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Abstract

Motivation: There is growing recognition that estimating haplotypes from high coverage sequencing

of single samples in clinical settings is an important problem. At the same time very large datasets

consisting of tens and hundreds of thousands of high-coverage sequenced samples will soon

be available. We describe a method that takes advantage of these huge human genetic variation re-

sources and rare variant sharing patterns to estimate haplotypes on single sequenced samples.

Sharing rare variants between two individuals is more likely to arise from a recent common ancestor

and, hence, also more likely to indicate similar shared haplotypes over a substantial flanking region

of sequence.

Results: Our method exploits this idea to select a small set of highly informative copying states

within a Hidden Markov Model (HMM) phasing algorithm. Using rare variants in this way allows us

to avoid iterative MCMC methods to infer haplotypes. Compared to other approaches that do not ex-

plicitly use rare variants we obtain significant gains in phasing accuracy, less variation over phasing

runs and improvements in speed. For example, using a reference panel of 7420 haplotypes from the

UK10K project, we are able to reduce switch error rates by up to 50% when phasing samples

sequenced at high-coverage. In addition, a single step rephasing of the UK10K panel, using rare vari-

ant information, has a downstream impact on phasing performance. These results represent a proof

of concept that rare variant sharing patterns can be utilized to phase large high-coverage sequencing

studies such as the 100 000 Genomes Project dataset.

Availability and implementation: A webserver that includes an implementation of this new method and

allows phasing of high-coverage clinical samples is available at https://phasingserver.stats.ox.ac.uk/.

Contact: marchini@stats.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Information about the haplotypes underlying diploid genotypes is

central to pipelines for a wide range of genetic analyses. Standard

examples include inference of human demographic history (1000

Genomes Project Consortium et al., 2012; Hellenthal et al., 2014),

detection of signatures of selection (Sabeti et al., 2002) and

imputation of untyped genetic variation (Li et al., 2010; Marchini

and Howie, 2010). Estimation of haplotypes from genotype data,

known as phasing, is typically treated as a problem of computa-

tional statistical inference for which there is an extensive literature

(Browning and Yu, 2009; Delaneau et al., 2012, 2013b; Li et al.,

2010; Stephens et al., 2001; Scheet and Stephens, 2006). Typically,
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these methods estimate phase for a number of samples together,

often augmented by a reference panel of previously estimated haplo-

types. They operate by exploiting patterns of linkage disequilibrium

(LD) between SNPs and local haplotype sharing between individuals

which arise from the processes which generated the data.

Consequently, accuracy improves as sample size increases.

Increasingly, however, there is a need for accurate phasing of

small or even single samples of sequenced genotypes. This springs

from a growing recognition that haplotype information is essential

in medical genetics and personal genomics for reasons ranging from

assessing the phase of potentially disease-causing recessive muta-

tions (compound heterozygosity) (Fong et al., 2010; Lupski et al.,

2010; McLaughlin et al., 2010; Roach et al., 2010; Zschocke,

2008), to prediction of the drug response profiles of patients in order

to improve dosing and reduce the extent of adverse reactions

(Drysdale et al., 2000). In this setting, the phasing of rarer variants

assumes greater importance (Tewhey et al., 2011). This poses an

additional challenge for existing computational methods as it is not

possible to gain accuracy through joint phasing of a large number of

similarly sequenced samples. Therefore, an alternative approach is

needed.

One approach to this problem is through direct, experimental

phasing which aims to resolve haploptypes as part of the data gener-

ation process (Snyder et al., 2015). Dense methods phase all hetero-

zygous sites in blocks up to several mega-bases in length; sparse

direct methods provide phase information for a subset of variants

across much longer physical distances, but leave many individual

variants unphased. To resolve haplotypes over long regions, either

blocks covered by dense methods must be overlapped, or computa-

tional, population-based inference is required either to link blocks

together or to assign phase probabilistically to the many variants left

unresolved by sparse methods (Kuleshov et al., 2014; Selvaraj et al.,

2013). Inevitably, the accuracy of the probabilistically assigned

phase is worse for rarer variants. Moreover, such methods are cur-

rently expensive and often labour-intensive.

