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Introduction: Changes in cortical and white matter lesion (CL, WML) load are pivotal

metrics to diagnose and monitor multiple sclerosis patients. Yet, the relationship between

(i) changes in CL/WML load and disease progression and between (ii) changes in

CL/WML load and neurodegeneration at early MS stages is not yet established. In

this work, we have assessed the hypothesis that the combined CL and WML load as

well as their 2-years evolution are surrogate markers of neurodegeneration and clinical

progression at early MS stages. To achieve this goal, we have studied a group of RRMS

patients and have investigated the impact of both CL and WML load on neuroaxonal

damage as measured by serum neurofilament light chain (sNfL). Next, we have explored

whether changes in CL/WML load over 2 years in the same cohort of early-MS are related

to motor and cognitive changes.

Methods: Thirty-two RRMS patients (<5 years disease duration) underwent: (i) 3T MRI

for CL/WML detection and clinical assessment at baseline and 2-years follow-up; and

(ii) baseline blood test for sNfL. The correlation between the number and volume of

CL/WML and sNfL was assessed by using the Spearman’s rank correlation coefficient

and a generalized linear model (GLM). A GLM was also used to assess the relationship

between (i) the number/volume of new, enlarged, resolved, shrunken, stable lesions and

(ii) the difference in clinical scores between two time-points.

Results: At baseline, sNfL levels correlated with both total CL count/volume

(ρ = 0.6/0.7, Corr-P < 0.017/Corr-P < 0.001) and with total WML count/volume (ρ

= 0.6/0.6, Corr-P < 0.01 for both). Baseline sNfL levels also correlated with new

WML count/volume (ρ = 0.6/0.5, Corr-P < 0.01/Corr-P < 0.05) but not with new CL.
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Longitudinal changes in CL and WML count and volume were significantly associated

with (i) sustained attention, auditory information, processing speed and flexibility (p <

0.01), (ii) verbal memory (p < 0.01); (iii) verbal fluency (p < 0.05); and (iv) hand-motor

function (p < 0.05).

Discussion : Changes in cortical and white matter focal damage in early MS patients

correlate with global neuroaxonal damage and is associated to cognitive performances.

Keywords: early relapsing remitting multiple sclerosis, MRI, MP2RAGE, cortical lesions, serum neurofilamants

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinating
disease of the central nervous system, which leads to the
formation of focal demyelinating plaques in white and gray
matter (1, 2). These lesions appear on a background of
an inflammatory reaction—characterized by accumulation of
lymphocytes and activated microglia—and show demyelination,
in which axons are at least partially preserved (3). At all MS
stages, white matter lesions (WML) are characterized by different
levels of inflammatory activity, remyelination and axonal loss,
with more evident ongoing activity in lesions of patients at early
MS stages (4–7).

Cortical demyelination—which may be focal or diffuse—is
also frequent in MS and present at early MS stages (8). Cortical
lesions appear inflammatory and strongly associated with
meningeal inflammation (8) and encompass plaques affecting
both the cortex and the underlying white matter (leukocortical
lesions), small perivascular lesions that completely located within
cerebral cortex (intracortical lesions) and subpial cortical lesions
(9, 10).

The presence and changes in cortical and white matter lesions
(CL, WML) load are pivotal metrics for the management of
multiple sclerosis (MS) patients (11).

The number of WML and CL in patients with suspicious
symptoms of MS is a fundamental criterion for the diagnosis
of the disease (12). WML number at baseline is predictive
of conversion to MS at 20-years follow-up in patients with
clinical isolated syndrome (13), and WML volume appears to
be associated with disability, motor and cognitive outcome at
long-term follow-up (14). The number of CL appears to correlate
with disability and cognition in early MS stages and shows
even stronger associations with those outcome measures than
WML load (15). Besides, CL load is strongly and positively
associated with cognitive dysfunction andwith severe graymatter
atrophy (10). Also, cortical pathology—better than WML load—
is related to disability progression in all MS disease phenotypes
(16) and extensive cortical damage at onset is associated with
both florid inflammatory clinical activity and rapid occurrence
of the progressive phase (16).

Regarding patient monitoring, the accumulation of focal
damage (i.e., the increase in WML number) is one of the
criteria that is currently used to follow-up therapy response and
eventually therapy-switch in MS patients (17, 18).

