm membrane filters
(PES, Sartorius) and stored in FastDNA Spin kit solution for soil (MPBio) at −80 °
C until analysis. Prior to DNA extraction, we added two internal standards (with
cell number adjusted to 1% of the total cell density measured in the sample by
FCM) to normalize 16S rRNA gene sequence variant abundances across samples, if
necessary. The internal standards were in-house honeybee gut microbiota isolates
belonging to Giliamella and Bifidobacterium (kindly provided by Lucie Kesnerova,
University of Lausanne), which are unlikely to be found in lake water. After DNA
extraction according to the manufacturer’s recommendations for the FastDNA
Spin kit for soil (MPBio), the V3–V4 hypervariable region of the 16S rRNA gene
was amplified using the 341f/785r primer set with appropriate Illumina adapters
and barcodes. PCR conditions, amplifications and library preparations followed
recommendations in the Illumina Amplicon sequencing protocol (https://support.
illumina.com/documents/documentation/chemistry_documentation/16s/16s-
metagenomic-library-prep-guide-15044223-b.pdf). Equal amounts of amplified
DNA from each sample were pooled and sequenced bidirectionally on the Illumina
MiSeq platform at the University of Lausanne. Raw 16 S rRNA gene amplicon
sequences were separated by barcode, quality filtered, concatenated, verified for the
absence of potential chimera, dereplicated and mapped to known bacterial classes
(level 3) or species (level 7) using QIIME2 at 99% similarity to the SILVA taxo-
nomic reference gene database on a UNIX platform38. Alpha- and beta-diversity
measures were calculated in R using the phyloseq package. Significance of treatment
and condition clustering was calculated using ADONIS implemented in vegan with
the Bray–Curtis distance matrix and 999 permutations. Similarity of CellCognize
and 16S rRNA amplicon (level 3) Bray–Curtis distance matrices was further
assessed in a Spearman correlation of linear vectorized matrices (MatLab functions
squareform “tovector” and corr, “type”,“Spearman”). Finally, the vectorized
matrices were compared by MatLab mdscale and procrustes to calculate the
goodness-of-fit dissimilarity measure d.

Pure culture isolation. Phenol- and 1-octanol-amended communities at day 3
were plated on MicroDish® platforms placed on silica gel disks with 10 mg C l−1 of
the same substrate and incubated for three days at 21 °C. Microcolonies were
picked and transferred to glass vials with ALW and the same phenol or 1-octanol
concentration for further propagation. One such isolate (named OCT in further
analyses) was able to grow both with phenol and 1-octanol at 10 mg C l−1 and was
used for CellCognize classification as described in the Results section above. On the
basis of its amplified and sequenced gene for 16S rRNA, this isolate identified with
99.5% nucleotide identity as Pseudomonas azotoformans. FCM data of a pure
stained culture of the OCT-isolate grown in biological triplicates on ALW with 1-
octanol for three days was included with the previous 32 standards to train a
separate ANN-classifier (ANN-33), which was used to analyze the enrichment
cultures (Supplementary Methods, Section 5.5).

Estimation of microbial community biomass from CellCognize classification.
For the estimation of biomass using the ANN-32 classifiers, the mean number of
classified events for each of the standard classes was multiplied by the estimated
average C-mass per cell of that standard (Supplementary Table 2), and summed
across all standard classes to obtain the total biomass at that time point in the
community (as outlined in Fig. 1f).
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To estimate the average C-mass per cell of the standards, biovolumes of each
strain and bead standard individually in solution with a density of 107 particles
or cells ml–1 was measured using a 3D cell explorer microscope (Nanolive). A
60× objective (λ= 520 nm), 0.2 mWmm–2 light intensity was used for imaging
with a resolution of Δxy= 200 nm, Δz= 400 nm, and a field of view of 85 × 85 ×
30 μm. At least five randomly selected fields were examined. Nanolive’s STEWE
software (https://nanolive.ch/software/) with the Image J plugin was deployed to
segment particles on images and to calculate the average biovolume per cell per
standard (Supplementary Fig. 3). The average standard biomass was then
calculated from the corresponding biovolume using the allometric formula as
proposed by ref. 39

mb ¼ 435 ´V0:86 ð1Þ
where V represents the measured average biovolume (µm3) and mb the
calculated (dry weight) biomass (fg). Dry weight biomass values were divided by
two to obtain the carbon mass per cell. Upper and lower boundaries were
calculated in the same way, but by taking the mean biovolume plus or minus its
measured standard deviation, respectively. Estimates of community biomass
were compared with values obtained from 14C-substrate incorporation.

Statistics and reproducibility. Pure and mixed cultures, and aquatic samples were
all grown in biological triplicates or in five-fold replicates. Different serial dilutions
were prepared from every sample before staining and analysis in two technical
replicates on flow cytometry, as is common for the field. At least between 10,000
and 100,000 cell events were recorded for all cultures and samples, if possible.

Events with negative data values from flow cytometry were excluded, and events
were further thresholded to min- and max-values for each of the 7 measured FCM
parameters (as specified in Supplementary Methods, section 1.1). Raw sequence
reads were quality-controlled, cleaned and processed as described in the QIIME2
package, and potential chimera were removed.

Standard strains for the development of the ANN-32 classifiers and for the 3D
imaging were cultured once in biological triplicates. Three of them (A. johnsonii,
E. coli and P. veronii) were cultured on a separate occasion for the development of
the ANN-5 classifiers (five biological replicates), and two others (E. coli MG1655
and E. coli DH5α-λpir) were cultured separately in biological replicates for mixing
with the lake water bacteria. Lake water samples were taken, analysed or used for
culturing on five different occasions as specified in the Methods sections above.

Cell data for inclusion in the development of the training and validation sets for
the neural network, or for replicate testing, were randomly subsampled from the
complete pool of data, as indicated in the main text and as described in the
Supplementary Methods for each of the experiments.

The exact sample size (n) is given as a discrete number of cells or
experimental replications, dependent on the experiment. Statistical parameters
of central tendencies (e.g., means) or other basic estimates and variation (SD) are
explained at appropriate positions in the main text and figure legends. Machine-
learning outcomes (e.g., recall and precision, accuracy, receiver operating
characteristics, probability scores, predicted classification) are explained
in Supplementary Notes and Supplementary Methods, with details on the used
scripts and formula. Mean and standard deviation on cell type classifications
were calculated from the variation among the five independently generated ANN
classifiers.

Principal component analysis of the variance among 32 standards for
classification is explained in Supplementary Methods, Section 3.4. Comparison of
diversity measures is described above. Biomass yield estimates were compared by
two-sided t-test statistic on 14C-values from biological triplicates and biomass sums
from predicted CellCognize classification on the same samples.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw data for the 16S rRNA amplicon sequencing data can be accessed from the
BioProject PRJNA641590 using the accession code SAMN1535695-15356976. Flow
cytometry and 16S rRNA amplicon sequencing data from this work are accessible from a
single online accession at Zenodo.org (10.5281/zenodo.3822094)40. All source data are
available as Supplementary Data in Excel format. Please see Description of Additional
Supplementary Files for more information.

Code availability
Detailed code and explanations is available from a single online accession at Zenodo.org
(10.5281/zenodo.3822094)40. The detailed scripts for the CellCognize pipeline for every
experiment and image display are provided in Supplementary Methods, with a table of
content on p. 2 of the Supplementary Information.
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