In this paper, we propose a computational approach to phase

small numbers of samples. Our main focus is on samples sequenced

at high coverage, so that SNP genotypes can be called without using

LD, and for which many rare variants will have been detected. To

phase small numbers of samples we take advantage of very large

haplotype reference panels that are ever increasing in size and diver-

sity by explicitly using patterns of rare variant sharing between each

sample and the reference panel.

For the purposes of describing our new method, we refer to it in

this paper as SHAPEITR. It is based on SHAPEIT2 (Delaneau et al.,

2013b) which has been shown to be an accurate phasing method for

more common heterozygotes, such as those assayed on commer-

cially available genotyping arrays. However, we demonstrate that

SHAPEITR can achieve significantly greater accuracy when phasing

single samples which include many rare heterozygotes.

SHAPEITR is based on the same underlying HMM as

SHAPEIT2 and hence also exploits patterns of LD and local haplo-

type sharing between individuals. However, it is able both to com-

pensate for the sparse information contained in only a small number

of unphased samples and simultaneously to improve the quality of

phasing of rarer heterozygotes by exploiting a combination of two

things: the rich phase information that is contained in patterns of

rare variant sharing between samples and the growing size of haplo-

type reference panels.

Considerable effort is currently being expended on creating ever

larger reference panels. The first reference panel of high-quality esti-

mated haplotypes was provided by The International HapMap

Consortium (The International HapMap Consortium, 2005), and

consisted of 270 samples from 3 populations at 3.1 million SNPs.

This has recently been superseded in both size, variant coverage and

diversity by data released by the 1000 Genomes Project (1000GP)

(1000 Genomes Project Consortium et al., 2012), the final Phase 3

release consisting of 2504 samples from 26 populations at more

than 84 million sites. The UK10K Project (The UK10K Consortium,

2015) has recently sequenced 3781 whole genomes at low depth

(average 6.7�). Both the UK10K cohort and the 1000GP have, in

turn, very recently been incorporated into a new, much larger panel

by the (HRC) Haplotype Reference Consortium (http://www.haplo

type-reference-consortium.org). This panel combines 32488 individ-

uals from 20 different cohorts genotyped at 39139 470 SNPs all of

which have an estimated minor allele count of at least 5. Future ver-

sions of the HRC resource will grow in size and diversity. The

100000 Genomes Project http://www.genomicsengland.co.uk will

construct an even larger panel using high coverage sequencing.

As reference panels become larger, the probability of finding a

shared stretch of identical sequence between samples increases. We ex-

ploit this, but identify putative tracts of sharing in a computationally

efficient way by searching for sharing of rare variants. This relies on

the simple idea that sharing of such rare variants between two individ-

uals is more likely to arise from a recent common ancestor and, hence,

also more likely to indicate longer stretches of similar shared haplo-

types. Conceptually our approach is related to that of (Mathieson and

McVean, 2014) who identify shared haplotypes based on the sharing

of rare variants (doubletons) between individuals. While they use

properties of these haplotypes to infer the ages of rare variants, we use

rare variant sharing to help infer the haplotypes, specifically via careful

choice of conditioning states for an HMM-based phaser. Since we as-

sume that genotypes have been obtained from high-coverage sequenc-

ing we also use phase information from reads that span multiple

heterozygous sites to gain extra performance (Delaneau et al., 2013a).

2 Methods

To describe our method, we use the following notation: Gi denotes

a vector of genotypes for the ith of U unphased individuals at L

markers and HU is a set of estimated haplotypes underlying these

genotypes; H denotes a set of M reference haplotypes for N individ-

uals and H� denotes a subset of H of size K.

A common approach to phasing employs a HMM in which com-

patible haplotypes underlying each Gi are modelled as an imperfect

mosaic of haplotypes in H� (Scheet and Stephens, 2006). We call

these the copying states. Typically, the composition of H� varies as

we move along the genome. In principle, it could change from one

site to the next; in practise the region to be phased is divided into

windows of specified size and the same H� corresponds to all sites

within a window.