Irreversible central nervous system damage occurs in the
early phase of MS and significantly contributes to disability

progression in later stages of the disease (19, 20). That is why
it is currently accepted that early treatment favorably impacts
the long-term outcomes of MS patients (17, 21, 22), reduces
disability progression in patients with RRMS, and decreases
the risk of developing clinically defined MS in patients with
clinically isolated syndrome (23–26). Nonetheless, with the
current plethora of MS therapies, it is of outmost importance
to stratify patients that might benefit from more aggressive
therapeutic regimens than others at early disease stages.

To date, it remains unclear (i) whether changes in CL/WML
load during the first years of MS disease parallel changes in
clinical outcome and (ii) whether CL/WML load in early MS is
proportional to ongoing neurodegeneration.

In this work, we have assessed the hypothesis that—in early
MS—the combined CL and WML load as well as the 2-
years evolution of CL/WML number and volume are surrogate
markers (i) of neurodegeneration and (ii) of clinical progression.
To achieve this goal, we have studied a group of RRMS patients
and have investigated the impact of both CL and WML load on
neuroaxonal damage as measured by serum neurofilament light
chain (sNfL) (27, 28). Next, we have explored whether changes in
CL/WML load over 2 years in the same cohort of early-MS are
related to motor and cognitive changes.

METHODS

Population and Clinical Assessment
We performed a retrospective analysis in a cohort of patients
enrolled at Lausanne University Hospital. Thirty-two early
RRMS patients with <5 years disease duration were enrolled in
the study (TP1) and followed up 2 years later (TP2). Inclusion
criteria for patients were the following: definite MS diagnosis
according to the revised McDonald criteria 2017, <5 years
disease duration at enrolment, age between 20 and 70 years old
and no other neurological or psychiatric disorder more than 3
months after the last relapse and/or end of corticosteroid therapy.
Exclusion criteria were: claustrophobia and contraindications
to MRI.

Also, at both TP1 and TP2, each of the 32 subjects underwent
advanced MRI and a clinical examination, and 25 of them had
blood sampled to measure sNfL levels at TP1.

Clinical assessment was performed using: (i) Expanded
Disability status scale (EDSS) (29), (ii) Multiple Sclerosis
Functional Composite score (MSFC) (30), (iii) Brief Repeatable
Battery of Neuropsychological Tests; (BRBN) (31), (iv) Hospital
Anxiety and Depression scale (HAD) (32), (v) Fatigue Scale for
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Motor and Cognitive functions (33). Physical disability of the
patients was scored using the Expanded Disability Status Scale
(EDSS). The difference between clinical scores at TP2 and TP1
(TP2–TP1) was used as a measure of clinical changes over time.

The institutional ethics review board approved the study and
all patients gave their written informed consent.

MR Imaging Acquisition
Images were acquired on a 3T scanner (MAGNETOM Trio
a Tim system, Siemens Healthcare, Erlangen, Germany) using
a 32-channel head coil. The imaging protocol included:
Magnetization-Prepared 2 Rapid Acquisitions Gradient Echo
(MP2RAGE, TR/TI1/TI2= 5,000/700/2,500ms, vs= 1.0× 1.0×
1.2mm3, acquisition time:∼8min) (34) and 3D Fluid-attenuated
inversion recovery (FLAIR, TR/TE/TI = 5,000/394/1,800ms, vs
= 1.0× 1.0× 1.2mm3, acquisition time:∼6 min).

Image Analysis
WML/CL were segmented by consensus by a neurologist and
a neuroradiologist on 3D FLAIR and MP2RAGE images using
ITK-SNAP [http://www.itksnap.org, (35)]. WML/CL number
and volumes were then extracted from the segmented lesion
masks using MATLAB.

The detection of CL and the definition of CL types was
performed on MP2RAGE images, which are known to be more
sensitive to cortical focal pathology than both MPRAGE and
3D FLAIR (36). Cortical lesions were segmented if they were
characterized by a local cortical hypointensity on MP2RAGE
compared to the surrounding gray matter and they had at least
1mm in plane resolution and more than three pixels in size.

The experts who manually performed lesion detection were
unaware of the patients clinical status and cognitive tests results.

MS lesions were then classified in five groups as proposed in
(37) depending on their evolution between the two time-points:
new (identifiable on the TP2 images but not on the TP1 images);
enlarged (characterized by a diameter increased at TP2 by at least
50%); resolved (clearly visible on the TP1 images but not on the
TP2 images); shrunken (characterized by a diameter decrease at
TP2 by at least 50%); stable: do not follow any of the above criteria
(Figure 1). For the segmentation of new, resolved, shrunken,
enlarged and stable lesions, we applied an automated method
developed in house (38).