When U is large, estimation is done iteratively. Updated esti-

mates of the haplotypes, HUi , for the ith unphased individual are

sampled from an HMM in which H� is chosen from a set which

combines H with HU
i , the current haplotype estimates of all other

unphased individuals. The logic behind this approach is that, while

imperfect, the estimated haplotypes, HU
i , still contain information

useful for phasing Gi. However, we consider a setting in which

U¼1 and so H� is chosen simply from H. Even if we wished to

phase more than a single sample, there is some existing evidence in

the literature that when N is much greater than U, little accuracy is

usually sacrificed by selecting H� only from H (Delaneau et al.,

2013b). Nevertheless, we do not wish to completely exclude the idea
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that incorporating information from HU
=i could be beneficial, and we

return to this point in the discussion.

By choosing K� 2N we control computational cost, but sacri-

fice potentially useful information. To mitigate this effect one would

like to choose, in each window, a set H� comprising the K most in-

formative haplotypes for phasing in that window. Genealogical intu-

ition suggests that one should seek to identify K haplotypes that

reside nearest in the genealogical tree to the haplotypes of the indi-

vidual being updated. However, the structure of the underlying ge-

nealogical tree is usually unknown. Therefore, a tractable measure

of similarity is required which approximates genealogical distance.

This idea underpins the approach used by SHAPEIT2 (Delaneau

et al., 2013b) which derives originally from IMPUTE2 (Howie

et al., 2009). It also underpins our new approach, SHAPEITR.

To phase single samples using a reference panel, there are two

options within SHAPEIT2. In the first approach, (-nomcmc option)

the haplotype reference panel is collapsed into a compact graph

structure that encodes local haplotype sharing. An initial estimate of

the sample’s haplotypes are then obtained using an HMM model

that conditions on the haplotypes in this compact graph. We often

refer to this as using the SHAPEIT1 model, as the compact graph

structure was developed in SHAPEIT1 (Delaneau et al., 2012).

These initial estimates are then used to construct H� by choosing the

K closest haplotypes (in terms of Hamming distance) in H in each

window along a chromosome. A final estimate of the haplotypes is

then obtained by re-running the HMM on these K haplotypes in

each window. The second approach, uses MCMC to iteratively up-

date the haplotypes of the single sample. At each iteration the cur-

rent haplotype estimates are used to re-estimate the K closest

haplotypes in terms of Hamming distance. Due the iterative nature

of this approach the method takes longer to run. This approach has

been shown to work very well in phasing common sites but can be

less accurate in phasing in the vicinity of rarer variants (Delaneau

et al., 2013a).

In contrast, our approach exploits the information inherent in

rare variants to improve phasing across the allele frequency spec-

trum. We use rare variants to determine HMM copying states once

at the start of the method, and this allows us to avoid using MCMC

to estimate haplotypes.

2.1 Using rare variant sharing to

determine HMM copying states
Our method of choosing copying states is based on the premise that

the sharing of a rare allele by two haplotypes at a given site is a

strong indicator of proximity on the genealogical tree: sharing of

rare alleles is most likely to arise from a recent common ancestor.

The rarer the allele, the more recent the common ancestry is likely

to be and, hence, the more likely that the two surrounding haplo-

types will be identical by descent (IBD) over a significant interval.

An analysis of the 1000 Genomes Project data showed that f2 vari-

ants (variants present twice in the whole sample) typically lie on

long shared haplotypes, with a median of �0.1 Mb. When searching

in a reference panel for individuals that share a rare allele in sample

to be phased, we would expect to find an individual with an increas-

ingly longer shared tract when the reference panel increases in size.

This occurs since the chance of the reference panel including a sam-

ple with a close genealogical relationship increases with increasing

panel size. For example, at some point the reference panel will be-

come large enough to contain relatives such as siblings, parents, chil-

dren and cousins, which are highly likely to share extensive tracts of

sequence. Given this intuition, it is natural to select H� based on the

K haplotypes in H that share the rarest alleles with Gi within a win-

dow. This is the core of our approach.

Since the population frequency of alleles is unknown we ap-

proximate population frequencies by frequencies in the panel.

Consequently, our approach derives two benefits from the trend for

panels of increasing size: not only are more rare alleles likely to be

represented, but the distribution of their counts in the panel will

more closely approximate their population frequencies. In addition,

our approach also becomes relatively more efficient as panels grow:

the computation of allele frequencies need only be performed once.

One noteworthy difference between our new SHAPEITR rare

variant selection method and the -nomcmc option in SHAPEIT2 is

that SHAPEITR does not depend on any initial estimate of haplo-

types consistent with Gi. We expected that this might lead to less

variation in accuracy over different runs of the algorithm, and em-

pirically we observe this (see Section 2).

One way of understanding both the SHAPEITR approach and that

of SHAPEIT2 is by comparison to the long range phasing (LRP)

method of Kong et al. (Kong et al., 2008). Their method uses rule-

based techniques to phase putative unrelateds by identifying ‘surrogate

parents’ in local regions of the genome who are informative about the

phase of the individual due to shared segments of sequence. In other

words, in each region of the genome the method searches for close

relatives, with recent shared ancestry, that can help with phasing.

However, the method is only applicable when a large enough propor-

tion of the population has been assayed (Kong et al. estimate 10% of a

population is needed). SHAPEIT2 is predominantly designed for phas-

ing in smaller sample sizes typically of GWAS and population genetic

studies, in which there is only a low probability of being able to find

surrogate parents. So a larger set of haplotypes (or ‘surrogate family’)

is used as the basis for inferring the phase of each sample, with this set

of haplotypes being updated iteratively in a Gibbs sampling algorithm.

Our rare variant selection approach can be seen as interpolating be-

tween LRP and SHAPEIT2 in the specific case where a large reference

panel of haplotypes is available. We use rare variants to better identify

the set of close relatives with recent shared ancestry to the sample

being phased.

2.2 Algorithm details
We assume that we have already read the following into memory: a

panel of reference haplotypes, H in the form of an L� 2N matrix

where consecutive pairs of columns correspond to pairs of haplo-

types for the same individual; a list of L genotypes, G, for the sample

to be phased; and a precomputed list, C, of L allele counts at the L

sites common to G and H. We further assume that we have specified

a window size, W, and a number of copying states, K, to find for

each window. Our algorithm consists of two steps. First, we con-

struct the set of rare variant sharing patterns between G and H.

Secondly, we use this set of sharing information to choose sets of

copying states within each window.

Figure 1 consists of a small example of a set of 80 reference

haplotypes in a window of 40 SNPs, together with single sample to

be phased. The figure caption describes the algorithm for choosing

the copying states as applied to this small example. We provided

pseudo-code in the Supplementary Material with fine details of the

method.

The algorithm begins by generating a set of window boundaries,

B. This is done simply by choosing a random site within the region

to be phased as a seed boundary. Further boundaries are placed by

moving outwards from this seed in steps of size W until the end of

the region is reached. Typically this can mean that the windows at

1976 K.Sharp et al.
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either end are somewhat narrower than W. However, choosing win-

dows randomly in this way avoids any risk of bias that might result

from always starting at one end.

When the window boundaries are chosen, we scan through G.

When we find an alt. allele that is also a minor allele, if it is also pre-

sent in the reference panel, we store the position and the number

of occurrences of that allele as a pair in a dictionary. Henceforth,

we refer to the number of occurrences of a specific allele at a site as

the count of that allele at that site. Sites is a list of such dictionaries,

one for each window. Armed with this information, we accumulate

the indices of the copying state haplotypes for each window in a list,

CopyStates, by finding the set of reference haplotypes that match

at each allele count, m, starting with the lowest. We do this until

we have found K such states for the window or until we have con-

sidered all sites. The algorithm is described in Algorithm 1 in the

Supplementary Material.

The second step of choosing sets of copying states within each

window is described in Algorithm 2 in the Supplementary Material.

Although, conceptually straight-forward we highlight two points.

Firstly, we add copying states to the list in order of the allele count

of the sites at which they match with G. Consequently, as the allele

count on which we perform the matching increases there will typic-

ally come a point when the next set of matching haplotypes will ex-

ceed the number we still require. In this case, we simply choose a

random subset sufficient to result in a set of size K.