Serum Neurofilaments Measuring
Serum neurofilament light chain levels were measured using an
electrochemiluminescence-based immunoassay (27).

Statistical Analysis
Assessment of the relationship between (i) CL/WML load at
baseline and baseline sNfL and (ii) 2-years changes in CL/WML
load and baseline sNfL

In patients, we performed Spearman’s correlations between
baseline sNfL and baseline number/volume of CL/WML. We
also performed Spearman’s correlations between baseline sNfL
and changes in number/volume of CL/WML at 2-years follow-
up. P-values were obtained from the permutation test with a
case resampling rate of 10,000. False discovery rate correction

was performed by using the Benjamin-Hochberg procedure to
account for multiple comparisons.

A univariate general linear model (GLM) was also performed
to assess the relative contribution of CL and WML to sNfL
variations, which were transformed by Box-Cox transformation
to be normally distributed since the p-value of the Shapiro-Wilk
test on the sNfL is <0.001. The best GLM model was selected
by Akaike information criterion (AIC) to reduce the risks of
overfitting and underfitting.

Assessment of the relationship between changes in CL/WML
load and clinical changes

General linear model was performed using: (i) the number
of new, enlarged, resolved, shrunken, stable lesions as well as
the volume of new, enlarged, resolved, shrunken, stable lesions
as predictors and (ii) the delta (TP2-TP1) of each cognitive,
motor and disability score as outcome. We checked the delta
of all measures for normality by the Shapiro-Wilk test and the
following were Box-Cox transformed: PASAT, SRT-LTS, SRT-
D, and SDMT. The delta of each measure to be transformed
was rendered positive by subtracting the minimum of the
delta and adding 0.01∗ the maximum of the delta to avoid
having negative values in the Box-Cox transformation. Age,
gender, number of education years, and the change of the
anxiety and depression scores were considered as covariates. This
cohort of stable patients did not exhibit any relapses between
TP1 and TP2. Backward-stepwise analyses based on AIC were
performed to select the best prediction model for each clinical
score. Bonferroni correction was applied to correct for the
familywise error rate. A leave-one-out cross-validation (LOOCV)
was conducted to assess the prediction quality of each model
measured by the Spearman’s correlation coefficient between the
true and predicted outcomes in the validation sets of all folds.

Statistical analysis was performed using the R-project for
statistical computing (https://www.r-project.org/).

RESULTS

Our cohort of RRMS patients consisted of 32 subjects, 13 males,
19 females with age at enrollment 35 ± 9.9 years (mean ±

standard deviation, range 20–70 years); follow-up interval 21.4±
2.5 months, (mean ± standard deviation, range 16–27 months).
All patients were < 5 years from initial symptoms 32 ± 21.6
months (mean ± standard deviation, range 3–70 months) and
disease diagnosis 26± 19.3 months (mean± standard deviation,
range 0–59 months) at TP1. 88% of patients were on treatment at
the baseline and 94% on treatment at the follow-up.

At baseline, 76% of patients (n= 24) were on Interferon Beta,
15% (n= 5) on Fingolimod and 9% (n= 3) onGlatiramer acetate.
Treated patients remained on the same treatment for the entire
duration of the study. There was no corticosteroid therapy within
the 3 months preceding the enrollment and follow-up MRI.

Clinical scores at the time of enrollment (TP1), at the follow-
up (TP2) and the difference in clinical scores between the two
time-points (TP2-TP1) as a measure of clinical changes over time
are shown in Table 1.
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FIGURE 1 | Top row: Exemplary sagittal view in one patient showing WML and CL type 1, 2, and 3. Bottom rows: Axial slices of MP2RAGE and 3D FLAIR images

showing exemplary new, enlarged, shrunken and resolved WML as automatically detected.

Longitudinal Changes in CL/WML
Baseline numbers and changes in WML and CL number over 2
years are reported in Figures 2, 3.