The second point is more subtle. Instead of choosing K independ-

ent haplotypes, we choose to select haplotypes in pairs correspond-

ing to reference panel individuals. The idea here is simple: we look

for matches at rare alleles, but the phasing of the panel haplotypes

themselves would be harder at those sites. Consequently, we expect

a proportion of switch errors in the vicinity these sites, each of

which will split a potentially highly informative haplotype across

the pair. For example, in Figure 1, haplotypes selected due to shar-

ing of alleles with MAC¼2 are highlighted in yellow. By choosing

individuals rather than haplotypes when we find a match, we at-

tempt to avoid losing this information.

2.3 Validation haplotypes
To assess phasing accuracy we created a validation set of haplotypes

from high-coverage (�130�) Illumina sequencing data on a mother-

father-child of European ancestry which had previously been subject

to processing and quality control (Delaneau et al., 2013a). After

removing all sites not shared with our reference panel, as well as

sites that were heterozygous in all three family members (as these

could not be phased unambiguously), we applied simple rules of

Mendelian inheritance to phase the resulting set of 202 447 bi-allelic

sites for both trio parents.

Using the genotypes derived from our ground-truth haplotypes,

we performed experiments to assess the performance of SHAPEITR

using SHAPEIT2 as a benchmark. All experiments consisted of

phasing runs on the whole of chromosome 20.

2.4 Reference panel
To test the method, we used an existing reference panel derived

from the UK10K Cohorts project. This set of 3781 whole genomes

has been sequenced at low coverage (average 6.7�) and aims to

characterize genetic variation down to 0.1% minor allele frequency

in the British population. Initially, BEAGLE (Browning and Yu,

2009) was used to call genotypes and haplotypes. However, re-phas-

ing using SHAPEIT2 has been found to produce significantly higher

quality haplotypes in terms of downstream imputation performance

(Huang et al., 2014). A set of 26 probable twin pairs were identified

by high levels of concordance at a set of 1000 randomly selected bi-

allelic sites across the genome. We removed one of each twin pair

and filtered sites using VCFtools (v0.1.12b) (Danecek et al., 2011)

to create a reference panel for chromosome 20 in the format

required by SHAPEIT2. This consisted of a set of 523 913 phased,

bi-allelic sites for 3755 individuals.

2.5 Measuring performance
Phasing performance was assessed by the switch error rate. As both

algorithms incorporate a stochastic element, we repeated all experi-

ments twenty times and report switch error rates averaged over these

runs.

For both algorithms, the region to be phased is divided into win-

dows of specified length. Within each window, a set of K copying

states are selected from the reference panel haplotypes. For un-

phased genotypes derived from sequencing data, SHAPEIT2 has pre-

viously been found to give good performance with a window size of

0.5 Mb (Delaneau et al., 2013b) (Supplementary Fig. S3). Therefore

we used this window size for all experiments. In contrast, there is a

clear trade-off involved in choosing K: as K increases we expect

increased accuracy but greater runtime. We compare the sensitivity

of both methods to this choice using K¼400 and K¼800.

We also expected that the performance of SHAPEITR would be

sensitive to the minimum allele frequency, in the population, of sites

used for selecting copying states. We explored the effect of varying

the minimum allele count used for selecting copying states between

1 and 20.

SHAPEIT2 is able to improve the phasing accuracy of rare vari-

ants by incorporating information from sequencing reads that span

multiple heterozygous sites (Delaneau et al., 2013a). SHAPEITR can

also use such phase-informative reads (PIRs) to complement the in-

formation provided by rare variants. We investigated the utility of

this combination using PIRs extracted from the BAM files for the

Fig. 1. Example of copying state selection. A reference panel of 80 haplotypes

in a window of 40 SNPs is represented by horizontal grey lines with non-refer-

ence alleles shown as coloured circles. An unphased individual is shown be-

neath the reference panel (pink line). Alleles at SNPs with a minor allele count

(MAC) in the panel of 2 and 3 are coloured dark blue and green respectively.

Haplotypes selected due to sharing of alleles with MAC¼2 sites are high-

lighted in yellow. Haplotypes selected due to sharing of alleles with MAC¼3

sites are highlighted in orange. In total 14 haplotypes are selected using

MAC¼2 and MAC¼3 sites. The haplotype selection process proceeds in a

similar fashion utilizing MAC>3 sites until K haplotypes are selected
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mother-father-child trio using the extractPIRs tool available

from the SHAPEIT2 website.

2.6 Using rare variants to rephase UK10K panel
An obvious avenue for development of our rare variant selection

method is to phase large sets of genotypes sequenced at high cover-

age such as those planned by the 100 000 Genomes Project www.

genomicsengland.co.uk. As a proof of principle, we performed a

simple rephasing of the UK10K panel using SHAPEITR. Using a

window size of 0.5 Mb and setting K¼400, we rephased every

UK10K sample, using all other samples as a reference panel.

Copying states were selected for each individual based on sharing of

rare variants with all other panel individuals. Our hypothesis was

that even a single pass through the data in this way would already

lead to some improvement. We tested this hypothesis by using the

rephased panel to phase the trio parents.

2.7 A phasing server
We have created a phasing server that allows clinical samples

sequenced at high coverage to be phased against the HRC reference

panel or the UK10K reference panels https://phasingserver.stats.ox.

ac.uk/. Users can upload their samples, with or without additional

phase information from reads, and select a reference panel to be

used when phasing. Initially, we have allocated a 16 core server for

this purpose and access is restricted to bona fide researchers who

wish to phase a small number of clinical samples.

3 Results

Figure 2 compares the performance of SHAPEITR with that of

SHAPEIT2. SHAPEIT2 was run both with and without the use of

MCMC. In addition, we ran all three methods with and without the

use of PIRs. We also ran SHAPEITR using the rephased UK10K panel.

Switch error rates are averages across the two trio parents. We use

box plots to indicate the variability across the 20 different runs.

SHAPEITR is non-iterative and does not use MCMC. Compared

to the non-iterative -nomcmc version of SHAPEIT2, SHAPEITR is

considerably more accurate at both K¼400 and K¼800, by 50.8

and 37.6% respectively. In addition, there is much less variability

between runs when using SHAPEITR. Typically, only one phasing

run is performed so stability across runs is a desirable result.

SHAPEITR also outperforms SHAPEIT2 when using MCMC by

13.0% and 11.6% for K¼400 and K¼800 respectively. This is a

significant observation since it speaks to the value of using rare vari-

ants to determine copying states in HMM phasing algorithms. By

using rare variants we can fix copying states once in advance of run-

ning the HMM and completely avoid using MCMC. The resulting

method is not only more accurate but, for the results presented here,

avoids over an order of magnitude of compute time for the HMM

calculations. We used a total of 35 MCMC iterations (the default

settings for SHAPEIT2). Averaged over both trio parents and

20 runs, the times taken by these iterations for chromosome 20 were

200.8 and 439.2 s for K¼400 and K¼800 respectively. In contrast,

the times taken by SHAPEITR for performing the equivalent compu-

tations were 44.3 and 53.7 s.

Rephasing every individual in the UK10K panel using

SHAPEITR and then using this panel to help phase the trio parents

results in a further increase in accuracy (11.0% at K¼800) when

compared to the use of the original UK10K panel. For chromosome

20, this took 15.1 h using 12 CPU cores.

Finally, Figure 2 also indicates that a further improvement in ac-

curacy is obtained in phasing the trio parents by using PIRs.

We investigated how accuracy depends upon reference panel size

by repeating the experiments using both half and one quarter of the

original UK10K panel. The results are shown in Supplementary

Figures S1–S4, and show that reducing reference panel size leads to

a reduction in phasing accuracy.

3.1 Properties of using rare variants for state selection
The method of copying state selection used by SHAPEITR is based

on the premise that alleles shared between a reference haplotype and

an unphased genotype are more phase-informative when they are

more rare. Figure 3a supports this presumption. As the minimum al-

lele count used for selecting copying states in SHAPEITR (solid

lines) is increased from 1 to 20, it is evident that the improvement in

accuracy from using SHAPEITR is steadily eroded. Performance

does remain better than SHAPEIT2 without using MCMC which re-

flects a much better initial choice of copying states. However, the re-

sults for K¼400 indicate that, when SHAPEIT2 uses MCMC

iterations to update this choice, copying states chosen based on shar-

ing of rare alleles with a minor allele count of �6 or greater are al-

ready no more informative of phase than the Hamming distance

metric employed by SHAPEIT2. As expected, performance for

K¼800 is more robust to loss of information from the lowest fre-

quency alleles; typically the number of sites used by our algorithm

for copy state selection is greater for larger K. While, on average,

the sites corresponding to higher frequency alleles are less inform-

ative, their greater number (for K¼800) gives greater coverage

within the window.