Correlation Between sNfL and CL/WML at
Baseline and With Changes in CL/WML
Over 2 Years
At baseline, 164 (80.4%) of CL were type 1, 39 (19.1%) were type 2
and 1 only of type 3 (0.5%) in patients havingmeasured sNfL. The
sNfL levels in MS patients correlated with total CL count/volume
(ρ = 0.6/0.7, Corr-P < 0.01/Corr-P < 0.001) to a similar extent
than with total WML count/volume (ρ = 0.6/0.6, Corr-P < 0.01
for both),Table 2. Specifically, sNfL correlated with both CL-type
I number/volume (ρ= 0.5/0.6, Corr-P< 0.05/Corr-P< 0.01) and

with CL- type II number/volume (ρ = 0.5/0.5, Corr-P < 0.05 for
both), Table 2.

The best GLM model included CL count/volume and WML
volume as predictors and revealed a moderate association
between sNfL at baseline and WML/CL volume (adj-R2 = 0.5,
p = 0.0006, pred-R2 = 0.09). Besides, sNfL levels at baseline
correlated with new WML count/volume (ρ = 0.6/p = 0.5, p =

0.002/p = 0.01, Corr-P < 0.01/Corr-P < 0.05) but not with new
CL count/volume, Table 2.

Correlation Between Changes in CL/WML
and Changes in Clinical Scores
Table 3 shows that the longitudinal changes in CL and
WML volume and number were significantly associated with
changes in:
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TABLE 1 | Clinical scores at the time of enrollment (TP1), at the follow-up (TP2) and the difference in clinical scores between the two time-points (TP2-TP1) as a measure

of clinical changes over time.

TP1 TP2 TP2-TP1

Disability and motor function EDSS 1.6 ± 0.3 1.7 ± 0.5 —

9-HPT (Arm function) 19.8 ± 2.8 19.6 ± 2.7 −0.21 ± 2.13

T25FWT (Leg function) 4 ± 0.8 3.4 ± 0.5 −0.62 ± 0.69

Cognition (BRB-N) PASAT (cognitive) 46.8 ± 10.4 48.7 ± 11.1 1.84 ± 6.71

SRT-LTS (verbal memory) 62.3 ± 7.2 65.7 ± 5 3.41 ± 6.32

SRT-CLTR (verbal

memory)

57.6 ± 11.4 61.6 ± 10 3.94 ± 9.15

SRT-D (verbal memory) 11.4 ± 1.1 11.8 ± 0.5 0.38 ± 1.1

SDMT (attention) 60.5 ± 17.3 57.2 ± 11.6 −3.34 ± 18.7

SPART10/36 (visuospatial

memory)

23.2 ± 4.3 23.2 ± 3.9 −0.03 ± 4.07

WLG (verbal fluency) 27.6 ± 5.4 27.4 ± 7.9 −0.19 ± 5.4

Mood and fatigue HAD-A (anxiety) 6 ± 4.1 5.7 ± 3.8 −0.28 ± 3.34

HAD- D (depression) 2.9 ± 2.4 2.1 ±2.1 −0.78 ± 2.56

FMSC-Cognitive 23 ± 8.4 22.7 ± 9.6 −0.31 ± 7.33

FMSC-Motor 22.7 ± 9.6 23.1 ± 10.9 −0.84 ±7.41

Values are expressed in mean ± standard deviation unless otherwise indicated.
BRB-N, Brief repeatable battery of neuropsychological tests; EDSS, Expanded Disability Status Scale; T25FW, Timed 25-Foot Walk—leg function; 9-HPT, 9 Hole Peg Tests -arm
function; BRB-N, Brief Repeatable Battery of Neuropsychological Tests; PASAT, paced auditory serial addition test; SRT-LTS, selective reminding test-long term storage; SRT-CLTR,
selective reminding test—Consistent long-term storage; SRT-D, selective reminding test-delayed; SDMT, symbol digit modalities test; cSPART 10/36, Spatial Recall Test; WLG: word list
generation; HAD-A, Hospital Anxiety and Depression scale- Anxiety; HAD-D, Hospital Anxiety and Depression scale-Depression; FMSC, Fatigue scale for Motor and Cognitive functions.

FIGURE 2 | Total white matter lesions (WMLs) and cortical lesions (CLs) number at baseline (TP1) and at 2 years follow-up (TP2) in the studied cohort of RRMS

patients.