While Figure 3a indicates that performance is strongly influenced

by the rarest shared alleles, selection is typically extended to consider

sharing at sites further up the frequency spectrum in order to select a

full complement of copying states within a window. Figure 3b shows
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how the maximum frequency of the minor alleles used for selection in

a window are distributed when using K¼400. The mean of this distri-

bution is ’ 0:0177 corresponding to an allele count in the panel of

’ 133. While most of the mass of these distributions (90%) lies at

minor allele frequencies below 0.027, there is a tail.

The tail is simply explained: we have observed that panel haplo-

types which share a rare allele with an unphased individual, also

often share several slightly less rare alleles. As we wish to find a

number of unique haplotypes as copying states, this often forces the

search to proceed further up the allele frequency spectrum than the

cumulative sum of allele counts at the sites considered. In such cases,

it is likely that the haplotypes that share several rarer variants with

the unphased sample carry almost all of the phase information. A se-

cond factor is the random placement of window boundaries which

occasionally resulted in a window which contained very few rare

variants.

4 Discussion

We have shown that large haplotype reference panels can be ex-

ploited for phasing of single samples. We have done this by using

the sharing of rare alleles between unphased genotypes and individ-

uals in the reference panel to inform the selection of copying states

for an HMM-based phasing algorithm. This can already be poten-

tially useful in many contexts in medical genetics, where genotypes

have been obtained via high-coverage sequencing.

One important feature of our method is that the selection of

copying states depends only on the unphased genotypes. In any it-

erative extension, this means that the selection of states need be

done only once. For existing methods which update copying states

at each iteration based on matching of estimated haplotypes, this se-

lection step becomes a computational bottleneck when the number

of unphased samples is very large (> 15 000) and necessitates add-

itional approximations (O’Connell et al. 2015, manuscript submit-

ted). The general principle of using rare variants to pre-calculate

which samples are potentially informative for phase offers a poten-

tially more accurate and computationally more tractable approach.

We would expect the benefits of an iterative application of our

method to be especially evident in the phasing of whole-genome

sequencing data on large cohorts of individuals such as the 100 000

samples being collected as part of the Genomics England project.

The high-coverage sequencing and large sample size will uncover

a high number of very rare variants. An accurately phased set

of haplotypes will be important for downstream analyses such as

genotype imputation and demographic inference. We are working

towards extending our method for application to such datasets.

Our method relies on access to a large haplotype reference panel.

The haplotype reference panels such as those produced by the

Genomics England project and the Haplotype Reference Consortium

will not be publicly available as has been the case with projects such

as HapMap and the 1000 Genomes Project, due to the way in which

the study individuals have consented for data release. To address these

restrictions we have developed a phasing server that allows clinical

samples sequenced at high coverage to be phased against the HRC ref-

erence panel or the UK10K reference panels https://phasingserver.

stats.ox.ac.uk/.

The method is primarily designed for application to high cover-

age sequencing data where SNP genotypes can be called very accur-

ately and without using LD. The method could in principle be

applied to low-coverage sequencing data, but genotype calling with-

out LD from such data will produce incorrect genotypes, which

would affect downstream phasing accuracy.

As we have described it, this approach does not permit the phas-

ing of sites that are polymorphic in the unphased sample, but not

represented in the reference panel. One possibility for phasing such

sites is to use PIRs (Delaneau et al., 2013a). Our method comple-

ments this approach and, as we have shown, can be combined with

it. However, in settings where we have a number of unphased sam-

ples which perhaps share some rare variants not represented in a ref-

erence panel, it would make sense to pool the unphased samples

with the reference panel before selecting copying states and then to

apply an iterative updating scheme. We are working towards ex-

tending our method to do this.
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