(i) Hand function (9HPT, adj-R2: 0.5, Corr-P= 0.03, and ρ= 0.5
after leave-one-out cross-validation, LOOCV)

(ii) Sustained attention, auditory information, processing speed
and flexibility (PASAT, adj-R2: 0.5, Corr-P = 0.01, and ρ = 0.5
after leave-one-out cross-validation, LOOCV)

(iii) Verbal memory (SRT-D, adj-R2: 0.5, P = 0.01 and ρ = 0.45
after LOOCV)

(iv) Semantic verbal fluency (WLG- word list generation
test, adj-R2: 0.5, Corr-P = 0.05, and ρ = 0.4
after LOOCV)
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FIGURE 3 | Total number of new, enlarged, stable and resolved cortical and white matter lesions at follow-up (TP2) in the studied cohort of RRMS patients. WMLs,

white matter lesions; CLs, cortical lesions.

TABLE 2 | Correlation between baseline sNfL with baseline WML/CL and new

WML/CL load.

Number Volume

Spearman ρ P-value Corr-P Spearman ρ P-value Corr-P

WML 0.58 0.003 0.003 0.61 0.002 0.003

CL 0.60 0.002 0.003 0.69 0.0002 0.0006

Lesion Type 1 0.54 0.005 0.01 0.64 0.0008 0.003

Lesion Type 2 0.45 0.025 0.025 0.50 0.013 0.018

New WML 0.58 0.002 0.009 0.51 0.01 0.022

New CL 0.38 0.06 0.085 0.31 0.13 0.13

P-values and Corr-P given are before and after Benjamini-Hochberg
procedure, respectively. Bold values indicates the statistically significant values.

Specifically, changes in 9-HPT scores were associated with the
gender (p < 0.05), number (p < 0.05) and volume (p < 0.01) of
new lesions, number of enlarged lesions (p < 0.05) and number
of shrunken lesions (p < 0.05), Table 1 Supplementary data.

Changes in PASAT (sustained attention, auditory
information, processing speed, and flexibility) score were
significantly associated with the patients age (p < 0.01)
and number of CL/WML that shrunk in size (p < 0.05),
Table 2 Supplementary data.

Changes in SRT-D were mainly associated with resolved
CL/WML volume (p < 0.001), stable CL/WML volume (p <

0.001), new CL/WML number (p < 0.05), resolved CL/WML
number (p< 0.001), sex (p< 0.01),Table 3 Supplementary data.

Changes in WLG test (semantic verbal fluency) was
associated to the shrunken CL/WML volume (p < 0.01),
stable CL/WML volume (p < 0.001), shrunken CL/WML
number (p < 0.05), stable CL/WML number (p < 0.01),
Hospital Anxiety and Depression scale-Depression (p < 0.05),
Table 4 Supplementary data.

DISCUSSION

Our work shows that the number and volume of focal CL
and WML are moderately related to neuroaxonal damage—as
measured by sNfL—at early MS stages. We also determined
that the changes in CL/WML load are associated with
changes in cognition and in motor performance in our
cohort of patients with short disease duration and on
stable therapy.

MS is characterized by multifocal inflammatory processes,
which lead to the formation of demyelinating lesions in
cortical gray and white matter. These inflammatory processes
dominate in early stages of the disease and can be targeted
by current anti-inflammatory treatments (39), thereby slowing
the accumulation of disability (40). Hence, early biomarkers
of ongoing disease activity are fundamental to judge on
the need of therapy-switch and escalation at early disease
stages (41).

In this work, we have studied patients with early RRMS and
mild physical disability, who were on first-line treatment at time
of enrollment.

We assessed whether CL and WML load and their changes
over 2 years might be a useful biomarker to quantify neuroaxonal
damage in those patients. To assess neurodegeneration, we used
a serum biomarker i.e., sNfL, since a previous study in the same
cohort showed the absence of brain atrophy over the 2-years
follow-up (42).

We found a moderate correlation between CL and WML
load at baseline and sNfL measures at the same time point,
confirming and extending previous knowledge that focal WM
lesions affect overall neuroaxonal damage in patients with MS
(43, 44). The measure of sNfL levels at baseline also showed
a correlation with the increase in WML number over 2 years.
These findings confirm and extend previous knowledge that sNfL
levels are related to WML volume at 2 years follow-up in MS
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TABLE 3 | Multiple regression between change of MRI metrics and change of clinical scores.

Stepwise regression LOOCV

Adjusted-R2 P-value Minimum, maximum, lambda Corr-P Spearman ρ P-value Corr-P

T25FWT 0.07 0.233 — 1 — — —

9-HPT 0.48 0.003 — 0.03 0.52 0.002 0.02

PASAT 0.46 0.001 (−11,24,0.4) 0.01 0.56 0.001 0.008

SRT-LTS 0.39 0.004 (−8,21,0.4) 0.04 0.4 0.025 0.2

SRT-CLTR 0.24 0.03 — 0.27 0.43 0.013 0.1

SRT-D 0.57 0.0003 (−2,4,0.8) 0.003 0.45 0.009 0.08

SPART 10/36 0.07 0.074 — 0.66 — — —

WLG 0.43 0.003 — 0.03 0.64 0.0001 0.001

SDMT 0.04 0.146 (−96,16,2.4) 1 — — —

Stepwise regression: The given P-values and Corrected P-values (Corr-P) are before and after Bonferroni correction, respectively. LOOCV: Spearman’s rank correlation coefficient (ρ)
between real and predicted outcome obtained through “leave-one-out” cross-validation (LOOCV). T25FWT, Timed25-FootWalk Test- leg function; 9-HPT, 9-Hole Peg Test—arm function;
PASAT, paced auditory serial addition test; SRT-LTS, selective reminding test-long-term storage; SRT-CLTR, selective reminding test-consistent long-term storage; SRT-D, selective
reminding test-delayed recall; SPART 10/36, spatial recall test; WLG, word list generation; SDMT, symbol digit modality test. Bold values indicates the statistically significant values.

patient at more advanced disease stage (43); additionally, these
data suggest that sNfL measurements at baseline may provide
important complementary information overWM disease activity
during the 2 years that follow but not of CL activity.

Interestingly, we did not measure any significant correlation
between sNfL and changes in CL at 2 years follow-up, which is
probably due to the low number of CL compared to WML in our
cohort of patients.

We also showed that changes in size and number of lesions
were strongly associated with changes in cognition (sustained
attention, processing speed and flexibility as well as in spatial
memory and semantic verbal fluency) but also with changes
in hand motor function. It is known that some lesions—
especially the recent ones—may shrink in size over time and
their intensity on T2-weighted (i.e., FLAIR) images decreases as
edema resolves and some tissue repair occurs, leaving a smaller
lesion or an undetectable plaque (45). Other lesions undergo
little changes in size (stable lesions) and some others significantly
increase in volume over-time (e.g., lesions with chronic activity)
(46). Much is known about the relationship between new and
enlarging lesions and clinical outcome in MS (47, 48) but there
is currently little knowledge about the contribution of shrinking
and resolving lesions. Our results provide a new window into
the complex changes in CL and WML, which influence mild
changes in cognition and motor function in early MS patients
on therapy.

Remarkably, our data also provide evidence that the
reparatory activity in focal plaques– as measured through the
number and volume of resolved and shrunk lesions—appear
to strongly correlate with cognitive changes in our cohort of
patients. Since a comprehensive cognitive assessment in clinical
practice may be time consuming and unrealistic for routine
follow-up of MS patients, the detection of new CL and WML
during the early stage of the disease may support with alternative
monitoring tools.

Detection of CL and of changes in WML and CL load in
clinical practice is challenging. We have assessed the number and
volume of cortical lesions and their changes over time by using
MP2RAGE; this is a clinically available MR sequence that has
shown similar sensitivity to double inversion recovery (DIR) for
CL detection (36) and that appears to be artifact free in contrast
to DIR (49). MP2RAGEmay therefore provide the opportunity—
together with a 3D FLAIR sequence for optimalWML detection–
to assess the overall burden of focal activity in early MS patients
in clinical practice.

Limitations of this study are the relatively small and
homogeneous sample size and the fact that, due to the moderate
number of patients studied, we could not consider treatment as a
covariate in our regression models. We also acknowledge that the
absence of information about gadolinium-enhancement at the
time of the MRI might have influenced the sNFL results although
this is not highly probable since patients were clinically stable and
on therapy. In addition, we did not have a matched population
of healthy controls to determine whether the measured sNFL
levels were increased in patients. Future work should confirm
these finding in larger cohorts of patients, including subjects
with higher disability scores and disease activity as well as
healthy controls.

In summary, our results suggest that early assessment of
CL/WML load and their short-term evolution during the first
year of disease are sensitive to ongoing axonal damage and related
to subtle clinical changes. New efforts should be devoted to using
these metrics to stratify patients at the beginning of the disease
and hence to identify the ones who needmore aggressive first-line
therapies or therapeutic escalation.
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